mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 07:44:23 +08:00
52ce10c187
[ Upstream commit 5dad4ba68a
]
It is possible for all CPUs to miss the pending cpumask becoming clear,
and then nobody resetting it, which will cause the lockup detector to
stop working. It will eventually expire, but watchdog_smp_panic will
avoid doing anything if the pending mask is clear and it will never be
reset.
Order the cpumask clear vs the subsequent test to close this race.
Add an extra check for an empty pending mask when the watchdog fires and
finds its bit still clear, to try to catch any other possible races or
bugs here and keep the watchdog working. The extra test in
arch_touch_nmi_watchdog is required to prevent the new warning from
firing off.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Debugged-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211110025056.2084347-2-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
475 lines
12 KiB
C
475 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Watchdog support on powerpc systems.
|
|
*
|
|
* Copyright 2017, IBM Corporation.
|
|
*
|
|
* This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "watchdog: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/processor.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/interrupt.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/nmi.h>
|
|
|
|
/*
|
|
* The powerpc watchdog ensures that each CPU is able to service timers.
|
|
* The watchdog sets up a simple timer on each CPU to run once per timer
|
|
* period, and updates a per-cpu timestamp and a "pending" cpumask. This is
|
|
* the heartbeat.
|
|
*
|
|
* Then there are two systems to check that the heartbeat is still running.
|
|
* The local soft-NMI, and the SMP checker.
|
|
*
|
|
* The soft-NMI checker can detect lockups on the local CPU. When interrupts
|
|
* are disabled with local_irq_disable(), platforms that use soft-masking
|
|
* can leave hardware interrupts enabled and handle them with a masked
|
|
* interrupt handler. The masked handler can send the timer interrupt to the
|
|
* watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
|
|
* interrupt, and can be used to detect CPUs stuck with IRQs disabled.
|
|
*
|
|
* The soft-NMI checker will compare the heartbeat timestamp for this CPU
|
|
* with the current time, and take action if the difference exceeds the
|
|
* watchdog threshold.
|
|
*
|
|
* The limitation of the soft-NMI watchdog is that it does not work when
|
|
* interrupts are hard disabled or otherwise not being serviced. This is
|
|
* solved by also having a SMP watchdog where all CPUs check all other
|
|
* CPUs heartbeat.
|
|
*
|
|
* The SMP checker can detect lockups on other CPUs. A gobal "pending"
|
|
* cpumask is kept, containing all CPUs which enable the watchdog. Each
|
|
* CPU clears their pending bit in their heartbeat timer. When the bitmask
|
|
* becomes empty, the last CPU to clear its pending bit updates a global
|
|
* timestamp and refills the pending bitmask.
|
|
*
|
|
* In the heartbeat timer, if any CPU notices that the global timestamp has
|
|
* not been updated for a period exceeding the watchdog threshold, then it
|
|
* means the CPU(s) with their bit still set in the pending mask have had
|
|
* their heartbeat stop, and action is taken.
|
|
*
|
|
* Some platforms implement true NMI IPIs, which can be used by the SMP
|
|
* watchdog to detect an unresponsive CPU and pull it out of its stuck
|
|
* state with the NMI IPI, to get crash/debug data from it. This way the
|
|
* SMP watchdog can detect hardware interrupts off lockups.
|
|
*/
|
|
|
|
static cpumask_t wd_cpus_enabled __read_mostly;
|
|
|
|
static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
|
|
static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
|
|
|
|
static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
|
|
|
|
static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
|
|
static DEFINE_PER_CPU(u64, wd_timer_tb);
|
|
|
|
/* SMP checker bits */
|
|
static unsigned long __wd_smp_lock;
|
|
static cpumask_t wd_smp_cpus_pending;
|
|
static cpumask_t wd_smp_cpus_stuck;
|
|
static u64 wd_smp_last_reset_tb;
|
|
|
|
static inline void wd_smp_lock(unsigned long *flags)
|
|
{
|
|
/*
|
|
* Avoid locking layers if possible.
|
|
* This may be called from low level interrupt handlers at some
|
|
* point in future.
|
|
*/
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable(); /* Make it soft-NMI safe */
|
|
while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
|
|
raw_local_irq_restore(*flags);
|
|
spin_until_cond(!test_bit(0, &__wd_smp_lock));
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable();
|
|
}
|
|
}
|
|
|
|
static inline void wd_smp_unlock(unsigned long *flags)
|
|
{
|
|
clear_bit_unlock(0, &__wd_smp_lock);
|
|
raw_local_irq_restore(*flags);
|
|
}
|
|
|
|
static void wd_lockup_ipi(struct pt_regs *regs)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
u64 tb = get_tb();
|
|
|
|
pr_emerg("CPU %d Hard LOCKUP\n", cpu);
|
|
pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
|
|
cpu, tb, per_cpu(wd_timer_tb, cpu),
|
|
tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
/* Do not panic from here because that can recurse into NMI IPI layer */
|
|
}
|
|
|
|
static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
|
|
{
|
|
cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
|
|
cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
|
|
/*
|
|
* See wd_smp_clear_cpu_pending()
|
|
*/
|
|
smp_mb();
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
wd_smp_last_reset_tb = tb;
|
|
cpumask_andnot(&wd_smp_cpus_pending,
|
|
&wd_cpus_enabled,
|
|
&wd_smp_cpus_stuck);
|
|
}
|
|
}
|
|
static void set_cpu_stuck(int cpu, u64 tb)
|
|
{
|
|
set_cpumask_stuck(cpumask_of(cpu), tb);
|
|
}
|
|
|
|
static void watchdog_smp_panic(int cpu, u64 tb)
|
|
{
|
|
unsigned long flags;
|
|
int c;
|
|
|
|
wd_smp_lock(&flags);
|
|
/* Double check some things under lock */
|
|
if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
|
|
goto out;
|
|
if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
|
|
goto out;
|
|
if (cpumask_weight(&wd_smp_cpus_pending) == 0)
|
|
goto out;
|
|
|
|
pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
|
|
cpu, cpumask_pr_args(&wd_smp_cpus_pending));
|
|
pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
|
|
cpu, tb, wd_smp_last_reset_tb,
|
|
tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
|
|
|
|
if (!sysctl_hardlockup_all_cpu_backtrace) {
|
|
/*
|
|
* Try to trigger the stuck CPUs, unless we are going to
|
|
* get a backtrace on all of them anyway.
|
|
*/
|
|
for_each_cpu(c, &wd_smp_cpus_pending) {
|
|
if (c == cpu)
|
|
continue;
|
|
smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
|
|
}
|
|
}
|
|
|
|
/* Take the stuck CPUs out of the watch group */
|
|
set_cpumask_stuck(&wd_smp_cpus_pending, tb);
|
|
|
|
wd_smp_unlock(&flags);
|
|
|
|
if (sysctl_hardlockup_all_cpu_backtrace)
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
/*
|
|
* Force flush any remote buffers that might be stuck in IRQ context
|
|
* and therefore could not run their irq_work.
|
|
*/
|
|
printk_trigger_flush();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(NULL, "Hard LOCKUP");
|
|
|
|
return;
|
|
|
|
out:
|
|
wd_smp_unlock(&flags);
|
|
}
|
|
|
|
static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
|
|
{
|
|
if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
|
|
if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long flags;
|
|
|
|
wd_smp_lock(&flags);
|
|
|
|
pr_emerg("CPU %d became unstuck TB:%lld\n",
|
|
cpu, tb);
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
|
|
wd_smp_unlock(&flags);
|
|
} else {
|
|
/*
|
|
* The last CPU to clear pending should have reset the
|
|
* watchdog so we generally should not find it empty
|
|
* here if our CPU was clear. However it could happen
|
|
* due to a rare race with another CPU taking the
|
|
* last CPU out of the mask concurrently.
|
|
*
|
|
* We can't add a warning for it. But just in case
|
|
* there is a problem with the watchdog that is causing
|
|
* the mask to not be reset, try to kick it along here.
|
|
*/
|
|
if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
|
|
goto none_pending;
|
|
}
|
|
return;
|
|
}
|
|
|
|
cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
|
|
|
|
/*
|
|
* Order the store to clear pending with the load(s) to check all
|
|
* words in the pending mask to check they are all empty. This orders
|
|
* with the same barrier on another CPU. This prevents two CPUs
|
|
* clearing the last 2 pending bits, but neither seeing the other's
|
|
* store when checking if the mask is empty, and missing an empty
|
|
* mask, which ends with a false positive.
|
|
*/
|
|
smp_mb();
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
unsigned long flags;
|
|
|
|
none_pending:
|
|
/*
|
|
* Double check under lock because more than one CPU could see
|
|
* a clear mask with the lockless check after clearing their
|
|
* pending bits.
|
|
*/
|
|
wd_smp_lock(&flags);
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
wd_smp_last_reset_tb = tb;
|
|
cpumask_andnot(&wd_smp_cpus_pending,
|
|
&wd_cpus_enabled,
|
|
&wd_smp_cpus_stuck);
|
|
}
|
|
wd_smp_unlock(&flags);
|
|
}
|
|
}
|
|
|
|
static void watchdog_timer_interrupt(int cpu)
|
|
{
|
|
u64 tb = get_tb();
|
|
|
|
per_cpu(wd_timer_tb, cpu) = tb;
|
|
|
|
wd_smp_clear_cpu_pending(cpu, tb);
|
|
|
|
if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
|
|
watchdog_smp_panic(cpu, tb);
|
|
}
|
|
|
|
DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
|
|
{
|
|
unsigned long flags;
|
|
int cpu = raw_smp_processor_id();
|
|
u64 tb;
|
|
|
|
/* should only arrive from kernel, with irqs disabled */
|
|
WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
|
|
|
|
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
|
|
return 0;
|
|
|
|
__this_cpu_inc(irq_stat.soft_nmi_irqs);
|
|
|
|
tb = get_tb();
|
|
if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
|
|
wd_smp_lock(&flags);
|
|
if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
|
|
wd_smp_unlock(&flags);
|
|
return 0;
|
|
}
|
|
set_cpu_stuck(cpu, tb);
|
|
|
|
pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
|
|
cpu, (void *)regs->nip);
|
|
pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
|
|
cpu, tb, per_cpu(wd_timer_tb, cpu),
|
|
tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
show_regs(regs);
|
|
|
|
wd_smp_unlock(&flags);
|
|
|
|
if (sysctl_hardlockup_all_cpu_backtrace)
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(regs, "Hard LOCKUP");
|
|
}
|
|
if (wd_panic_timeout_tb < 0x7fffffff)
|
|
mtspr(SPRN_DEC, wd_panic_timeout_tb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
|
|
return HRTIMER_NORESTART;
|
|
|
|
if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
|
|
return HRTIMER_NORESTART;
|
|
|
|
watchdog_timer_interrupt(cpu);
|
|
|
|
hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
void arch_touch_nmi_watchdog(void)
|
|
{
|
|
unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
|
|
int cpu = smp_processor_id();
|
|
u64 tb;
|
|
|
|
if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
|
|
return;
|
|
|
|
tb = get_tb();
|
|
if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
|
|
per_cpu(wd_timer_tb, cpu) = tb;
|
|
wd_smp_clear_cpu_pending(cpu, tb);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
|
|
|
|
static void start_watchdog(void *arg)
|
|
{
|
|
struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
|
|
int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
|
|
if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
|
|
return;
|
|
|
|
if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
|
|
return;
|
|
|
|
wd_smp_lock(&flags);
|
|
cpumask_set_cpu(cpu, &wd_cpus_enabled);
|
|
if (cpumask_weight(&wd_cpus_enabled) == 1) {
|
|
cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
|
|
wd_smp_last_reset_tb = get_tb();
|
|
}
|
|
wd_smp_unlock(&flags);
|
|
|
|
*this_cpu_ptr(&wd_timer_tb) = get_tb();
|
|
|
|
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hrtimer->function = watchdog_timer_fn;
|
|
hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
static int start_watchdog_on_cpu(unsigned int cpu)
|
|
{
|
|
return smp_call_function_single(cpu, start_watchdog, NULL, true);
|
|
}
|
|
|
|
static void stop_watchdog(void *arg)
|
|
{
|
|
struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
|
|
int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
|
|
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
|
|
return; /* Can happen in CPU unplug case */
|
|
|
|
hrtimer_cancel(hrtimer);
|
|
|
|
wd_smp_lock(&flags);
|
|
cpumask_clear_cpu(cpu, &wd_cpus_enabled);
|
|
wd_smp_unlock(&flags);
|
|
|
|
wd_smp_clear_cpu_pending(cpu, get_tb());
|
|
}
|
|
|
|
static int stop_watchdog_on_cpu(unsigned int cpu)
|
|
{
|
|
return smp_call_function_single(cpu, stop_watchdog, NULL, true);
|
|
}
|
|
|
|
static void watchdog_calc_timeouts(void)
|
|
{
|
|
wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
|
|
|
|
/* Have the SMP detector trigger a bit later */
|
|
wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
|
|
|
|
/* 2/5 is the factor that the perf based detector uses */
|
|
wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
|
|
}
|
|
|
|
void watchdog_nmi_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, &wd_cpus_enabled)
|
|
stop_watchdog_on_cpu(cpu);
|
|
}
|
|
|
|
void watchdog_nmi_start(void)
|
|
{
|
|
int cpu;
|
|
|
|
watchdog_calc_timeouts();
|
|
for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
|
|
start_watchdog_on_cpu(cpu);
|
|
}
|
|
|
|
/*
|
|
* Invoked from core watchdog init.
|
|
*/
|
|
int __init watchdog_nmi_probe(void)
|
|
{
|
|
int err;
|
|
|
|
err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/watchdog:online",
|
|
start_watchdog_on_cpu,
|
|
stop_watchdog_on_cpu);
|
|
if (err < 0) {
|
|
pr_warn("could not be initialized");
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|