linux/tools/testing/memblock/tests/alloc_nid_api.c
Karolina Drobnik 9d8f6abe98 memblock tests: Add memblock_alloc_try_nid tests for bottom up
Add checks for memblock_alloc_try_nid for bottom up allocation direction.
As the definition of this function is pretty close to the core
memblock_alloc_range_nid, the test cases implemented here cover most of
the code paths related to the memory allocations.

The tested scenarios are:
  - Region can be allocated within the requested range (both with aligned
    and misaligned boundaries)
  - Region can be allocated between two already existing entries
  - Not enough space between already reserved regions
  - Memory at the range boundaries is reserved but there is enough space
    to allocate a new region
  - The memory range is too narrow but memory can be allocated before
    the maximum address
  - Edge cases:
      + Minimum address is below memblock_start_of_DRAM()
      + Maximum address is above memblock_end_of_DRAM()

Add test case wrappers to test both directions in the same context.

Signed-off-by: Karolina Drobnik <karolinadrobnik@gmail.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/1c0ba11b8da5dc8f71ad45175c536fa4be720984.1646055639.git.karolinadrobnik@gmail.com
2022-03-09 15:55:35 +02:00

1175 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include "alloc_nid_api.h"
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range:
*
* + +
* | + +-----------+ |
* | | | rgn | |
* +----+-------+-----------+------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a cleared region that ends at max_addr.
*/
static int alloc_try_nid_top_down_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_128;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
rgn_end = rgn->base + rgn->size;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == max_addr - size);
assert(rgn_end == max_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range, where the end address is misaligned:
*
* + + +
* | + +---------+ + |
* | | | rgn | | |
* +------+-------+---------+--+----+
* ^ ^ ^
* | | |
* min_add | max_addr
* |
* Aligned address
* boundary
*
* Expect to allocate a cleared, aligned region that ends before max_addr.
*/
static int alloc_try_nid_top_down_end_misaligned_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_128;
phys_addr_t misalign = SZ_2;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512 + misalign;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
rgn_end = rgn->base + rgn->size;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == max_addr - size - misalign);
assert(rgn_end < max_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A simple test that tries to allocate a memory region, which spans over the
* min_addr and max_addr range:
*
* + +
* | +---------------+ |
* | | rgn | |
* +------+---------------+-------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a cleared region that starts at min_addr and ends at
* max_addr, given that min_addr is aligned.
*/
static int alloc_try_nid_exact_address_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
max_addr = min_addr + size;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
rgn_end = rgn->base + rgn->size;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == min_addr);
assert(rgn_end == max_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into
* min_addr and max_addr range:
*
* + + +
* | +----------+-----+ |
* | | rgn + | |
* +--------+----------+-----+----+
* ^ ^ ^
* | | |
* Aligned | max_addr
* address |
* boundary min_add
*
* Expect to drop the lower limit and allocate a cleared memory region which
* ends at max_addr (if the address is aligned).
*/
static int alloc_try_nid_top_down_narrow_range_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_512;
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == max_addr - size);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into
* min_addr and max_addr range, with the latter being too close to the beginning
* of the available memory:
*
* +-------------+
* | new |
* +-------------+
* + +
* | + |
* | | |
* +-------+--------------+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect no allocation to happen.
*/
static int alloc_try_nid_low_max_generic_check(void)
{
void *allocated_ptr = NULL;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM();
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
assert(!allocated_ptr);
return 0;
}
/*
* A test that tries to allocate a memory region within min_addr min_addr range,
* with min_addr being so close that it's next to an allocated region:
*
* + +
* | +--------+---------------|
* | | r1 | rgn |
* +-------+--------+---------------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect a merge of both regions. Only the region size gets updated.
*/
static int alloc_try_nid_min_reserved_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t r1_size = SZ_128;
phys_addr_t r2_size = SZ_64;
phys_addr_t total_size = r1_size + r2_size;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t reserved_base;
setup_memblock();
max_addr = memblock_end_of_DRAM();
min_addr = max_addr - r2_size;
reserved_base = min_addr - r1_size;
memblock_reserve(reserved_base, r1_size);
allocated_ptr = memblock_alloc_try_nid(r2_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == total_size);
assert(rgn->base == reserved_base);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate a memory region within min_addr and max_addr,
* with max_addr being so close that it's next to an allocated region:
*
* + +
* | +-------------+--------|
* | | rgn | r1 |
* +----------+-------------+--------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect a merge of regions. Only the region size gets updated.
*/
static int alloc_try_nid_max_reserved_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t r1_size = SZ_64;
phys_addr_t r2_size = SZ_128;
phys_addr_t total_size = r1_size + r2_size;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
max_addr = memblock_end_of_DRAM() - r1_size;
min_addr = max_addr - r2_size;
memblock_reserve(max_addr, r1_size);
allocated_ptr = memblock_alloc_try_nid(r2_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == total_size);
assert(rgn->base == min_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap big enough to fit
* a new region:
*
* + +
* | +--------+ +-------+------+ |
* | | r2 | | rgn | r1 | |
* +----+--------+---+-------+------+--+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge the new region with r1. The second region does not get
* updated. The total size field gets updated.
*/
static int alloc_try_nid_top_down_reserved_with_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + gap_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn1->size == r1.size + r3_size);
assert(rgn1->base == max_addr - r3_size);
assert(rgn2->size == r2.size);
assert(rgn2->base == r2.base);
assert(memblock.reserved.cnt == 2);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap of a size equal to
* the size of the new region:
*
* + +
* | +--------+--------+--------+ |
* | | r2 | r3 | r1 | |
* +-----+--------+--------+--------+-----+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge all of the regions into one. The region counter and total
* size fields get updated.
*/
static int alloc_try_nid_reserved_full_merge_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == total_size);
assert(rgn->base == r2.base);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap that can't fit
* a new region:
*
* + +
* | +----------+------+ +------+ |
* | | r3 | r2 | | r1 | |
* +--+----------+------+----+------+---+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect to merge the new region with r2. The second region does not get
* updated. The total size counter gets updated.
*/
static int alloc_try_nid_top_down_reserved_no_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r2.size + gap_size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn1->size == r1.size);
assert(rgn1->base == r1.base);
assert(rgn2->size == r2.size + r3_size);
assert(rgn2->base == r2.base - r3_size);
assert(memblock.reserved.cnt == 2);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, but
* it's too narrow and everything else is reserved:
*
* +-----------+
* | new |
* +-----------+
* + +
* |--------------+ +----------|
* | r2 | | r1 |
* +--------------+------+----------+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect no allocation to happen.
*/
static int alloc_try_nid_reserved_all_generic_check(void)
{
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
r1.size = SMP_CACHE_BYTES;
r2.size = MEM_SIZE - (r1.size + gap_size);
r2.base = memblock_start_of_DRAM();
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
assert(!allocated_ptr);
return 0;
}
/*
* A test that tries to allocate a memory region, where max_addr is
* bigger than the end address of the available memory. Expect to allocate
* a cleared region that ends before the end of the memory.
*/
static int alloc_try_nid_top_down_cap_max_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_end_of_DRAM() - SZ_1K;
max_addr = memblock_end_of_DRAM() + SZ_256;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == memblock_end_of_DRAM() - size);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate a memory region, where min_addr is
* smaller than the start address of the available memory. Expect to allocate
* a cleared region that ends before the end of the memory.
*/
static int alloc_try_nid_top_down_cap_min_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM() - SZ_256;
max_addr = memblock_end_of_DRAM();
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == memblock_end_of_DRAM() - size);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range:
*
* + +
* | +-----------+ | |
* | | rgn | | |
* +----+-----------+-----------+------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a cleared region that ends before max_addr.
*/
static int alloc_try_nid_bottom_up_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_128;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
rgn_end = rgn->base + rgn->size;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == min_addr);
assert(rgn_end < max_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range, where the start address is misaligned:
*
* + +
* | + +-----------+ + |
* | | | rgn | | |
* +-----+---+-----------+-----+-----+
* ^ ^----. ^
* | | |
* min_add | max_addr
* |
* Aligned address
* boundary
*
* Expect to allocate a cleared, aligned region that ends before max_addr.
*/
static int alloc_try_nid_bottom_up_start_misaligned_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_128;
phys_addr_t misalign = SZ_2;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
setup_memblock();
min_addr = memblock_start_of_DRAM() + misalign;
max_addr = min_addr + SZ_512;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
rgn_end = rgn->base + rgn->size;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == min_addr + (SMP_CACHE_BYTES - misalign));
assert(rgn_end < max_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into min_addr
* and max_addr range:
*
* + +
* |---------+ + + |
* | rgn | | | |
* +---------+---------+----+------+
* ^ ^
* | |
* | max_addr
* |
* min_add
*
* Expect to drop the lower limit and allocate a cleared memory region which
* starts at the beginning of the available memory.
*/
static int alloc_try_nid_bottom_up_narrow_range_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_512;
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == memblock_start_of_DRAM());
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap big enough to fit
* a new region:
*
* + +
* | +--------+-------+ +------+ |
* | | r2 | rgn | | r1 | |
* +----+--------+-------+---+------+--+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge the new region with r2. The second region does not get
* updated. The total size field gets updated.
*/
static int alloc_try_nid_bottom_up_reserved_with_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + gap_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn1->size == r1.size);
assert(rgn1->base == max_addr);
assert(rgn2->size == r2.size + r3_size);
assert(rgn2->base == r2.base);
assert(memblock.reserved.cnt == 2);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap of a size equal to
* the size of the new region:
*
* + +
* |----------+ +------+ +----+ |
* | r3 | | r2 | | r1 | |
* +----------+----+------+---+----+--+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect to drop the lower limit and allocate memory at the beginning of the
* available memory. The region counter and total size fields get updated.
* Other regions are not modified.
*/
static int alloc_try_nid_bottom_up_reserved_no_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[2];
struct memblock_region *rgn2 = &memblock.reserved.regions[1];
struct memblock_region *rgn3 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r2.size + gap_size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = memblock_alloc_try_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn3->size == r3_size);
assert(rgn3->base == memblock_start_of_DRAM());
assert(rgn2->size == r2.size);
assert(rgn2->base == r2.base);
assert(rgn1->size == r1.size);
assert(rgn1->base == r1.base);
assert(memblock.reserved.cnt == 3);
assert(memblock.reserved.total_size == total_size);
return 0;
}
/*
* A test that tries to allocate a memory region, where max_addr is
* bigger than the end address of the available memory. Expect to allocate
* a cleared region that starts at the min_addr
*/
static int alloc_try_nid_bottom_up_cap_max_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_1K;
max_addr = memblock_end_of_DRAM() + SZ_256;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == min_addr);
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/*
* A test that tries to allocate a memory region, where min_addr is
* smaller than the start address of the available memory. Expect to allocate
* a cleared region at the beginning of the available memory.
*/
static int alloc_try_nid_bottom_up_cap_min_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
char *b;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
setup_memblock();
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM() - SZ_256;
allocated_ptr = memblock_alloc_try_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
b = (char *)allocated_ptr;
assert(allocated_ptr);
assert(*b == 0);
assert(rgn->size == size);
assert(rgn->base == memblock_start_of_DRAM());
assert(memblock.reserved.cnt == 1);
assert(memblock.reserved.total_size == size);
return 0;
}
/* Test case wrappers */
static int alloc_try_nid_simple_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_simple_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_simple_check();
return 0;
}
static int alloc_try_nid_misaligned_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_end_misaligned_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_start_misaligned_check();
return 0;
}
static int alloc_try_nid_narrow_range_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_narrow_range_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_narrow_range_check();
return 0;
}
static int alloc_try_nid_reserved_with_space_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_reserved_with_space_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_reserved_with_space_check();
return 0;
}
static int alloc_try_nid_reserved_no_space_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_reserved_no_space_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_reserved_no_space_check();
return 0;
}
static int alloc_try_nid_cap_max_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_cap_max_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_cap_max_check();
return 0;
}
static int alloc_try_nid_cap_min_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_top_down_cap_min_check();
memblock_set_bottom_up(true);
alloc_try_nid_bottom_up_cap_min_check();
return 0;
}
static int alloc_try_nid_min_reserved_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_min_reserved_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_min_reserved_generic_check();
return 0;
}
static int alloc_try_nid_max_reserved_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_max_reserved_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_max_reserved_generic_check();
return 0;
}
static int alloc_try_nid_exact_address_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_exact_address_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_exact_address_generic_check();
return 0;
}
static int alloc_try_nid_reserved_full_merge_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_reserved_full_merge_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_reserved_full_merge_generic_check();
return 0;
}
static int alloc_try_nid_reserved_all_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_reserved_all_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_reserved_all_generic_check();
return 0;
}
static int alloc_try_nid_low_max_check(void)
{
memblock_set_bottom_up(false);
alloc_try_nid_low_max_generic_check();
memblock_set_bottom_up(true);
alloc_try_nid_low_max_generic_check();
return 0;
}
int memblock_alloc_nid_checks(void)
{
reset_memblock_attributes();
dummy_physical_memory_init();
alloc_try_nid_simple_check();
alloc_try_nid_misaligned_check();
alloc_try_nid_narrow_range_check();
alloc_try_nid_reserved_with_space_check();
alloc_try_nid_reserved_no_space_check();
alloc_try_nid_cap_max_check();
alloc_try_nid_cap_min_check();
alloc_try_nid_min_reserved_check();
alloc_try_nid_max_reserved_check();
alloc_try_nid_exact_address_check();
alloc_try_nid_reserved_full_merge_check();
alloc_try_nid_reserved_all_check();
alloc_try_nid_low_max_check();
dummy_physical_memory_cleanup();
return 0;
}