mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 07:44:23 +08:00
369566ef13
Use the wrapper function for retrieving the platform data instead of accessing dev->platform_data directly. This is a cosmetic change to make the code simpler and enhance the readability. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
1233 lines
32 KiB
C
1233 lines
32 KiB
C
/*
|
|
* CAN bus driver for Microchip 251x CAN Controller with SPI Interface
|
|
*
|
|
* MCP2510 support and bug fixes by Christian Pellegrin
|
|
* <chripell@evolware.org>
|
|
*
|
|
* Copyright 2009 Christian Pellegrin EVOL S.r.l.
|
|
*
|
|
* Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
|
|
* Written under contract by:
|
|
* Chris Elston, Katalix Systems, Ltd.
|
|
*
|
|
* Based on Microchip MCP251x CAN controller driver written by
|
|
* David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
|
|
*
|
|
* Based on CAN bus driver for the CCAN controller written by
|
|
* - Sascha Hauer, Marc Kleine-Budde, Pengutronix
|
|
* - Simon Kallweit, intefo AG
|
|
* Copyright 2007
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the version 2 of the GNU General Public License
|
|
* as published by the Free Software Foundation
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*
|
|
*
|
|
* Your platform definition file should specify something like:
|
|
*
|
|
* static struct mcp251x_platform_data mcp251x_info = {
|
|
* .oscillator_frequency = 8000000,
|
|
* };
|
|
*
|
|
* static struct spi_board_info spi_board_info[] = {
|
|
* {
|
|
* .modalias = "mcp2510",
|
|
* // or "mcp2515" depending on your controller
|
|
* .platform_data = &mcp251x_info,
|
|
* .irq = IRQ_EINT13,
|
|
* .max_speed_hz = 2*1000*1000,
|
|
* .chip_select = 2,
|
|
* },
|
|
* };
|
|
*
|
|
* Please see mcp251x.h for a description of the fields in
|
|
* struct mcp251x_platform_data.
|
|
*
|
|
*/
|
|
|
|
#include <linux/can/core.h>
|
|
#include <linux/can/dev.h>
|
|
#include <linux/can/led.h>
|
|
#include <linux/can/platform/mcp251x.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
/* SPI interface instruction set */
|
|
#define INSTRUCTION_WRITE 0x02
|
|
#define INSTRUCTION_READ 0x03
|
|
#define INSTRUCTION_BIT_MODIFY 0x05
|
|
#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
|
|
#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
|
|
#define INSTRUCTION_RESET 0xC0
|
|
#define RTS_TXB0 0x01
|
|
#define RTS_TXB1 0x02
|
|
#define RTS_TXB2 0x04
|
|
#define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
|
|
|
|
|
|
/* MPC251x registers */
|
|
#define CANSTAT 0x0e
|
|
#define CANCTRL 0x0f
|
|
# define CANCTRL_REQOP_MASK 0xe0
|
|
# define CANCTRL_REQOP_CONF 0x80
|
|
# define CANCTRL_REQOP_LISTEN_ONLY 0x60
|
|
# define CANCTRL_REQOP_LOOPBACK 0x40
|
|
# define CANCTRL_REQOP_SLEEP 0x20
|
|
# define CANCTRL_REQOP_NORMAL 0x00
|
|
# define CANCTRL_OSM 0x08
|
|
# define CANCTRL_ABAT 0x10
|
|
#define TEC 0x1c
|
|
#define REC 0x1d
|
|
#define CNF1 0x2a
|
|
# define CNF1_SJW_SHIFT 6
|
|
#define CNF2 0x29
|
|
# define CNF2_BTLMODE 0x80
|
|
# define CNF2_SAM 0x40
|
|
# define CNF2_PS1_SHIFT 3
|
|
#define CNF3 0x28
|
|
# define CNF3_SOF 0x08
|
|
# define CNF3_WAKFIL 0x04
|
|
# define CNF3_PHSEG2_MASK 0x07
|
|
#define CANINTE 0x2b
|
|
# define CANINTE_MERRE 0x80
|
|
# define CANINTE_WAKIE 0x40
|
|
# define CANINTE_ERRIE 0x20
|
|
# define CANINTE_TX2IE 0x10
|
|
# define CANINTE_TX1IE 0x08
|
|
# define CANINTE_TX0IE 0x04
|
|
# define CANINTE_RX1IE 0x02
|
|
# define CANINTE_RX0IE 0x01
|
|
#define CANINTF 0x2c
|
|
# define CANINTF_MERRF 0x80
|
|
# define CANINTF_WAKIF 0x40
|
|
# define CANINTF_ERRIF 0x20
|
|
# define CANINTF_TX2IF 0x10
|
|
# define CANINTF_TX1IF 0x08
|
|
# define CANINTF_TX0IF 0x04
|
|
# define CANINTF_RX1IF 0x02
|
|
# define CANINTF_RX0IF 0x01
|
|
# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
|
|
# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
|
|
# define CANINTF_ERR (CANINTF_ERRIF)
|
|
#define EFLG 0x2d
|
|
# define EFLG_EWARN 0x01
|
|
# define EFLG_RXWAR 0x02
|
|
# define EFLG_TXWAR 0x04
|
|
# define EFLG_RXEP 0x08
|
|
# define EFLG_TXEP 0x10
|
|
# define EFLG_TXBO 0x20
|
|
# define EFLG_RX0OVR 0x40
|
|
# define EFLG_RX1OVR 0x80
|
|
#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
|
|
# define TXBCTRL_ABTF 0x40
|
|
# define TXBCTRL_MLOA 0x20
|
|
# define TXBCTRL_TXERR 0x10
|
|
# define TXBCTRL_TXREQ 0x08
|
|
#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
|
|
# define SIDH_SHIFT 3
|
|
#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
|
|
# define SIDL_SID_MASK 7
|
|
# define SIDL_SID_SHIFT 5
|
|
# define SIDL_EXIDE_SHIFT 3
|
|
# define SIDL_EID_SHIFT 16
|
|
# define SIDL_EID_MASK 3
|
|
#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
|
|
#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
|
|
#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
|
|
# define DLC_RTR_SHIFT 6
|
|
#define TXBCTRL_OFF 0
|
|
#define TXBSIDH_OFF 1
|
|
#define TXBSIDL_OFF 2
|
|
#define TXBEID8_OFF 3
|
|
#define TXBEID0_OFF 4
|
|
#define TXBDLC_OFF 5
|
|
#define TXBDAT_OFF 6
|
|
#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
|
|
# define RXBCTRL_BUKT 0x04
|
|
# define RXBCTRL_RXM0 0x20
|
|
# define RXBCTRL_RXM1 0x40
|
|
#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
|
|
# define RXBSIDH_SHIFT 3
|
|
#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
|
|
# define RXBSIDL_IDE 0x08
|
|
# define RXBSIDL_SRR 0x10
|
|
# define RXBSIDL_EID 3
|
|
# define RXBSIDL_SHIFT 5
|
|
#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
|
|
#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
|
|
#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
|
|
# define RXBDLC_LEN_MASK 0x0f
|
|
# define RXBDLC_RTR 0x40
|
|
#define RXBCTRL_OFF 0
|
|
#define RXBSIDH_OFF 1
|
|
#define RXBSIDL_OFF 2
|
|
#define RXBEID8_OFF 3
|
|
#define RXBEID0_OFF 4
|
|
#define RXBDLC_OFF 5
|
|
#define RXBDAT_OFF 6
|
|
#define RXFSIDH(n) ((n) * 4)
|
|
#define RXFSIDL(n) ((n) * 4 + 1)
|
|
#define RXFEID8(n) ((n) * 4 + 2)
|
|
#define RXFEID0(n) ((n) * 4 + 3)
|
|
#define RXMSIDH(n) ((n) * 4 + 0x20)
|
|
#define RXMSIDL(n) ((n) * 4 + 0x21)
|
|
#define RXMEID8(n) ((n) * 4 + 0x22)
|
|
#define RXMEID0(n) ((n) * 4 + 0x23)
|
|
|
|
#define GET_BYTE(val, byte) \
|
|
(((val) >> ((byte) * 8)) & 0xff)
|
|
#define SET_BYTE(val, byte) \
|
|
(((val) & 0xff) << ((byte) * 8))
|
|
|
|
/*
|
|
* Buffer size required for the largest SPI transfer (i.e., reading a
|
|
* frame)
|
|
*/
|
|
#define CAN_FRAME_MAX_DATA_LEN 8
|
|
#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
|
|
#define CAN_FRAME_MAX_BITS 128
|
|
|
|
#define TX_ECHO_SKB_MAX 1
|
|
|
|
#define DEVICE_NAME "mcp251x"
|
|
|
|
static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
|
|
module_param(mcp251x_enable_dma, int, S_IRUGO);
|
|
MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
|
|
|
|
static const struct can_bittiming_const mcp251x_bittiming_const = {
|
|
.name = DEVICE_NAME,
|
|
.tseg1_min = 3,
|
|
.tseg1_max = 16,
|
|
.tseg2_min = 2,
|
|
.tseg2_max = 8,
|
|
.sjw_max = 4,
|
|
.brp_min = 1,
|
|
.brp_max = 64,
|
|
.brp_inc = 1,
|
|
};
|
|
|
|
enum mcp251x_model {
|
|
CAN_MCP251X_MCP2510 = 0x2510,
|
|
CAN_MCP251X_MCP2515 = 0x2515,
|
|
};
|
|
|
|
struct mcp251x_priv {
|
|
struct can_priv can;
|
|
struct net_device *net;
|
|
struct spi_device *spi;
|
|
enum mcp251x_model model;
|
|
|
|
struct mutex mcp_lock; /* SPI device lock */
|
|
|
|
u8 *spi_tx_buf;
|
|
u8 *spi_rx_buf;
|
|
dma_addr_t spi_tx_dma;
|
|
dma_addr_t spi_rx_dma;
|
|
|
|
struct sk_buff *tx_skb;
|
|
int tx_len;
|
|
|
|
struct workqueue_struct *wq;
|
|
struct work_struct tx_work;
|
|
struct work_struct restart_work;
|
|
|
|
int force_quit;
|
|
int after_suspend;
|
|
#define AFTER_SUSPEND_UP 1
|
|
#define AFTER_SUSPEND_DOWN 2
|
|
#define AFTER_SUSPEND_POWER 4
|
|
#define AFTER_SUSPEND_RESTART 8
|
|
int restart_tx;
|
|
struct regulator *power;
|
|
struct regulator *transceiver;
|
|
};
|
|
|
|
#define MCP251X_IS(_model) \
|
|
static inline int mcp251x_is_##_model(struct spi_device *spi) \
|
|
{ \
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi); \
|
|
return priv->model == CAN_MCP251X_MCP##_model; \
|
|
}
|
|
|
|
MCP251X_IS(2510);
|
|
MCP251X_IS(2515);
|
|
|
|
static void mcp251x_clean(struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
|
|
if (priv->tx_skb || priv->tx_len)
|
|
net->stats.tx_errors++;
|
|
if (priv->tx_skb)
|
|
dev_kfree_skb(priv->tx_skb);
|
|
if (priv->tx_len)
|
|
can_free_echo_skb(priv->net, 0);
|
|
priv->tx_skb = NULL;
|
|
priv->tx_len = 0;
|
|
}
|
|
|
|
/*
|
|
* Note about handling of error return of mcp251x_spi_trans: accessing
|
|
* registers via SPI is not really different conceptually than using
|
|
* normal I/O assembler instructions, although it's much more
|
|
* complicated from a practical POV. So it's not advisable to always
|
|
* check the return value of this function. Imagine that every
|
|
* read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
|
|
* error();", it would be a great mess (well there are some situation
|
|
* when exception handling C++ like could be useful after all). So we
|
|
* just check that transfers are OK at the beginning of our
|
|
* conversation with the chip and to avoid doing really nasty things
|
|
* (like injecting bogus packets in the network stack).
|
|
*/
|
|
static int mcp251x_spi_trans(struct spi_device *spi, int len)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
struct spi_transfer t = {
|
|
.tx_buf = priv->spi_tx_buf,
|
|
.rx_buf = priv->spi_rx_buf,
|
|
.len = len,
|
|
.cs_change = 0,
|
|
};
|
|
struct spi_message m;
|
|
int ret;
|
|
|
|
spi_message_init(&m);
|
|
|
|
if (mcp251x_enable_dma) {
|
|
t.tx_dma = priv->spi_tx_dma;
|
|
t.rx_dma = priv->spi_rx_dma;
|
|
m.is_dma_mapped = 1;
|
|
}
|
|
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
ret = spi_sync(spi, &m);
|
|
if (ret)
|
|
dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
u8 val = 0;
|
|
|
|
priv->spi_tx_buf[0] = INSTRUCTION_READ;
|
|
priv->spi_tx_buf[1] = reg;
|
|
|
|
mcp251x_spi_trans(spi, 3);
|
|
val = priv->spi_rx_buf[2];
|
|
|
|
return val;
|
|
}
|
|
|
|
static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
|
|
uint8_t *v1, uint8_t *v2)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
priv->spi_tx_buf[0] = INSTRUCTION_READ;
|
|
priv->spi_tx_buf[1] = reg;
|
|
|
|
mcp251x_spi_trans(spi, 4);
|
|
|
|
*v1 = priv->spi_rx_buf[2];
|
|
*v2 = priv->spi_rx_buf[3];
|
|
}
|
|
|
|
static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
|
|
priv->spi_tx_buf[1] = reg;
|
|
priv->spi_tx_buf[2] = val;
|
|
|
|
mcp251x_spi_trans(spi, 3);
|
|
}
|
|
|
|
static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
|
|
u8 mask, uint8_t val)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
|
|
priv->spi_tx_buf[1] = reg;
|
|
priv->spi_tx_buf[2] = mask;
|
|
priv->spi_tx_buf[3] = val;
|
|
|
|
mcp251x_spi_trans(spi, 4);
|
|
}
|
|
|
|
static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
|
|
int len, int tx_buf_idx)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
if (mcp251x_is_2510(spi)) {
|
|
int i;
|
|
|
|
for (i = 1; i < TXBDAT_OFF + len; i++)
|
|
mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
|
|
buf[i]);
|
|
} else {
|
|
memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
|
|
mcp251x_spi_trans(spi, TXBDAT_OFF + len);
|
|
}
|
|
}
|
|
|
|
static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
|
|
int tx_buf_idx)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
u32 sid, eid, exide, rtr;
|
|
u8 buf[SPI_TRANSFER_BUF_LEN];
|
|
|
|
exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
|
|
if (exide)
|
|
sid = (frame->can_id & CAN_EFF_MASK) >> 18;
|
|
else
|
|
sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
|
|
eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
|
|
rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
|
|
|
|
buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
|
|
buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
|
|
buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
|
|
(exide << SIDL_EXIDE_SHIFT) |
|
|
((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
|
|
buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
|
|
buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
|
|
buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
|
|
memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
|
|
mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
|
|
|
|
/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
|
|
priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
|
|
mcp251x_spi_trans(priv->spi, 1);
|
|
}
|
|
|
|
static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
|
|
int buf_idx)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
if (mcp251x_is_2510(spi)) {
|
|
int i, len;
|
|
|
|
for (i = 1; i < RXBDAT_OFF; i++)
|
|
buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
|
|
|
|
len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
|
|
for (; i < (RXBDAT_OFF + len); i++)
|
|
buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
|
|
} else {
|
|
priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
|
|
mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
|
|
memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
|
|
}
|
|
}
|
|
|
|
static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
struct sk_buff *skb;
|
|
struct can_frame *frame;
|
|
u8 buf[SPI_TRANSFER_BUF_LEN];
|
|
|
|
skb = alloc_can_skb(priv->net, &frame);
|
|
if (!skb) {
|
|
dev_err(&spi->dev, "cannot allocate RX skb\n");
|
|
priv->net->stats.rx_dropped++;
|
|
return;
|
|
}
|
|
|
|
mcp251x_hw_rx_frame(spi, buf, buf_idx);
|
|
if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
|
|
/* Extended ID format */
|
|
frame->can_id = CAN_EFF_FLAG;
|
|
frame->can_id |=
|
|
/* Extended ID part */
|
|
SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
|
|
SET_BYTE(buf[RXBEID8_OFF], 1) |
|
|
SET_BYTE(buf[RXBEID0_OFF], 0) |
|
|
/* Standard ID part */
|
|
(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
|
|
(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
|
|
/* Remote transmission request */
|
|
if (buf[RXBDLC_OFF] & RXBDLC_RTR)
|
|
frame->can_id |= CAN_RTR_FLAG;
|
|
} else {
|
|
/* Standard ID format */
|
|
frame->can_id =
|
|
(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
|
|
(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
|
|
if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
|
|
frame->can_id |= CAN_RTR_FLAG;
|
|
}
|
|
/* Data length */
|
|
frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
|
|
memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
|
|
|
|
priv->net->stats.rx_packets++;
|
|
priv->net->stats.rx_bytes += frame->can_dlc;
|
|
|
|
can_led_event(priv->net, CAN_LED_EVENT_RX);
|
|
|
|
netif_rx_ni(skb);
|
|
}
|
|
|
|
static void mcp251x_hw_sleep(struct spi_device *spi)
|
|
{
|
|
mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
|
|
}
|
|
|
|
static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
|
|
struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
struct spi_device *spi = priv->spi;
|
|
|
|
if (priv->tx_skb || priv->tx_len) {
|
|
dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
if (can_dropped_invalid_skb(net, skb))
|
|
return NETDEV_TX_OK;
|
|
|
|
netif_stop_queue(net);
|
|
priv->tx_skb = skb;
|
|
queue_work(priv->wq, &priv->tx_work);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
|
|
switch (mode) {
|
|
case CAN_MODE_START:
|
|
mcp251x_clean(net);
|
|
/* We have to delay work since SPI I/O may sleep */
|
|
priv->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
priv->restart_tx = 1;
|
|
if (priv->can.restart_ms == 0)
|
|
priv->after_suspend = AFTER_SUSPEND_RESTART;
|
|
queue_work(priv->wq, &priv->restart_work);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_set_normal_mode(struct spi_device *spi)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
unsigned long timeout;
|
|
|
|
/* Enable interrupts */
|
|
mcp251x_write_reg(spi, CANINTE,
|
|
CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
|
|
CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
|
|
|
|
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
|
|
/* Put device into loopback mode */
|
|
mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
|
|
} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
|
|
/* Put device into listen-only mode */
|
|
mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
|
|
} else {
|
|
/* Put device into normal mode */
|
|
mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
|
|
|
|
/* Wait for the device to enter normal mode */
|
|
timeout = jiffies + HZ;
|
|
while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
|
|
schedule();
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(&spi->dev, "MCP251x didn't"
|
|
" enter in normal mode\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
}
|
|
priv->can.state = CAN_STATE_ERROR_ACTIVE;
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_do_set_bittiming(struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
struct can_bittiming *bt = &priv->can.bittiming;
|
|
struct spi_device *spi = priv->spi;
|
|
|
|
mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
|
|
(bt->brp - 1));
|
|
mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
|
|
(priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
|
|
CNF2_SAM : 0) |
|
|
((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
|
|
(bt->prop_seg - 1));
|
|
mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
|
|
(bt->phase_seg2 - 1));
|
|
dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
|
|
mcp251x_read_reg(spi, CNF1),
|
|
mcp251x_read_reg(spi, CNF2),
|
|
mcp251x_read_reg(spi, CNF3));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
|
|
struct spi_device *spi)
|
|
{
|
|
mcp251x_do_set_bittiming(net);
|
|
|
|
mcp251x_write_reg(spi, RXBCTRL(0),
|
|
RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
|
|
mcp251x_write_reg(spi, RXBCTRL(1),
|
|
RXBCTRL_RXM0 | RXBCTRL_RXM1);
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_hw_reset(struct spi_device *spi)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
priv->spi_tx_buf[0] = INSTRUCTION_RESET;
|
|
ret = spi_write(spi, priv->spi_tx_buf, 1);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Wait for reset to finish */
|
|
timeout = jiffies + HZ;
|
|
mdelay(10);
|
|
while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
|
|
!= CANCTRL_REQOP_CONF) {
|
|
schedule();
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(&spi->dev, "MCP251x didn't"
|
|
" enter in conf mode after reset\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_hw_probe(struct spi_device *spi)
|
|
{
|
|
int st1, st2;
|
|
|
|
mcp251x_hw_reset(spi);
|
|
|
|
/*
|
|
* Please note that these are "magic values" based on after
|
|
* reset defaults taken from data sheet which allows us to see
|
|
* if we really have a chip on the bus (we avoid common all
|
|
* zeroes or all ones situations)
|
|
*/
|
|
st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
|
|
st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
|
|
|
|
dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
|
|
|
|
/* Check for power up default values */
|
|
return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
|
|
}
|
|
|
|
static int mcp251x_power_enable(struct regulator *reg, int enable)
|
|
{
|
|
if (IS_ERR(reg))
|
|
return 0;
|
|
|
|
if (enable)
|
|
return regulator_enable(reg);
|
|
else
|
|
return regulator_disable(reg);
|
|
}
|
|
|
|
static void mcp251x_open_clean(struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
struct spi_device *spi = priv->spi;
|
|
|
|
free_irq(spi->irq, priv);
|
|
mcp251x_hw_sleep(spi);
|
|
mcp251x_power_enable(priv->transceiver, 0);
|
|
close_candev(net);
|
|
}
|
|
|
|
static int mcp251x_stop(struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
struct spi_device *spi = priv->spi;
|
|
|
|
close_candev(net);
|
|
|
|
priv->force_quit = 1;
|
|
free_irq(spi->irq, priv);
|
|
destroy_workqueue(priv->wq);
|
|
priv->wq = NULL;
|
|
|
|
mutex_lock(&priv->mcp_lock);
|
|
|
|
/* Disable and clear pending interrupts */
|
|
mcp251x_write_reg(spi, CANINTE, 0x00);
|
|
mcp251x_write_reg(spi, CANINTF, 0x00);
|
|
|
|
mcp251x_write_reg(spi, TXBCTRL(0), 0);
|
|
mcp251x_clean(net);
|
|
|
|
mcp251x_hw_sleep(spi);
|
|
|
|
mcp251x_power_enable(priv->transceiver, 0);
|
|
|
|
priv->can.state = CAN_STATE_STOPPED;
|
|
|
|
mutex_unlock(&priv->mcp_lock);
|
|
|
|
can_led_event(net, CAN_LED_EVENT_STOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct can_frame *frame;
|
|
|
|
skb = alloc_can_err_skb(net, &frame);
|
|
if (skb) {
|
|
frame->can_id |= can_id;
|
|
frame->data[1] = data1;
|
|
netif_rx_ni(skb);
|
|
} else {
|
|
netdev_err(net, "cannot allocate error skb\n");
|
|
}
|
|
}
|
|
|
|
static void mcp251x_tx_work_handler(struct work_struct *ws)
|
|
{
|
|
struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
|
|
tx_work);
|
|
struct spi_device *spi = priv->spi;
|
|
struct net_device *net = priv->net;
|
|
struct can_frame *frame;
|
|
|
|
mutex_lock(&priv->mcp_lock);
|
|
if (priv->tx_skb) {
|
|
if (priv->can.state == CAN_STATE_BUS_OFF) {
|
|
mcp251x_clean(net);
|
|
} else {
|
|
frame = (struct can_frame *)priv->tx_skb->data;
|
|
|
|
if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
|
|
frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
|
|
mcp251x_hw_tx(spi, frame, 0);
|
|
priv->tx_len = 1 + frame->can_dlc;
|
|
can_put_echo_skb(priv->tx_skb, net, 0);
|
|
priv->tx_skb = NULL;
|
|
}
|
|
}
|
|
mutex_unlock(&priv->mcp_lock);
|
|
}
|
|
|
|
static void mcp251x_restart_work_handler(struct work_struct *ws)
|
|
{
|
|
struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
|
|
restart_work);
|
|
struct spi_device *spi = priv->spi;
|
|
struct net_device *net = priv->net;
|
|
|
|
mutex_lock(&priv->mcp_lock);
|
|
if (priv->after_suspend) {
|
|
mdelay(10);
|
|
mcp251x_hw_reset(spi);
|
|
mcp251x_setup(net, priv, spi);
|
|
if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
|
|
mcp251x_set_normal_mode(spi);
|
|
} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
|
|
netif_device_attach(net);
|
|
mcp251x_clean(net);
|
|
mcp251x_set_normal_mode(spi);
|
|
netif_wake_queue(net);
|
|
} else {
|
|
mcp251x_hw_sleep(spi);
|
|
}
|
|
priv->after_suspend = 0;
|
|
priv->force_quit = 0;
|
|
}
|
|
|
|
if (priv->restart_tx) {
|
|
priv->restart_tx = 0;
|
|
mcp251x_write_reg(spi, TXBCTRL(0), 0);
|
|
mcp251x_clean(net);
|
|
netif_wake_queue(net);
|
|
mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
|
|
}
|
|
mutex_unlock(&priv->mcp_lock);
|
|
}
|
|
|
|
static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
|
|
{
|
|
struct mcp251x_priv *priv = dev_id;
|
|
struct spi_device *spi = priv->spi;
|
|
struct net_device *net = priv->net;
|
|
|
|
mutex_lock(&priv->mcp_lock);
|
|
while (!priv->force_quit) {
|
|
enum can_state new_state;
|
|
u8 intf, eflag;
|
|
u8 clear_intf = 0;
|
|
int can_id = 0, data1 = 0;
|
|
|
|
mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
|
|
|
|
/* mask out flags we don't care about */
|
|
intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
|
|
|
|
/* receive buffer 0 */
|
|
if (intf & CANINTF_RX0IF) {
|
|
mcp251x_hw_rx(spi, 0);
|
|
/*
|
|
* Free one buffer ASAP
|
|
* (The MCP2515 does this automatically.)
|
|
*/
|
|
if (mcp251x_is_2510(spi))
|
|
mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
|
|
}
|
|
|
|
/* receive buffer 1 */
|
|
if (intf & CANINTF_RX1IF) {
|
|
mcp251x_hw_rx(spi, 1);
|
|
/* the MCP2515 does this automatically */
|
|
if (mcp251x_is_2510(spi))
|
|
clear_intf |= CANINTF_RX1IF;
|
|
}
|
|
|
|
/* any error or tx interrupt we need to clear? */
|
|
if (intf & (CANINTF_ERR | CANINTF_TX))
|
|
clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
|
|
if (clear_intf)
|
|
mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
|
|
|
|
if (eflag)
|
|
mcp251x_write_bits(spi, EFLG, eflag, 0x00);
|
|
|
|
/* Update can state */
|
|
if (eflag & EFLG_TXBO) {
|
|
new_state = CAN_STATE_BUS_OFF;
|
|
can_id |= CAN_ERR_BUSOFF;
|
|
} else if (eflag & EFLG_TXEP) {
|
|
new_state = CAN_STATE_ERROR_PASSIVE;
|
|
can_id |= CAN_ERR_CRTL;
|
|
data1 |= CAN_ERR_CRTL_TX_PASSIVE;
|
|
} else if (eflag & EFLG_RXEP) {
|
|
new_state = CAN_STATE_ERROR_PASSIVE;
|
|
can_id |= CAN_ERR_CRTL;
|
|
data1 |= CAN_ERR_CRTL_RX_PASSIVE;
|
|
} else if (eflag & EFLG_TXWAR) {
|
|
new_state = CAN_STATE_ERROR_WARNING;
|
|
can_id |= CAN_ERR_CRTL;
|
|
data1 |= CAN_ERR_CRTL_TX_WARNING;
|
|
} else if (eflag & EFLG_RXWAR) {
|
|
new_state = CAN_STATE_ERROR_WARNING;
|
|
can_id |= CAN_ERR_CRTL;
|
|
data1 |= CAN_ERR_CRTL_RX_WARNING;
|
|
} else {
|
|
new_state = CAN_STATE_ERROR_ACTIVE;
|
|
}
|
|
|
|
/* Update can state statistics */
|
|
switch (priv->can.state) {
|
|
case CAN_STATE_ERROR_ACTIVE:
|
|
if (new_state >= CAN_STATE_ERROR_WARNING &&
|
|
new_state <= CAN_STATE_BUS_OFF)
|
|
priv->can.can_stats.error_warning++;
|
|
case CAN_STATE_ERROR_WARNING: /* fallthrough */
|
|
if (new_state >= CAN_STATE_ERROR_PASSIVE &&
|
|
new_state <= CAN_STATE_BUS_OFF)
|
|
priv->can.can_stats.error_passive++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
priv->can.state = new_state;
|
|
|
|
if (intf & CANINTF_ERRIF) {
|
|
/* Handle overflow counters */
|
|
if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
|
|
if (eflag & EFLG_RX0OVR) {
|
|
net->stats.rx_over_errors++;
|
|
net->stats.rx_errors++;
|
|
}
|
|
if (eflag & EFLG_RX1OVR) {
|
|
net->stats.rx_over_errors++;
|
|
net->stats.rx_errors++;
|
|
}
|
|
can_id |= CAN_ERR_CRTL;
|
|
data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
|
|
}
|
|
mcp251x_error_skb(net, can_id, data1);
|
|
}
|
|
|
|
if (priv->can.state == CAN_STATE_BUS_OFF) {
|
|
if (priv->can.restart_ms == 0) {
|
|
priv->force_quit = 1;
|
|
can_bus_off(net);
|
|
mcp251x_hw_sleep(spi);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (intf == 0)
|
|
break;
|
|
|
|
if (intf & CANINTF_TX) {
|
|
net->stats.tx_packets++;
|
|
net->stats.tx_bytes += priv->tx_len - 1;
|
|
can_led_event(net, CAN_LED_EVENT_TX);
|
|
if (priv->tx_len) {
|
|
can_get_echo_skb(net, 0);
|
|
priv->tx_len = 0;
|
|
}
|
|
netif_wake_queue(net);
|
|
}
|
|
|
|
}
|
|
mutex_unlock(&priv->mcp_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mcp251x_open(struct net_device *net)
|
|
{
|
|
struct mcp251x_priv *priv = netdev_priv(net);
|
|
struct spi_device *spi = priv->spi;
|
|
unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
|
|
int ret;
|
|
|
|
ret = open_candev(net);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "unable to set initial baudrate!\n");
|
|
return ret;
|
|
}
|
|
|
|
mutex_lock(&priv->mcp_lock);
|
|
mcp251x_power_enable(priv->transceiver, 1);
|
|
|
|
priv->force_quit = 0;
|
|
priv->tx_skb = NULL;
|
|
priv->tx_len = 0;
|
|
|
|
ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
|
|
flags, DEVICE_NAME, priv);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
|
|
mcp251x_power_enable(priv->transceiver, 0);
|
|
close_candev(net);
|
|
goto open_unlock;
|
|
}
|
|
|
|
priv->wq = create_freezable_workqueue("mcp251x_wq");
|
|
INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
|
|
INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
|
|
|
|
ret = mcp251x_hw_reset(spi);
|
|
if (ret) {
|
|
mcp251x_open_clean(net);
|
|
goto open_unlock;
|
|
}
|
|
ret = mcp251x_setup(net, priv, spi);
|
|
if (ret) {
|
|
mcp251x_open_clean(net);
|
|
goto open_unlock;
|
|
}
|
|
ret = mcp251x_set_normal_mode(spi);
|
|
if (ret) {
|
|
mcp251x_open_clean(net);
|
|
goto open_unlock;
|
|
}
|
|
|
|
can_led_event(net, CAN_LED_EVENT_OPEN);
|
|
|
|
netif_wake_queue(net);
|
|
|
|
open_unlock:
|
|
mutex_unlock(&priv->mcp_lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct net_device_ops mcp251x_netdev_ops = {
|
|
.ndo_open = mcp251x_open,
|
|
.ndo_stop = mcp251x_stop,
|
|
.ndo_start_xmit = mcp251x_hard_start_xmit,
|
|
};
|
|
|
|
static int mcp251x_can_probe(struct spi_device *spi)
|
|
{
|
|
struct net_device *net;
|
|
struct mcp251x_priv *priv;
|
|
struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
|
|
int ret = -ENODEV;
|
|
|
|
if (!pdata)
|
|
/* Platform data is required for osc freq */
|
|
goto error_out;
|
|
|
|
/* Allocate can/net device */
|
|
net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
|
|
if (!net) {
|
|
ret = -ENOMEM;
|
|
goto error_alloc;
|
|
}
|
|
|
|
net->netdev_ops = &mcp251x_netdev_ops;
|
|
net->flags |= IFF_ECHO;
|
|
|
|
priv = netdev_priv(net);
|
|
priv->can.bittiming_const = &mcp251x_bittiming_const;
|
|
priv->can.do_set_mode = mcp251x_do_set_mode;
|
|
priv->can.clock.freq = pdata->oscillator_frequency / 2;
|
|
priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
|
|
CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
|
|
priv->model = spi_get_device_id(spi)->driver_data;
|
|
priv->net = net;
|
|
|
|
priv->power = devm_regulator_get(&spi->dev, "vdd");
|
|
priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
|
|
if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
|
|
(PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
|
|
ret = -EPROBE_DEFER;
|
|
goto error_power;
|
|
}
|
|
|
|
ret = mcp251x_power_enable(priv->power, 1);
|
|
if (ret)
|
|
goto error_power;
|
|
|
|
spi_set_drvdata(spi, priv);
|
|
|
|
priv->spi = spi;
|
|
mutex_init(&priv->mcp_lock);
|
|
|
|
/* If requested, allocate DMA buffers */
|
|
if (mcp251x_enable_dma) {
|
|
spi->dev.coherent_dma_mask = ~0;
|
|
|
|
/*
|
|
* Minimum coherent DMA allocation is PAGE_SIZE, so allocate
|
|
* that much and share it between Tx and Rx DMA buffers.
|
|
*/
|
|
priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
|
|
PAGE_SIZE,
|
|
&priv->spi_tx_dma,
|
|
GFP_DMA);
|
|
|
|
if (priv->spi_tx_buf) {
|
|
priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
|
|
priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
|
|
(PAGE_SIZE / 2));
|
|
} else {
|
|
/* Fall back to non-DMA */
|
|
mcp251x_enable_dma = 0;
|
|
}
|
|
}
|
|
|
|
/* Allocate non-DMA buffers */
|
|
if (!mcp251x_enable_dma) {
|
|
priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
|
|
if (!priv->spi_tx_buf) {
|
|
ret = -ENOMEM;
|
|
goto error_tx_buf;
|
|
}
|
|
priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
|
|
if (!priv->spi_rx_buf) {
|
|
ret = -ENOMEM;
|
|
goto error_rx_buf;
|
|
}
|
|
}
|
|
|
|
SET_NETDEV_DEV(net, &spi->dev);
|
|
|
|
/* Configure the SPI bus */
|
|
spi->mode = spi->mode ? : SPI_MODE_0;
|
|
if (mcp251x_is_2510(spi))
|
|
spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
|
|
else
|
|
spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
|
|
spi->bits_per_word = 8;
|
|
spi_setup(spi);
|
|
|
|
/* Here is OK to not lock the MCP, no one knows about it yet */
|
|
if (!mcp251x_hw_probe(spi)) {
|
|
ret = -ENODEV;
|
|
goto error_probe;
|
|
}
|
|
mcp251x_hw_sleep(spi);
|
|
|
|
ret = register_candev(net);
|
|
if (ret)
|
|
goto error_probe;
|
|
|
|
devm_can_led_init(net);
|
|
|
|
dev_info(&spi->dev, "probed\n");
|
|
|
|
return ret;
|
|
|
|
error_probe:
|
|
if (!mcp251x_enable_dma)
|
|
kfree(priv->spi_rx_buf);
|
|
error_rx_buf:
|
|
if (!mcp251x_enable_dma)
|
|
kfree(priv->spi_tx_buf);
|
|
error_tx_buf:
|
|
if (mcp251x_enable_dma)
|
|
dma_free_coherent(&spi->dev, PAGE_SIZE,
|
|
priv->spi_tx_buf, priv->spi_tx_dma);
|
|
mcp251x_power_enable(priv->power, 0);
|
|
error_power:
|
|
free_candev(net);
|
|
error_alloc:
|
|
dev_err(&spi->dev, "probe failed\n");
|
|
error_out:
|
|
return ret;
|
|
}
|
|
|
|
static int mcp251x_can_remove(struct spi_device *spi)
|
|
{
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
struct net_device *net = priv->net;
|
|
|
|
unregister_candev(net);
|
|
|
|
if (mcp251x_enable_dma) {
|
|
dma_free_coherent(&spi->dev, PAGE_SIZE,
|
|
priv->spi_tx_buf, priv->spi_tx_dma);
|
|
} else {
|
|
kfree(priv->spi_tx_buf);
|
|
kfree(priv->spi_rx_buf);
|
|
}
|
|
|
|
mcp251x_power_enable(priv->power, 0);
|
|
|
|
free_candev(net);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
static int mcp251x_can_suspend(struct device *dev)
|
|
{
|
|
struct spi_device *spi = to_spi_device(dev);
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
struct net_device *net = priv->net;
|
|
|
|
priv->force_quit = 1;
|
|
disable_irq(spi->irq);
|
|
/*
|
|
* Note: at this point neither IST nor workqueues are running.
|
|
* open/stop cannot be called anyway so locking is not needed
|
|
*/
|
|
if (netif_running(net)) {
|
|
netif_device_detach(net);
|
|
|
|
mcp251x_hw_sleep(spi);
|
|
mcp251x_power_enable(priv->transceiver, 0);
|
|
priv->after_suspend = AFTER_SUSPEND_UP;
|
|
} else {
|
|
priv->after_suspend = AFTER_SUSPEND_DOWN;
|
|
}
|
|
|
|
if (!IS_ERR(priv->power)) {
|
|
regulator_disable(priv->power);
|
|
priv->after_suspend |= AFTER_SUSPEND_POWER;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mcp251x_can_resume(struct device *dev)
|
|
{
|
|
struct spi_device *spi = to_spi_device(dev);
|
|
struct mcp251x_priv *priv = spi_get_drvdata(spi);
|
|
|
|
if (priv->after_suspend & AFTER_SUSPEND_POWER) {
|
|
mcp251x_power_enable(priv->power, 1);
|
|
queue_work(priv->wq, &priv->restart_work);
|
|
} else {
|
|
if (priv->after_suspend & AFTER_SUSPEND_UP) {
|
|
mcp251x_power_enable(priv->transceiver, 1);
|
|
queue_work(priv->wq, &priv->restart_work);
|
|
} else {
|
|
priv->after_suspend = 0;
|
|
}
|
|
}
|
|
priv->force_quit = 0;
|
|
enable_irq(spi->irq);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
|
|
mcp251x_can_resume);
|
|
|
|
static const struct spi_device_id mcp251x_id_table[] = {
|
|
{ "mcp2510", CAN_MCP251X_MCP2510 },
|
|
{ "mcp2515", CAN_MCP251X_MCP2515 },
|
|
{ },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
|
|
|
|
static struct spi_driver mcp251x_can_driver = {
|
|
.driver = {
|
|
.name = DEVICE_NAME,
|
|
.owner = THIS_MODULE,
|
|
.pm = &mcp251x_can_pm_ops,
|
|
},
|
|
|
|
.id_table = mcp251x_id_table,
|
|
.probe = mcp251x_can_probe,
|
|
.remove = mcp251x_can_remove,
|
|
};
|
|
module_spi_driver(mcp251x_can_driver);
|
|
|
|
MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
|
|
"Christian Pellegrin <chripell@evolware.org>");
|
|
MODULE_DESCRIPTION("Microchip 251x CAN driver");
|
|
MODULE_LICENSE("GPL v2");
|