mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-13 14:24:11 +08:00
ee4cdf7ba8
Improve the efficiency of buffered reads in a number of ways: (1) Overhaul the algorithm in general so that it's a lot more compact and split the read submission code between buffered and unbuffered versions. The unbuffered version can be vastly simplified. (2) Read-result collection is handed off to a work queue rather than being done in the I/O thread. Multiple subrequests can be processes simultaneously. (3) When a subrequest is collected, any folios it fully spans are collected and "spare" data on either side is donated to either the previous or the next subrequest in the sequence. Notes: (*) Readahead expansion is massively slows down fio, presumably because it causes a load of extra allocations, both folio and xarray, up front before RPC requests can be transmitted. (*) RDMA with cifs does appear to work, both with SIW and RXE. (*) PG_private_2-based reading and copy-to-cache is split out into its own file and altered to use folio_queue. Note that the copy to the cache now creates a new write transaction against the cache and adds the folios to be copied into it. This allows it to use part of the writeback I/O code. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/20240814203850.2240469-20-dhowells@redhat.com/ # v2 Signed-off-by: Christian Brauner <brauner@kernel.org>
545 lines
17 KiB
C
545 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem read subrequest result collection, assessment and
|
|
* retrying.
|
|
*
|
|
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_reset_iter(subreq);
|
|
WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter));
|
|
iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
|
|
if (subreq->start + subreq->transferred >= subreq->rreq->i_size)
|
|
__set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
|
|
}
|
|
|
|
/*
|
|
* Flush, mark and unlock a folio that's now completely read. If we want to
|
|
* cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it
|
|
* dirty and let writeback handle it.
|
|
*/
|
|
static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq,
|
|
struct netfs_io_request *rreq,
|
|
struct folio_queue *folioq,
|
|
int slot)
|
|
{
|
|
struct netfs_folio *finfo;
|
|
struct folio *folio = folioq_folio(folioq, slot);
|
|
|
|
flush_dcache_folio(folio);
|
|
folio_mark_uptodate(folio);
|
|
|
|
if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
|
|
if (finfo->netfs_group)
|
|
folio_change_private(folio, finfo->netfs_group);
|
|
else
|
|
folio_detach_private(folio);
|
|
kfree(finfo);
|
|
}
|
|
|
|
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
|
|
if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
|
|
folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
|
|
folio_mark_dirty(folio);
|
|
}
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_read_done);
|
|
}
|
|
} else {
|
|
// TODO: Use of PG_private_2 is deprecated.
|
|
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
|
|
netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot);
|
|
}
|
|
|
|
if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
|
|
if (folio->index == rreq->no_unlock_folio &&
|
|
test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) {
|
|
_debug("no unlock");
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_read_unlock);
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlock any folios that are now completely read. Returns true if the
|
|
* subrequest is removed from the list.
|
|
*/
|
|
static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *prev, *next;
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
struct folio_queue *folioq = subreq->curr_folioq;
|
|
size_t avail, prev_donated, next_donated, fsize, part, excess;
|
|
loff_t fpos, start;
|
|
loff_t fend;
|
|
int slot = subreq->curr_folioq_slot;
|
|
|
|
if (WARN(subreq->transferred > subreq->len,
|
|
"Subreq overread: R%x[%x] %zu > %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->transferred, subreq->len))
|
|
subreq->transferred = subreq->len;
|
|
|
|
next_folio:
|
|
fsize = PAGE_SIZE << subreq->curr_folio_order;
|
|
fpos = round_down(subreq->start + subreq->consumed, fsize);
|
|
fend = fpos + fsize;
|
|
|
|
if (WARN_ON_ONCE(!folioq) ||
|
|
WARN_ON_ONCE(!folioq_folio(folioq, slot)) ||
|
|
WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) {
|
|
pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->start, subreq->start + subreq->transferred - 1,
|
|
subreq->consumed, subreq->transferred, subreq->len,
|
|
slot);
|
|
if (folioq) {
|
|
struct folio *folio = folioq_folio(folioq, slot);
|
|
|
|
pr_err("folioq: orders=%02x%02x%02x%02x\n",
|
|
folioq->orders[0], folioq->orders[1],
|
|
folioq->orders[2], folioq->orders[3]);
|
|
if (folio)
|
|
pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n",
|
|
fpos, fend - 1, folio_pos(folio), folio_order(folio),
|
|
folioq_folio_order(folioq, slot));
|
|
}
|
|
}
|
|
|
|
donation_changed:
|
|
/* Try to consume the current folio if we've hit or passed the end of
|
|
* it. There's a possibility that this subreq doesn't start at the
|
|
* beginning of the folio, in which case we need to donate to/from the
|
|
* preceding subreq.
|
|
*
|
|
* We also need to include any potential donation back from the
|
|
* following subreq.
|
|
*/
|
|
prev_donated = READ_ONCE(subreq->prev_donated);
|
|
next_donated = READ_ONCE(subreq->next_donated);
|
|
if (prev_donated || next_donated) {
|
|
spin_lock_bh(&rreq->lock);
|
|
prev_donated = subreq->prev_donated;
|
|
next_donated = subreq->next_donated;
|
|
subreq->start -= prev_donated;
|
|
subreq->len += prev_donated;
|
|
subreq->transferred += prev_donated;
|
|
prev_donated = subreq->prev_donated = 0;
|
|
if (subreq->transferred == subreq->len) {
|
|
subreq->len += next_donated;
|
|
subreq->transferred += next_donated;
|
|
next_donated = subreq->next_donated = 0;
|
|
}
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations);
|
|
spin_unlock_bh(&rreq->lock);
|
|
}
|
|
|
|
avail = subreq->transferred;
|
|
if (avail == subreq->len)
|
|
avail += next_donated;
|
|
start = subreq->start;
|
|
if (subreq->consumed == 0) {
|
|
start -= prev_donated;
|
|
avail += prev_donated;
|
|
} else {
|
|
start += subreq->consumed;
|
|
avail -= subreq->consumed;
|
|
}
|
|
part = umin(avail, fsize);
|
|
|
|
trace_netfs_progress(subreq, start, avail, part);
|
|
|
|
if (start + avail >= fend) {
|
|
if (fpos == start) {
|
|
/* Flush, unlock and mark for caching any folio we've just read. */
|
|
subreq->consumed = fend - subreq->start;
|
|
netfs_unlock_read_folio(subreq, rreq, folioq, slot);
|
|
folioq_mark2(folioq, slot);
|
|
if (subreq->consumed >= subreq->len)
|
|
goto remove_subreq;
|
|
} else if (fpos < start) {
|
|
excess = fend - subreq->start;
|
|
|
|
spin_lock_bh(&rreq->lock);
|
|
/* If we complete first on a folio split with the
|
|
* preceding subreq, donate to that subreq - otherwise
|
|
* we get the responsibility.
|
|
*/
|
|
if (subreq->prev_donated != prev_donated) {
|
|
spin_unlock_bh(&rreq->lock);
|
|
goto donation_changed;
|
|
}
|
|
|
|
if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
|
|
spin_unlock_bh(&rreq->lock);
|
|
pr_err("Can't donate prior to front\n");
|
|
goto bad;
|
|
}
|
|
|
|
prev = list_prev_entry(subreq, rreq_link);
|
|
WRITE_ONCE(prev->next_donated, prev->next_donated + excess);
|
|
subreq->start += excess;
|
|
subreq->len -= excess;
|
|
subreq->transferred -= excess;
|
|
trace_netfs_donate(rreq, subreq, prev, excess,
|
|
netfs_trace_donate_tail_to_prev);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
|
|
|
|
if (subreq->consumed >= subreq->len)
|
|
goto remove_subreq_locked;
|
|
spin_unlock_bh(&rreq->lock);
|
|
} else {
|
|
pr_err("fpos > start\n");
|
|
goto bad;
|
|
}
|
|
|
|
/* Advance the rolling buffer to the next folio. */
|
|
slot++;
|
|
if (slot >= folioq_nr_slots(folioq)) {
|
|
slot = 0;
|
|
folioq = folioq->next;
|
|
subreq->curr_folioq = folioq;
|
|
}
|
|
subreq->curr_folioq_slot = slot;
|
|
if (folioq && folioq_folio(folioq, slot))
|
|
subreq->curr_folio_order = folioq->orders[slot];
|
|
if (!was_async)
|
|
cond_resched();
|
|
goto next_folio;
|
|
}
|
|
|
|
/* Deal with partial progress. */
|
|
if (subreq->transferred < subreq->len)
|
|
return false;
|
|
|
|
/* Donate the remaining downloaded data to one of the neighbouring
|
|
* subrequests. Note that we may race with them doing the same thing.
|
|
*/
|
|
spin_lock_bh(&rreq->lock);
|
|
|
|
if (subreq->prev_donated != prev_donated ||
|
|
subreq->next_donated != next_donated) {
|
|
spin_unlock_bh(&rreq->lock);
|
|
cond_resched();
|
|
goto donation_changed;
|
|
}
|
|
|
|
/* Deal with the trickiest case: that this subreq is in the middle of a
|
|
* folio, not touching either edge, but finishes first. In such a
|
|
* case, we donate to the previous subreq, if there is one, so that the
|
|
* donation is only handled when that completes - and remove this
|
|
* subreq from the list.
|
|
*
|
|
* If the previous subreq finished first, we will have acquired their
|
|
* donation and should be able to unlock folios and/or donate nextwards.
|
|
*/
|
|
if (!subreq->consumed &&
|
|
!prev_donated &&
|
|
!list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
|
|
prev = list_prev_entry(subreq, rreq_link);
|
|
WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len);
|
|
subreq->start += subreq->len;
|
|
subreq->len = 0;
|
|
subreq->transferred = 0;
|
|
trace_netfs_donate(rreq, subreq, prev, subreq->len,
|
|
netfs_trace_donate_to_prev);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
|
|
goto remove_subreq_locked;
|
|
}
|
|
|
|
/* If we can't donate down the chain, donate up the chain instead. */
|
|
excess = subreq->len - subreq->consumed + next_donated;
|
|
|
|
if (!subreq->consumed)
|
|
excess += prev_donated;
|
|
|
|
if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
rreq->prev_donated = excess;
|
|
trace_netfs_donate(rreq, subreq, NULL, excess,
|
|
netfs_trace_donate_to_deferred_next);
|
|
} else {
|
|
next = list_next_entry(subreq, rreq_link);
|
|
WRITE_ONCE(next->prev_donated, excess);
|
|
trace_netfs_donate(rreq, subreq, next, excess,
|
|
netfs_trace_donate_to_next);
|
|
}
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next);
|
|
subreq->len = subreq->consumed;
|
|
subreq->transferred = subreq->consumed;
|
|
goto remove_subreq_locked;
|
|
|
|
remove_subreq:
|
|
spin_lock_bh(&rreq->lock);
|
|
remove_subreq_locked:
|
|
subreq->consumed = subreq->len;
|
|
list_del(&subreq->rreq_link);
|
|
spin_unlock_bh(&rreq->lock);
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed);
|
|
return true;
|
|
|
|
bad:
|
|
/* Errr... prev and next both donated to us, but insufficient to finish
|
|
* the folio.
|
|
*/
|
|
printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->start, subreq->start + subreq->transferred - 1,
|
|
subreq->consumed, subreq->transferred, subreq->len);
|
|
printk("folio: %llx-%llx\n", fpos, fend - 1);
|
|
printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated);
|
|
printk("s=%llx av=%zx part=%zx\n", start, avail, part);
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Do page flushing and suchlike after DIO.
|
|
*/
|
|
static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
unsigned int i;
|
|
|
|
/* Collect unbuffered reads and direct reads, adding up the transfer
|
|
* sizes until we find the first short or failed subrequest.
|
|
*/
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
rreq->transferred += subreq->transferred;
|
|
|
|
if (subreq->transferred < subreq->len ||
|
|
test_bit(NETFS_SREQ_FAILED, &subreq->flags)) {
|
|
rreq->error = subreq->error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rreq->origin == NETFS_DIO_READ) {
|
|
for (i = 0; i < rreq->direct_bv_count; i++) {
|
|
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
|
// TODO: cifs marks pages in the destination buffer
|
|
// dirty under some circumstances after a read. Do we
|
|
// need to do that too?
|
|
set_page_dirty(rreq->direct_bv[i].bv_page);
|
|
}
|
|
}
|
|
|
|
if (rreq->iocb) {
|
|
rreq->iocb->ki_pos += rreq->transferred;
|
|
if (rreq->iocb->ki_complete)
|
|
rreq->iocb->ki_complete(
|
|
rreq->iocb, rreq->error ? rreq->error : rreq->transferred);
|
|
}
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
if (rreq->origin == NETFS_DIO_READ)
|
|
inode_dio_end(rreq->inode);
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we're in normal kernel thread context at this point, possibly
|
|
* running on a workqueue.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_io_request *rreq)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
//netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) {
|
|
netfs_retry_reads(rreq);
|
|
return;
|
|
}
|
|
|
|
if (rreq->origin == NETFS_DIO_READ ||
|
|
rreq->origin == NETFS_READ_GAPS)
|
|
netfs_rreq_assess_dio(rreq);
|
|
task_io_account_read(rreq->transferred);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_clear_subrequests(rreq, false);
|
|
netfs_unlock_abandoned_read_pages(rreq);
|
|
if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)))
|
|
netfs_pgpriv2_write_to_the_cache(rreq);
|
|
}
|
|
|
|
void netfs_read_termination_worker(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
netfs_see_request(rreq, netfs_rreq_trace_see_work);
|
|
netfs_rreq_assess(rreq);
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
if (!was_async)
|
|
return netfs_rreq_assess(rreq);
|
|
if (!work_pending(&rreq->work)) {
|
|
netfs_get_request(rreq, netfs_rreq_trace_get_work);
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_read_subreq_progress - Note progress of a read operation.
|
|
* @subreq: The read request that has terminated.
|
|
* @was_async: True if we're in an asynchronous context.
|
|
*
|
|
* This tells the read side of netfs lib that a contributory I/O operation has
|
|
* made some progress and that it may be possible to unlock some folios.
|
|
*
|
|
* Before calling, the filesystem should update subreq->transferred to track
|
|
* the amount of data copied into the output buffer.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_progress);
|
|
|
|
if (subreq->transferred > subreq->consumed &&
|
|
(rreq->origin == NETFS_READAHEAD ||
|
|
rreq->origin == NETFS_READPAGE ||
|
|
rreq->origin == NETFS_READ_FOR_WRITE)) {
|
|
netfs_consume_read_data(subreq, was_async);
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(netfs_read_subreq_progress);
|
|
|
|
/**
|
|
* netfs_read_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @error: Error code indicating type of completion.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates the outcome of the operation through @error, supplying
|
|
* 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY
|
|
* is set) or a negative error code. The helper will look after reissuing I/O
|
|
* operations as appropriate and writing downloaded data to the cache.
|
|
*
|
|
* Before calling, the filesystem should update subreq->transferred to track
|
|
* the amount of data copied into the output buffer.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq,
|
|
int error, bool was_async)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (rreq->origin != NETFS_DIO_READ) {
|
|
/* Collect buffered reads.
|
|
*
|
|
* If the read completed validly short, then we can clear the
|
|
* tail before going on to unlock the folios.
|
|
*/
|
|
if (error == 0 && subreq->transferred < subreq->len &&
|
|
(test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) ||
|
|
test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_clear);
|
|
}
|
|
if (subreq->transferred > subreq->consumed &&
|
|
(rreq->origin == NETFS_READAHEAD ||
|
|
rreq->origin == NETFS_READPAGE ||
|
|
rreq->origin == NETFS_READ_FOR_WRITE)) {
|
|
netfs_consume_read_data(subreq, was_async);
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
rreq->transferred += subreq->transferred;
|
|
}
|
|
|
|
/* Deal with retry requests, short reads and errors. If we retry
|
|
* but don't make progress, we abandon the attempt.
|
|
*/
|
|
if (!error && subreq->transferred < subreq->len) {
|
|
if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof);
|
|
} else {
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_short);
|
|
if (subreq->transferred > subreq->consumed) {
|
|
__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
|
|
} else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
|
|
set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
|
|
} else {
|
|
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
|
|
error = -ENODATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
subreq->error = error;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
if (unlikely(error < 0)) {
|
|
trace_netfs_failure(rreq, subreq, error, netfs_fail_read);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
}
|
|
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
}
|
|
EXPORT_SYMBOL(netfs_read_subreq_terminated);
|