linux/drivers/pnp/pnpacpi/rsparser.c
Jagadish Krishnamoorthy 2a56e9195d PNP / ACPI: add support for GpioInt resource type
The PNP ACPI driver parses ACPI interrupt resource but not
GpioInt resource. When the firmware passes GpioInt resource
for IRQ the PNP ACPI driver ignores it and hence the interrupt for
the particular driver will not work.
One such example is 8042 keyboard which uses PNP driver for obtaining
the interrupt resource. On Intel Braswell project GpioInt is used
instead of interrupt resource and the keyboard driver fails to
register interrupt.
Fix the issue by parsing GpioInt resource type.

Signed-off-by: Jagadish Krishnamoorthy <jagadish.krishnamoorthy@intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
[Fixed a parenthesis coding style thing]
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2017-05-29 11:25:52 +02:00

961 lines
26 KiB
C

/*
* pnpacpi -- PnP ACPI driver
*
* Copyright (c) 2004 Matthieu Castet <castet.matthieu@free.fr>
* Copyright (c) 2004 Li Shaohua <shaohua.li@intel.com>
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
* Bjorn Helgaas <bjorn.helgaas@hp.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/pnp.h>
#include <linux/slab.h>
#include "../base.h"
#include "pnpacpi.h"
static void decode_irq_flags(struct pnp_dev *dev, int flags, u8 *triggering,
u8 *polarity, u8 *shareable)
{
switch (flags & (IORESOURCE_IRQ_LOWLEVEL | IORESOURCE_IRQ_HIGHLEVEL |
IORESOURCE_IRQ_LOWEDGE | IORESOURCE_IRQ_HIGHEDGE)) {
case IORESOURCE_IRQ_LOWLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHLEVEL:
*triggering = ACPI_LEVEL_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
case IORESOURCE_IRQ_LOWEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_LOW;
break;
case IORESOURCE_IRQ_HIGHEDGE:
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
default:
dev_err(&dev->dev, "can't encode invalid IRQ mode %#x\n",
flags);
*triggering = ACPI_EDGE_SENSITIVE;
*polarity = ACPI_ACTIVE_HIGH;
break;
}
if (flags & IORESOURCE_IRQ_SHAREABLE)
*shareable = ACPI_SHARED;
else
*shareable = ACPI_EXCLUSIVE;
}
static int dma_flags(struct pnp_dev *dev, int type, int bus_master,
int transfer)
{
int flags = 0;
if (bus_master)
flags |= IORESOURCE_DMA_MASTER;
switch (type) {
case ACPI_COMPATIBILITY:
flags |= IORESOURCE_DMA_COMPATIBLE;
break;
case ACPI_TYPE_A:
flags |= IORESOURCE_DMA_TYPEA;
break;
case ACPI_TYPE_B:
flags |= IORESOURCE_DMA_TYPEB;
break;
case ACPI_TYPE_F:
flags |= IORESOURCE_DMA_TYPEF;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_COMPATIBLE;
dev_err(&dev->dev, "invalid DMA type %d\n", type);
}
switch (transfer) {
case ACPI_TRANSFER_8:
flags |= IORESOURCE_DMA_8BIT;
break;
case ACPI_TRANSFER_8_16:
flags |= IORESOURCE_DMA_8AND16BIT;
break;
case ACPI_TRANSFER_16:
flags |= IORESOURCE_DMA_16BIT;
break;
default:
/* Set a default value ? */
flags |= IORESOURCE_DMA_8AND16BIT;
dev_err(&dev->dev, "invalid DMA transfer type %d\n", transfer);
}
return flags;
}
/*
* Allocated Resources
*/
static void pnpacpi_add_irqresource(struct pnp_dev *dev, struct resource *r)
{
if (!(r->flags & IORESOURCE_DISABLED))
pcibios_penalize_isa_irq(r->start, 1);
pnp_add_resource(dev, r);
}
/*
* Device CSRs that do not appear in PCI config space should be described
* via ACPI. This would normally be done with Address Space Descriptors
* marked as "consumer-only," but old versions of Windows and Linux ignore
* the producer/consumer flag, so HP invented a vendor-defined resource to
* describe the location and size of CSR space.
*/
static struct acpi_vendor_uuid hp_ccsr_uuid = {
.subtype = 2,
.data = { 0xf9, 0xad, 0xe9, 0x69, 0x4f, 0x92, 0x5f, 0xab, 0xf6, 0x4a,
0x24, 0xd2, 0x01, 0x37, 0x0e, 0xad },
};
static int vendor_resource_matches(struct pnp_dev *dev,
struct acpi_resource_vendor_typed *vendor,
struct acpi_vendor_uuid *match,
int expected_len)
{
int uuid_len = sizeof(vendor->uuid);
u8 uuid_subtype = vendor->uuid_subtype;
u8 *uuid = vendor->uuid;
int actual_len;
/* byte_length includes uuid_subtype and uuid */
actual_len = vendor->byte_length - uuid_len - 1;
if (uuid_subtype == match->subtype &&
uuid_len == sizeof(match->data) &&
memcmp(uuid, match->data, uuid_len) == 0) {
if (expected_len && expected_len != actual_len) {
dev_err(&dev->dev, "wrong vendor descriptor size; "
"expected %d, found %d bytes\n",
expected_len, actual_len);
return 0;
}
return 1;
}
return 0;
}
static void pnpacpi_parse_allocated_vendor(struct pnp_dev *dev,
struct acpi_resource_vendor_typed *vendor)
{
if (vendor_resource_matches(dev, vendor, &hp_ccsr_uuid, 16)) {
u64 start, length;
memcpy(&start, vendor->byte_data, sizeof(start));
memcpy(&length, vendor->byte_data + 8, sizeof(length));
pnp_add_mem_resource(dev, start, start + length - 1, 0);
}
}
static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res,
void *data)
{
struct pnp_dev *dev = data;
struct acpi_resource_dma *dma;
struct acpi_resource_vendor_typed *vendor_typed;
struct acpi_resource_gpio *gpio;
struct resource_win win = {{0}, 0};
struct resource *r = &win.res;
int i, flags;
if (acpi_dev_resource_address_space(res, &win)
|| acpi_dev_resource_ext_address_space(res, &win)) {
pnp_add_resource(dev, &win.res);
return AE_OK;
}
r->flags = 0;
if (acpi_dev_resource_interrupt(res, 0, r)) {
pnpacpi_add_irqresource(dev, r);
for (i = 1; acpi_dev_resource_interrupt(res, i, r); i++)
pnpacpi_add_irqresource(dev, r);
if (i > 1) {
/*
* The IRQ encoder puts a single interrupt in each
* descriptor, so if a _CRS descriptor has more than
* one interrupt, we won't be able to re-encode it.
*/
if (pnp_can_write(dev)) {
dev_warn(&dev->dev, "multiple interrupts in "
"_CRS descriptor; configuration can't "
"be changed\n");
dev->capabilities &= ~PNP_WRITE;
}
}
return AE_OK;
} else if (acpi_gpio_get_irq_resource(res, &gpio)) {
/*
* If the resource is GpioInt() type then extract the IRQ
* from GPIO resource and fill it into IRQ resource type.
*/
i = acpi_dev_gpio_irq_get(dev->data, 0);
if (i >= 0) {
flags = acpi_dev_irq_flags(gpio->triggering,
gpio->polarity,
gpio->sharable);
} else {
flags = IORESOURCE_DISABLED;
}
pnp_add_irq_resource(dev, i, flags);
return AE_OK;
} else if (r->flags & IORESOURCE_DISABLED) {
pnp_add_irq_resource(dev, 0, IORESOURCE_DISABLED);
return AE_OK;
}
switch (res->type) {
case ACPI_RESOURCE_TYPE_MEMORY24:
case ACPI_RESOURCE_TYPE_MEMORY32:
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
if (acpi_dev_resource_memory(res, r))
pnp_add_resource(dev, r);
break;
case ACPI_RESOURCE_TYPE_IO:
case ACPI_RESOURCE_TYPE_FIXED_IO:
if (acpi_dev_resource_io(res, r))
pnp_add_resource(dev, r);
break;
case ACPI_RESOURCE_TYPE_DMA:
dma = &res->data.dma;
if (dma->channel_count > 0 && dma->channels[0] != (u8) -1)
flags = dma_flags(dev, dma->type, dma->bus_master,
dma->transfer);
else
flags = IORESOURCE_DISABLED;
pnp_add_dma_resource(dev, dma->channels[0], flags);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
break;
case ACPI_RESOURCE_TYPE_VENDOR:
vendor_typed = &res->data.vendor_typed;
pnpacpi_parse_allocated_vendor(dev, vendor_typed);
break;
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
case ACPI_RESOURCE_TYPE_SERIAL_BUS:
/* serial bus connections (I2C/SPI/UART) are not pnp */
break;
default:
dev_warn(&dev->dev, "unknown resource type %d in _CRS\n",
res->type);
return AE_ERROR;
}
return AE_OK;
}
int pnpacpi_parse_allocated_resource(struct pnp_dev *dev)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
acpi_status status;
pnp_dbg(&dev->dev, "parse allocated resources\n");
pnp_init_resources(dev);
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_allocated_resource, dev);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND)
dev_err(&dev->dev, "can't evaluate _CRS: %d", status);
return -EPERM;
}
return 0;
}
static __init void pnpacpi_parse_dma_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_dma *p)
{
int i;
unsigned char map = 0, flags;
for (i = 0; i < p->channel_count; i++)
map |= 1 << p->channels[i];
flags = dma_flags(dev, p->type, p->bus_master, p->transfer);
pnp_register_dma_resource(dev, option_flags, map, flags);
}
static __init void pnpacpi_parse_irq_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_irq *p)
{
int i;
pnp_irq_mask_t map;
unsigned char flags;
bitmap_zero(map.bits, PNP_IRQ_NR);
for (i = 0; i < p->interrupt_count; i++)
if (p->interrupts[i])
__set_bit(p->interrupts[i], map.bits);
flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->sharable);
pnp_register_irq_resource(dev, option_flags, &map, flags);
}
static __init void pnpacpi_parse_ext_irq_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_extended_irq *p)
{
int i;
pnp_irq_mask_t map;
unsigned char flags;
bitmap_zero(map.bits, PNP_IRQ_NR);
for (i = 0; i < p->interrupt_count; i++) {
if (p->interrupts[i]) {
if (p->interrupts[i] < PNP_IRQ_NR)
__set_bit(p->interrupts[i], map.bits);
else
dev_err(&dev->dev, "ignoring IRQ %d option "
"(too large for %d entry bitmap)\n",
p->interrupts[i], PNP_IRQ_NR);
}
}
flags = acpi_dev_irq_flags(p->triggering, p->polarity, p->sharable);
pnp_register_irq_resource(dev, option_flags, &map, flags);
}
static __init void pnpacpi_parse_port_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_io *io)
{
unsigned char flags = 0;
if (io->io_decode == ACPI_DECODE_16)
flags = IORESOURCE_IO_16BIT_ADDR;
pnp_register_port_resource(dev, option_flags, io->minimum, io->maximum,
io->alignment, io->address_length, flags);
}
static __init void pnpacpi_parse_fixed_port_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_fixed_io *io)
{
pnp_register_port_resource(dev, option_flags, io->address, io->address,
0, io->address_length, IORESOURCE_IO_FIXED);
}
static __init void pnpacpi_parse_mem24_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_memory24 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum,
p->alignment, p->address_length, flags);
}
static __init void pnpacpi_parse_mem32_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_memory32 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->minimum, p->maximum,
p->alignment, p->address_length, flags);
}
static __init void pnpacpi_parse_fixed_mem32_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource_fixed_memory32 *p)
{
unsigned char flags = 0;
if (p->write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address, p->address,
0, p->address_length, flags);
}
static __init void pnpacpi_parse_address_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource *r)
{
struct acpi_resource_address64 addr, *p = &addr;
acpi_status status;
unsigned char flags = 0;
status = acpi_resource_to_address64(r, p);
if (ACPI_FAILURE(status)) {
dev_warn(&dev->dev, "can't convert resource type %d\n",
r->type);
return;
}
if (p->resource_type == ACPI_MEMORY_RANGE) {
if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
flags);
} else if (p->resource_type == ACPI_IO_RANGE)
pnp_register_port_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
IORESOURCE_IO_FIXED);
}
static __init void pnpacpi_parse_ext_address_option(struct pnp_dev *dev,
unsigned int option_flags,
struct acpi_resource *r)
{
struct acpi_resource_extended_address64 *p = &r->data.ext_address64;
unsigned char flags = 0;
if (p->resource_type == ACPI_MEMORY_RANGE) {
if (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY)
flags = IORESOURCE_MEM_WRITEABLE;
pnp_register_mem_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
flags);
} else if (p->resource_type == ACPI_IO_RANGE)
pnp_register_port_resource(dev, option_flags, p->address.minimum,
p->address.minimum, 0, p->address.address_length,
IORESOURCE_IO_FIXED);
}
struct acpipnp_parse_option_s {
struct pnp_dev *dev;
unsigned int option_flags;
};
static __init acpi_status pnpacpi_option_resource(struct acpi_resource *res,
void *data)
{
int priority;
struct acpipnp_parse_option_s *parse_data = data;
struct pnp_dev *dev = parse_data->dev;
unsigned int option_flags = parse_data->option_flags;
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnpacpi_parse_irq_option(dev, option_flags, &res->data.irq);
break;
case ACPI_RESOURCE_TYPE_DMA:
pnpacpi_parse_dma_option(dev, option_flags, &res->data.dma);
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
switch (res->data.start_dpf.compatibility_priority) {
case ACPI_GOOD_CONFIGURATION:
priority = PNP_RES_PRIORITY_PREFERRED;
break;
case ACPI_ACCEPTABLE_CONFIGURATION:
priority = PNP_RES_PRIORITY_ACCEPTABLE;
break;
case ACPI_SUB_OPTIMAL_CONFIGURATION:
priority = PNP_RES_PRIORITY_FUNCTIONAL;
break;
default:
priority = PNP_RES_PRIORITY_INVALID;
break;
}
parse_data->option_flags = pnp_new_dependent_set(dev, priority);
break;
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
parse_data->option_flags = 0;
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_parse_port_option(dev, option_flags, &res->data.io);
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_parse_fixed_port_option(dev, option_flags,
&res->data.fixed_io);
break;
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_parse_mem24_option(dev, option_flags,
&res->data.memory24);
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_parse_mem32_option(dev, option_flags,
&res->data.memory32);
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_parse_fixed_mem32_option(dev, option_flags,
&res->data.fixed_memory32);
break;
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
pnpacpi_parse_address_option(dev, option_flags, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
pnpacpi_parse_ext_address_option(dev, option_flags, res);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnpacpi_parse_ext_irq_option(dev, option_flags,
&res->data.extended_irq);
break;
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
break;
default:
dev_warn(&dev->dev, "unknown resource type %d in _PRS\n",
res->type);
return AE_ERROR;
}
return AE_OK;
}
int __init pnpacpi_parse_resource_option_data(struct pnp_dev *dev)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
acpi_status status;
struct acpipnp_parse_option_s parse_data;
pnp_dbg(&dev->dev, "parse resource options\n");
parse_data.dev = dev;
parse_data.option_flags = 0;
status = acpi_walk_resources(handle, METHOD_NAME__PRS,
pnpacpi_option_resource, &parse_data);
if (ACPI_FAILURE(status)) {
if (status != AE_NOT_FOUND)
dev_err(&dev->dev, "can't evaluate _PRS: %d", status);
return -EPERM;
}
return 0;
}
static int pnpacpi_supported_resource(struct acpi_resource *res)
{
switch (res->type) {
case ACPI_RESOURCE_TYPE_IRQ:
case ACPI_RESOURCE_TYPE_DMA:
case ACPI_RESOURCE_TYPE_IO:
case ACPI_RESOURCE_TYPE_FIXED_IO:
case ACPI_RESOURCE_TYPE_MEMORY24:
case ACPI_RESOURCE_TYPE_MEMORY32:
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
return 1;
}
return 0;
}
/*
* Set resource
*/
static acpi_status pnpacpi_count_resources(struct acpi_resource *res,
void *data)
{
int *res_cnt = data;
if (pnpacpi_supported_resource(res))
(*res_cnt)++;
return AE_OK;
}
static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data)
{
struct acpi_resource **resource = data;
if (pnpacpi_supported_resource(res)) {
(*resource)->type = res->type;
(*resource)->length = sizeof(struct acpi_resource);
if (res->type == ACPI_RESOURCE_TYPE_IRQ)
(*resource)->data.irq.descriptor_length =
res->data.irq.descriptor_length;
(*resource)++;
}
return AE_OK;
}
int pnpacpi_build_resource_template(struct pnp_dev *dev,
struct acpi_buffer *buffer)
{
struct acpi_device *acpi_dev = dev->data;
acpi_handle handle = acpi_dev->handle;
struct acpi_resource *resource;
int res_cnt = 0;
acpi_status status;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_count_resources, &res_cnt);
if (ACPI_FAILURE(status)) {
dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status);
return -EINVAL;
}
if (!res_cnt)
return -EINVAL;
buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1;
buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL);
if (!buffer->pointer)
return -ENOMEM;
resource = (struct acpi_resource *)buffer->pointer;
status = acpi_walk_resources(handle, METHOD_NAME__CRS,
pnpacpi_type_resources, &resource);
if (ACPI_FAILURE(status)) {
kfree(buffer->pointer);
dev_err(&dev->dev, "can't evaluate _CRS: %d\n", status);
return -EINVAL;
}
/* resource will pointer the end resource now */
resource->type = ACPI_RESOURCE_TYPE_END_TAG;
resource->length = sizeof(struct acpi_resource);
return 0;
}
static void pnpacpi_encode_irq(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_irq *irq = &resource->data.irq;
u8 triggering, polarity, shareable;
if (!pnp_resource_enabled(p)) {
irq->interrupt_count = 0;
pnp_dbg(&dev->dev, " encode irq (%s)\n",
p ? "disabled" : "missing");
return;
}
decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable);
irq->triggering = triggering;
irq->polarity = polarity;
irq->sharable = shareable;
irq->interrupt_count = 1;
irq->interrupts[0] = p->start;
pnp_dbg(&dev->dev, " encode irq %d %s %s %s (%d-byte descriptor)\n",
(int) p->start,
triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge",
polarity == ACPI_ACTIVE_LOW ? "low" : "high",
irq->sharable == ACPI_SHARED ? "shared" : "exclusive",
irq->descriptor_length);
}
static void pnpacpi_encode_ext_irq(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_extended_irq *extended_irq = &resource->data.extended_irq;
u8 triggering, polarity, shareable;
if (!pnp_resource_enabled(p)) {
extended_irq->interrupt_count = 0;
pnp_dbg(&dev->dev, " encode extended irq (%s)\n",
p ? "disabled" : "missing");
return;
}
decode_irq_flags(dev, p->flags, &triggering, &polarity, &shareable);
extended_irq->producer_consumer = ACPI_CONSUMER;
extended_irq->triggering = triggering;
extended_irq->polarity = polarity;
extended_irq->sharable = shareable;
extended_irq->interrupt_count = 1;
extended_irq->interrupts[0] = p->start;
pnp_dbg(&dev->dev, " encode irq %d %s %s %s\n", (int) p->start,
triggering == ACPI_LEVEL_SENSITIVE ? "level" : "edge",
polarity == ACPI_ACTIVE_LOW ? "low" : "high",
extended_irq->sharable == ACPI_SHARED ? "shared" : "exclusive");
}
static void pnpacpi_encode_dma(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_dma *dma = &resource->data.dma;
if (!pnp_resource_enabled(p)) {
dma->channel_count = 0;
pnp_dbg(&dev->dev, " encode dma (%s)\n",
p ? "disabled" : "missing");
return;
}
/* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */
switch (p->flags & IORESOURCE_DMA_SPEED_MASK) {
case IORESOURCE_DMA_TYPEA:
dma->type = ACPI_TYPE_A;
break;
case IORESOURCE_DMA_TYPEB:
dma->type = ACPI_TYPE_B;
break;
case IORESOURCE_DMA_TYPEF:
dma->type = ACPI_TYPE_F;
break;
default:
dma->type = ACPI_COMPATIBILITY;
}
switch (p->flags & IORESOURCE_DMA_TYPE_MASK) {
case IORESOURCE_DMA_8BIT:
dma->transfer = ACPI_TRANSFER_8;
break;
case IORESOURCE_DMA_8AND16BIT:
dma->transfer = ACPI_TRANSFER_8_16;
break;
default:
dma->transfer = ACPI_TRANSFER_16;
}
dma->bus_master = !!(p->flags & IORESOURCE_DMA_MASTER);
dma->channel_count = 1;
dma->channels[0] = p->start;
pnp_dbg(&dev->dev, " encode dma %d "
"type %#x transfer %#x master %d\n",
(int) p->start, dma->type, dma->transfer, dma->bus_master);
}
static void pnpacpi_encode_io(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_io *io = &resource->data.io;
if (pnp_resource_enabled(p)) {
/* Note: pnp_assign_port copies pnp_port->flags into p->flags */
io->io_decode = (p->flags & IORESOURCE_IO_16BIT_ADDR) ?
ACPI_DECODE_16 : ACPI_DECODE_10;
io->minimum = p->start;
io->maximum = p->end;
io->alignment = 0; /* Correct? */
io->address_length = resource_size(p);
} else {
io->minimum = 0;
io->address_length = 0;
}
pnp_dbg(&dev->dev, " encode io %#x-%#x decode %#x\n", io->minimum,
io->minimum + io->address_length - 1, io->io_decode);
}
static void pnpacpi_encode_fixed_io(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_fixed_io *fixed_io = &resource->data.fixed_io;
if (pnp_resource_enabled(p)) {
fixed_io->address = p->start;
fixed_io->address_length = resource_size(p);
} else {
fixed_io->address = 0;
fixed_io->address_length = 0;
}
pnp_dbg(&dev->dev, " encode fixed_io %#x-%#x\n", fixed_io->address,
fixed_io->address + fixed_io->address_length - 1);
}
static void pnpacpi_encode_mem24(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_memory24 *memory24 = &resource->data.memory24;
if (pnp_resource_enabled(p)) {
/* Note: pnp_assign_mem copies pnp_mem->flags into p->flags */
memory24->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
memory24->minimum = p->start;
memory24->maximum = p->end;
memory24->alignment = 0;
memory24->address_length = resource_size(p);
} else {
memory24->minimum = 0;
memory24->address_length = 0;
}
pnp_dbg(&dev->dev, " encode mem24 %#x-%#x write_protect %#x\n",
memory24->minimum,
memory24->minimum + memory24->address_length - 1,
memory24->write_protect);
}
static void pnpacpi_encode_mem32(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_memory32 *memory32 = &resource->data.memory32;
if (pnp_resource_enabled(p)) {
memory32->write_protect = p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
memory32->minimum = p->start;
memory32->maximum = p->end;
memory32->alignment = 0;
memory32->address_length = resource_size(p);
} else {
memory32->minimum = 0;
memory32->alignment = 0;
}
pnp_dbg(&dev->dev, " encode mem32 %#x-%#x write_protect %#x\n",
memory32->minimum,
memory32->minimum + memory32->address_length - 1,
memory32->write_protect);
}
static void pnpacpi_encode_fixed_mem32(struct pnp_dev *dev,
struct acpi_resource *resource,
struct resource *p)
{
struct acpi_resource_fixed_memory32 *fixed_memory32 = &resource->data.fixed_memory32;
if (pnp_resource_enabled(p)) {
fixed_memory32->write_protect =
p->flags & IORESOURCE_MEM_WRITEABLE ?
ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY;
fixed_memory32->address = p->start;
fixed_memory32->address_length = resource_size(p);
} else {
fixed_memory32->address = 0;
fixed_memory32->address_length = 0;
}
pnp_dbg(&dev->dev, " encode fixed_mem32 %#x-%#x write_protect %#x\n",
fixed_memory32->address,
fixed_memory32->address + fixed_memory32->address_length - 1,
fixed_memory32->write_protect);
}
int pnpacpi_encode_resources(struct pnp_dev *dev, struct acpi_buffer *buffer)
{
int i = 0;
/* pnpacpi_build_resource_template allocates extra mem */
int res_cnt = (buffer->length - 1) / sizeof(struct acpi_resource) - 1;
struct acpi_resource *resource = buffer->pointer;
unsigned int port = 0, irq = 0, dma = 0, mem = 0;
pnp_dbg(&dev->dev, "encode %d resources\n", res_cnt);
while (i < res_cnt) {
switch (resource->type) {
case ACPI_RESOURCE_TYPE_IRQ:
pnpacpi_encode_irq(dev, resource,
pnp_get_resource(dev, IORESOURCE_IRQ, irq));
irq++;
break;
case ACPI_RESOURCE_TYPE_DMA:
pnpacpi_encode_dma(dev, resource,
pnp_get_resource(dev, IORESOURCE_DMA, dma));
dma++;
break;
case ACPI_RESOURCE_TYPE_IO:
pnpacpi_encode_io(dev, resource,
pnp_get_resource(dev, IORESOURCE_IO, port));
port++;
break;
case ACPI_RESOURCE_TYPE_FIXED_IO:
pnpacpi_encode_fixed_io(dev, resource,
pnp_get_resource(dev, IORESOURCE_IO, port));
port++;
break;
case ACPI_RESOURCE_TYPE_MEMORY24:
pnpacpi_encode_mem24(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_MEMORY32:
pnpacpi_encode_mem32(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_FIXED_MEMORY32:
pnpacpi_encode_fixed_mem32(dev, resource,
pnp_get_resource(dev, IORESOURCE_MEM, mem));
mem++;
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
pnpacpi_encode_ext_irq(dev, resource,
pnp_get_resource(dev, IORESOURCE_IRQ, irq));
irq++;
break;
case ACPI_RESOURCE_TYPE_START_DEPENDENT:
case ACPI_RESOURCE_TYPE_END_DEPENDENT:
case ACPI_RESOURCE_TYPE_VENDOR:
case ACPI_RESOURCE_TYPE_END_TAG:
case ACPI_RESOURCE_TYPE_ADDRESS16:
case ACPI_RESOURCE_TYPE_ADDRESS32:
case ACPI_RESOURCE_TYPE_ADDRESS64:
case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64:
case ACPI_RESOURCE_TYPE_GENERIC_REGISTER:
default: /* other type */
dev_warn(&dev->dev, "can't encode unknown resource "
"type %d\n", resource->type);
return -EINVAL;
}
resource++;
i++;
}
return 0;
}