linux/net/packet/af_packet.c
Linus Torvalds a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00

4591 lines
107 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* PACKET - implements raw packet sockets.
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
*
* Fixes:
* Alan Cox : verify_area() now used correctly
* Alan Cox : new skbuff lists, look ma no backlogs!
* Alan Cox : tidied skbuff lists.
* Alan Cox : Now uses generic datagram routines I
* added. Also fixed the peek/read crash
* from all old Linux datagram code.
* Alan Cox : Uses the improved datagram code.
* Alan Cox : Added NULL's for socket options.
* Alan Cox : Re-commented the code.
* Alan Cox : Use new kernel side addressing
* Rob Janssen : Correct MTU usage.
* Dave Platt : Counter leaks caused by incorrect
* interrupt locking and some slightly
* dubious gcc output. Can you read
* compiler: it said _VOLATILE_
* Richard Kooijman : Timestamp fixes.
* Alan Cox : New buffers. Use sk->mac.raw.
* Alan Cox : sendmsg/recvmsg support.
* Alan Cox : Protocol setting support
* Alexey Kuznetsov : Untied from IPv4 stack.
* Cyrus Durgin : Fixed kerneld for kmod.
* Michal Ostrowski : Module initialization cleanup.
* Ulises Alonso : Frame number limit removal and
* packet_set_ring memory leak.
* Eric Biederman : Allow for > 8 byte hardware addresses.
* The convention is that longer addresses
* will simply extend the hardware address
* byte arrays at the end of sockaddr_ll
* and packet_mreq.
* Johann Baudy : Added TX RING.
* Chetan Loke : Implemented TPACKET_V3 block abstraction
* layer.
* Copyright (C) 2011, <lokec@ccs.neu.edu>
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/capability.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <linux/wireless.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/net_namespace.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/errqueue.h>
#include <linux/net_tstamp.h>
#include <linux/percpu.h>
#ifdef CONFIG_INET
#include <net/inet_common.h>
#endif
#include <linux/bpf.h>
#include <net/compat.h>
#include "internal.h"
/*
Assumptions:
- if device has no dev->hard_header routine, it adds and removes ll header
inside itself. In this case ll header is invisible outside of device,
but higher levels still should reserve dev->hard_header_len.
Some devices are enough clever to reallocate skb, when header
will not fit to reserved space (tunnel), another ones are silly
(PPP).
- packet socket receives packets with pulled ll header,
so that SOCK_RAW should push it back.
On receive:
-----------
Incoming, dev->hard_header!=NULL
mac_header -> ll header
data -> data
Outgoing, dev->hard_header!=NULL
mac_header -> ll header
data -> ll header
Incoming, dev->hard_header==NULL
mac_header -> UNKNOWN position. It is very likely, that it points to ll
header. PPP makes it, that is wrong, because introduce
assymetry between rx and tx paths.
data -> data
Outgoing, dev->hard_header==NULL
mac_header -> data. ll header is still not built!
data -> data
Resume
If dev->hard_header==NULL we are unlikely to restore sensible ll header.
On transmit:
------------
dev->hard_header != NULL
mac_header -> ll header
data -> ll header
dev->hard_header == NULL (ll header is added by device, we cannot control it)
mac_header -> data
data -> data
We should set nh.raw on output to correct posistion,
packet classifier depends on it.
*/
/* Private packet socket structures. */
/* identical to struct packet_mreq except it has
* a longer address field.
*/
struct packet_mreq_max {
int mr_ifindex;
unsigned short mr_type;
unsigned short mr_alen;
unsigned char mr_address[MAX_ADDR_LEN];
};
union tpacket_uhdr {
struct tpacket_hdr *h1;
struct tpacket2_hdr *h2;
struct tpacket3_hdr *h3;
void *raw;
};
static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
int closing, int tx_ring);
#define V3_ALIGNMENT (8)
#define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
#define BLK_PLUS_PRIV(sz_of_priv) \
(BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
#define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
#define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
#define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
#define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
#define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
#define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
#define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
struct packet_sock;
static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev);
static void *packet_previous_frame(struct packet_sock *po,
struct packet_ring_buffer *rb,
int status);
static void packet_increment_head(struct packet_ring_buffer *buff);
static int prb_curr_blk_in_use(struct tpacket_block_desc *);
static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
struct packet_sock *);
static void prb_retire_current_block(struct tpacket_kbdq_core *,
struct packet_sock *, unsigned int status);
static int prb_queue_frozen(struct tpacket_kbdq_core *);
static void prb_open_block(struct tpacket_kbdq_core *,
struct tpacket_block_desc *);
static void prb_retire_rx_blk_timer_expired(struct timer_list *);
static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
static void prb_clear_rxhash(struct tpacket_kbdq_core *,
struct tpacket3_hdr *);
static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
struct tpacket3_hdr *);
static void packet_flush_mclist(struct sock *sk);
static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb);
struct packet_skb_cb {
union {
struct sockaddr_pkt pkt;
union {
/* Trick: alias skb original length with
* ll.sll_family and ll.protocol in order
* to save room.
*/
unsigned int origlen;
struct sockaddr_ll ll;
};
} sa;
};
#define vio_le() virtio_legacy_is_little_endian()
#define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
#define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
#define GET_PBLOCK_DESC(x, bid) \
((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
#define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
#define GET_NEXT_PRB_BLK_NUM(x) \
(((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
((x)->kactive_blk_num+1) : 0)
static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
static void __fanout_link(struct sock *sk, struct packet_sock *po);
static int packet_direct_xmit(struct sk_buff *skb)
{
struct net_device *dev = skb->dev;
struct sk_buff *orig_skb = skb;
struct netdev_queue *txq;
int ret = NETDEV_TX_BUSY;
bool again = false;
if (unlikely(!netif_running(dev) ||
!netif_carrier_ok(dev)))
goto drop;
skb = validate_xmit_skb_list(skb, dev, &again);
if (skb != orig_skb)
goto drop;
packet_pick_tx_queue(dev, skb);
txq = skb_get_tx_queue(dev, skb);
local_bh_disable();
HARD_TX_LOCK(dev, txq, smp_processor_id());
if (!netif_xmit_frozen_or_drv_stopped(txq))
ret = netdev_start_xmit(skb, dev, txq, false);
HARD_TX_UNLOCK(dev, txq);
local_bh_enable();
if (!dev_xmit_complete(ret))
kfree_skb(skb);
return ret;
drop:
atomic_long_inc(&dev->tx_dropped);
kfree_skb_list(skb);
return NET_XMIT_DROP;
}
static struct net_device *packet_cached_dev_get(struct packet_sock *po)
{
struct net_device *dev;
rcu_read_lock();
dev = rcu_dereference(po->cached_dev);
if (likely(dev))
dev_hold(dev);
rcu_read_unlock();
return dev;
}
static void packet_cached_dev_assign(struct packet_sock *po,
struct net_device *dev)
{
rcu_assign_pointer(po->cached_dev, dev);
}
static void packet_cached_dev_reset(struct packet_sock *po)
{
RCU_INIT_POINTER(po->cached_dev, NULL);
}
static bool packet_use_direct_xmit(const struct packet_sock *po)
{
return po->xmit == packet_direct_xmit;
}
static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
{
return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
}
static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
{
const struct net_device_ops *ops = dev->netdev_ops;
u16 queue_index;
if (ops->ndo_select_queue) {
queue_index = ops->ndo_select_queue(dev, skb, NULL,
__packet_pick_tx_queue);
queue_index = netdev_cap_txqueue(dev, queue_index);
} else {
queue_index = __packet_pick_tx_queue(dev, skb);
}
skb_set_queue_mapping(skb, queue_index);
}
/* register_prot_hook must be invoked with the po->bind_lock held,
* or from a context in which asynchronous accesses to the packet
* socket is not possible (packet_create()).
*/
static void register_prot_hook(struct sock *sk)
{
struct packet_sock *po = pkt_sk(sk);
if (!po->running) {
if (po->fanout)
__fanout_link(sk, po);
else
dev_add_pack(&po->prot_hook);
sock_hold(sk);
po->running = 1;
}
}
/* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
* held. If the sync parameter is true, we will temporarily drop
* the po->bind_lock and do a synchronize_net to make sure no
* asynchronous packet processing paths still refer to the elements
* of po->prot_hook. If the sync parameter is false, it is the
* callers responsibility to take care of this.
*/
static void __unregister_prot_hook(struct sock *sk, bool sync)
{
struct packet_sock *po = pkt_sk(sk);
po->running = 0;
if (po->fanout)
__fanout_unlink(sk, po);
else
__dev_remove_pack(&po->prot_hook);
__sock_put(sk);
if (sync) {
spin_unlock(&po->bind_lock);
synchronize_net();
spin_lock(&po->bind_lock);
}
}
static void unregister_prot_hook(struct sock *sk, bool sync)
{
struct packet_sock *po = pkt_sk(sk);
if (po->running)
__unregister_prot_hook(sk, sync);
}
static inline struct page * __pure pgv_to_page(void *addr)
{
if (is_vmalloc_addr(addr))
return vmalloc_to_page(addr);
return virt_to_page(addr);
}
static void __packet_set_status(struct packet_sock *po, void *frame, int status)
{
union tpacket_uhdr h;
h.raw = frame;
switch (po->tp_version) {
case TPACKET_V1:
h.h1->tp_status = status;
flush_dcache_page(pgv_to_page(&h.h1->tp_status));
break;
case TPACKET_V2:
h.h2->tp_status = status;
flush_dcache_page(pgv_to_page(&h.h2->tp_status));
break;
case TPACKET_V3:
h.h3->tp_status = status;
flush_dcache_page(pgv_to_page(&h.h3->tp_status));
break;
default:
WARN(1, "TPACKET version not supported.\n");
BUG();
}
smp_wmb();
}
static int __packet_get_status(struct packet_sock *po, void *frame)
{
union tpacket_uhdr h;
smp_rmb();
h.raw = frame;
switch (po->tp_version) {
case TPACKET_V1:
flush_dcache_page(pgv_to_page(&h.h1->tp_status));
return h.h1->tp_status;
case TPACKET_V2:
flush_dcache_page(pgv_to_page(&h.h2->tp_status));
return h.h2->tp_status;
case TPACKET_V3:
flush_dcache_page(pgv_to_page(&h.h3->tp_status));
return h.h3->tp_status;
default:
WARN(1, "TPACKET version not supported.\n");
BUG();
return 0;
}
}
static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
unsigned int flags)
{
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
if (shhwtstamps &&
(flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
return TP_STATUS_TS_RAW_HARDWARE;
if (ktime_to_timespec_cond(skb->tstamp, ts))
return TP_STATUS_TS_SOFTWARE;
return 0;
}
static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
struct sk_buff *skb)
{
union tpacket_uhdr h;
struct timespec ts;
__u32 ts_status;
if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
return 0;
h.raw = frame;
switch (po->tp_version) {
case TPACKET_V1:
h.h1->tp_sec = ts.tv_sec;
h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
break;
case TPACKET_V2:
h.h2->tp_sec = ts.tv_sec;
h.h2->tp_nsec = ts.tv_nsec;
break;
case TPACKET_V3:
h.h3->tp_sec = ts.tv_sec;
h.h3->tp_nsec = ts.tv_nsec;
break;
default:
WARN(1, "TPACKET version not supported.\n");
BUG();
}
/* one flush is safe, as both fields always lie on the same cacheline */
flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
smp_wmb();
return ts_status;
}
static void *packet_lookup_frame(struct packet_sock *po,
struct packet_ring_buffer *rb,
unsigned int position,
int status)
{
unsigned int pg_vec_pos, frame_offset;
union tpacket_uhdr h;
pg_vec_pos = position / rb->frames_per_block;
frame_offset = position % rb->frames_per_block;
h.raw = rb->pg_vec[pg_vec_pos].buffer +
(frame_offset * rb->frame_size);
if (status != __packet_get_status(po, h.raw))
return NULL;
return h.raw;
}
static void *packet_current_frame(struct packet_sock *po,
struct packet_ring_buffer *rb,
int status)
{
return packet_lookup_frame(po, rb, rb->head, status);
}
static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
{
del_timer_sync(&pkc->retire_blk_timer);
}
static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
struct sk_buff_head *rb_queue)
{
struct tpacket_kbdq_core *pkc;
pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
spin_lock_bh(&rb_queue->lock);
pkc->delete_blk_timer = 1;
spin_unlock_bh(&rb_queue->lock);
prb_del_retire_blk_timer(pkc);
}
static void prb_setup_retire_blk_timer(struct packet_sock *po)
{
struct tpacket_kbdq_core *pkc;
pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
0);
pkc->retire_blk_timer.expires = jiffies;
}
static int prb_calc_retire_blk_tmo(struct packet_sock *po,
int blk_size_in_bytes)
{
struct net_device *dev;
unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
struct ethtool_link_ksettings ecmd;
int err;
rtnl_lock();
dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
if (unlikely(!dev)) {
rtnl_unlock();
return DEFAULT_PRB_RETIRE_TOV;
}
err = __ethtool_get_link_ksettings(dev, &ecmd);
rtnl_unlock();
if (!err) {
/*
* If the link speed is so slow you don't really
* need to worry about perf anyways
*/
if (ecmd.base.speed < SPEED_1000 ||
ecmd.base.speed == SPEED_UNKNOWN) {
return DEFAULT_PRB_RETIRE_TOV;
} else {
msec = 1;
div = ecmd.base.speed / 1000;
}
}
mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
if (div)
mbits /= div;
tmo = mbits * msec;
if (div)
return tmo+1;
return tmo;
}
static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
union tpacket_req_u *req_u)
{
p1->feature_req_word = req_u->req3.tp_feature_req_word;
}
static void init_prb_bdqc(struct packet_sock *po,
struct packet_ring_buffer *rb,
struct pgv *pg_vec,
union tpacket_req_u *req_u)
{
struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
struct tpacket_block_desc *pbd;
memset(p1, 0x0, sizeof(*p1));
p1->knxt_seq_num = 1;
p1->pkbdq = pg_vec;
pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
p1->pkblk_start = pg_vec[0].buffer;
p1->kblk_size = req_u->req3.tp_block_size;
p1->knum_blocks = req_u->req3.tp_block_nr;
p1->hdrlen = po->tp_hdrlen;
p1->version = po->tp_version;
p1->last_kactive_blk_num = 0;
po->stats.stats3.tp_freeze_q_cnt = 0;
if (req_u->req3.tp_retire_blk_tov)
p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
else
p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
req_u->req3.tp_block_size);
p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
prb_init_ft_ops(p1, req_u);
prb_setup_retire_blk_timer(po);
prb_open_block(p1, pbd);
}
/* Do NOT update the last_blk_num first.
* Assumes sk_buff_head lock is held.
*/
static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
{
mod_timer(&pkc->retire_blk_timer,
jiffies + pkc->tov_in_jiffies);
pkc->last_kactive_blk_num = pkc->kactive_blk_num;
}
/*
* Timer logic:
* 1) We refresh the timer only when we open a block.
* By doing this we don't waste cycles refreshing the timer
* on packet-by-packet basis.
*
* With a 1MB block-size, on a 1Gbps line, it will take
* i) ~8 ms to fill a block + ii) memcpy etc.
* In this cut we are not accounting for the memcpy time.
*
* So, if the user sets the 'tmo' to 10ms then the timer
* will never fire while the block is still getting filled
* (which is what we want). However, the user could choose
* to close a block early and that's fine.
*
* But when the timer does fire, we check whether or not to refresh it.
* Since the tmo granularity is in msecs, it is not too expensive
* to refresh the timer, lets say every '8' msecs.
* Either the user can set the 'tmo' or we can derive it based on
* a) line-speed and b) block-size.
* prb_calc_retire_blk_tmo() calculates the tmo.
*
*/
static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
{
struct packet_sock *po =
from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
unsigned int frozen;
struct tpacket_block_desc *pbd;
spin_lock(&po->sk.sk_receive_queue.lock);
frozen = prb_queue_frozen(pkc);
pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
if (unlikely(pkc->delete_blk_timer))
goto out;
/* We only need to plug the race when the block is partially filled.
* tpacket_rcv:
* lock(); increment BLOCK_NUM_PKTS; unlock()
* copy_bits() is in progress ...
* timer fires on other cpu:
* we can't retire the current block because copy_bits
* is in progress.
*
*/
if (BLOCK_NUM_PKTS(pbd)) {
while (atomic_read(&pkc->blk_fill_in_prog)) {
/* Waiting for skb_copy_bits to finish... */
cpu_relax();
}
}
if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
if (!frozen) {
if (!BLOCK_NUM_PKTS(pbd)) {
/* An empty block. Just refresh the timer. */
goto refresh_timer;
}
prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
if (!prb_dispatch_next_block(pkc, po))
goto refresh_timer;
else
goto out;
} else {
/* Case 1. Queue was frozen because user-space was
* lagging behind.
*/
if (prb_curr_blk_in_use(pbd)) {
/*
* Ok, user-space is still behind.
* So just refresh the timer.
*/
goto refresh_timer;
} else {
/* Case 2. queue was frozen,user-space caught up,
* now the link went idle && the timer fired.
* We don't have a block to close.So we open this
* block and restart the timer.
* opening a block thaws the queue,restarts timer
* Thawing/timer-refresh is a side effect.
*/
prb_open_block(pkc, pbd);
goto out;
}
}
}
refresh_timer:
_prb_refresh_rx_retire_blk_timer(pkc);
out:
spin_unlock(&po->sk.sk_receive_queue.lock);
}
static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
struct tpacket_block_desc *pbd1, __u32 status)
{
/* Flush everything minus the block header */
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
u8 *start, *end;
start = (u8 *)pbd1;
/* Skip the block header(we know header WILL fit in 4K) */
start += PAGE_SIZE;
end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
for (; start < end; start += PAGE_SIZE)
flush_dcache_page(pgv_to_page(start));
smp_wmb();
#endif
/* Now update the block status. */
BLOCK_STATUS(pbd1) = status;
/* Flush the block header */
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
start = (u8 *)pbd1;
flush_dcache_page(pgv_to_page(start));
smp_wmb();
#endif
}
/*
* Side effect:
*
* 1) flush the block
* 2) Increment active_blk_num
*
* Note:We DONT refresh the timer on purpose.
* Because almost always the next block will be opened.
*/
static void prb_close_block(struct tpacket_kbdq_core *pkc1,
struct tpacket_block_desc *pbd1,
struct packet_sock *po, unsigned int stat)
{
__u32 status = TP_STATUS_USER | stat;
struct tpacket3_hdr *last_pkt;
struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
struct sock *sk = &po->sk;
if (po->stats.stats3.tp_drops)
status |= TP_STATUS_LOSING;
last_pkt = (struct tpacket3_hdr *)pkc1->prev;
last_pkt->tp_next_offset = 0;
/* Get the ts of the last pkt */
if (BLOCK_NUM_PKTS(pbd1)) {
h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
} else {
/* Ok, we tmo'd - so get the current time.
*
* It shouldn't really happen as we don't close empty
* blocks. See prb_retire_rx_blk_timer_expired().
*/
struct timespec ts;
getnstimeofday(&ts);
h1->ts_last_pkt.ts_sec = ts.tv_sec;
h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
}
smp_wmb();
/* Flush the block */
prb_flush_block(pkc1, pbd1, status);
sk->sk_data_ready(sk);
pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
}
static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
{
pkc->reset_pending_on_curr_blk = 0;
}
/*
* Side effect of opening a block:
*
* 1) prb_queue is thawed.
* 2) retire_blk_timer is refreshed.
*
*/
static void prb_open_block(struct tpacket_kbdq_core *pkc1,
struct tpacket_block_desc *pbd1)
{
struct timespec ts;
struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
smp_rmb();
/* We could have just memset this but we will lose the
* flexibility of making the priv area sticky
*/
BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
BLOCK_NUM_PKTS(pbd1) = 0;
BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
getnstimeofday(&ts);
h1->ts_first_pkt.ts_sec = ts.tv_sec;
h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
pkc1->pkblk_start = (char *)pbd1;
pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
pbd1->version = pkc1->version;
pkc1->prev = pkc1->nxt_offset;
pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
prb_thaw_queue(pkc1);
_prb_refresh_rx_retire_blk_timer(pkc1);
smp_wmb();
}
/*
* Queue freeze logic:
* 1) Assume tp_block_nr = 8 blocks.
* 2) At time 't0', user opens Rx ring.
* 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
* 4) user-space is either sleeping or processing block '0'.
* 5) tpacket_rcv is currently filling block '7', since there is no space left,
* it will close block-7,loop around and try to fill block '0'.
* call-flow:
* __packet_lookup_frame_in_block
* prb_retire_current_block()
* prb_dispatch_next_block()
* |->(BLOCK_STATUS == USER) evaluates to true
* 5.1) Since block-0 is currently in-use, we just freeze the queue.
* 6) Now there are two cases:
* 6.1) Link goes idle right after the queue is frozen.
* But remember, the last open_block() refreshed the timer.
* When this timer expires,it will refresh itself so that we can
* re-open block-0 in near future.
* 6.2) Link is busy and keeps on receiving packets. This is a simple
* case and __packet_lookup_frame_in_block will check if block-0
* is free and can now be re-used.
*/
static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
struct packet_sock *po)
{
pkc->reset_pending_on_curr_blk = 1;
po->stats.stats3.tp_freeze_q_cnt++;
}
#define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
/*
* If the next block is free then we will dispatch it
* and return a good offset.
* Else, we will freeze the queue.
* So, caller must check the return value.
*/
static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
struct packet_sock *po)
{
struct tpacket_block_desc *pbd;
smp_rmb();
/* 1. Get current block num */
pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
/* 2. If this block is currently in_use then freeze the queue */
if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
prb_freeze_queue(pkc, po);
return NULL;
}
/*
* 3.
* open this block and return the offset where the first packet
* needs to get stored.
*/
prb_open_block(pkc, pbd);
return (void *)pkc->nxt_offset;
}
static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
struct packet_sock *po, unsigned int status)
{
struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
/* retire/close the current block */
if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
/*
* Plug the case where copy_bits() is in progress on
* cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
* have space to copy the pkt in the current block and
* called prb_retire_current_block()
*
* We don't need to worry about the TMO case because
* the timer-handler already handled this case.
*/
if (!(status & TP_STATUS_BLK_TMO)) {
while (atomic_read(&pkc->blk_fill_in_prog)) {
/* Waiting for skb_copy_bits to finish... */
cpu_relax();
}
}
prb_close_block(pkc, pbd, po, status);
return;
}
}
static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
{
return TP_STATUS_USER & BLOCK_STATUS(pbd);
}
static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
{
return pkc->reset_pending_on_curr_blk;
}
static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
{
struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
atomic_dec(&pkc->blk_fill_in_prog);
}
static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
struct tpacket3_hdr *ppd)
{
ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
}
static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
struct tpacket3_hdr *ppd)
{
ppd->hv1.tp_rxhash = 0;
}
static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
struct tpacket3_hdr *ppd)
{
if (skb_vlan_tag_present(pkc->skb)) {
ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
} else {
ppd->hv1.tp_vlan_tci = 0;
ppd->hv1.tp_vlan_tpid = 0;
ppd->tp_status = TP_STATUS_AVAILABLE;
}
}
static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
struct tpacket3_hdr *ppd)
{
ppd->hv1.tp_padding = 0;
prb_fill_vlan_info(pkc, ppd);
if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
prb_fill_rxhash(pkc, ppd);
else
prb_clear_rxhash(pkc, ppd);
}
static void prb_fill_curr_block(char *curr,
struct tpacket_kbdq_core *pkc,
struct tpacket_block_desc *pbd,
unsigned int len)
{
struct tpacket3_hdr *ppd;
ppd = (struct tpacket3_hdr *)curr;
ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
pkc->prev = curr;
pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
BLOCK_NUM_PKTS(pbd) += 1;
atomic_inc(&pkc->blk_fill_in_prog);
prb_run_all_ft_ops(pkc, ppd);
}
/* Assumes caller has the sk->rx_queue.lock */
static void *__packet_lookup_frame_in_block(struct packet_sock *po,
struct sk_buff *skb,
int status,
unsigned int len
)
{
struct tpacket_kbdq_core *pkc;
struct tpacket_block_desc *pbd;
char *curr, *end;
pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
/* Queue is frozen when user space is lagging behind */
if (prb_queue_frozen(pkc)) {
/*
* Check if that last block which caused the queue to freeze,
* is still in_use by user-space.
*/
if (prb_curr_blk_in_use(pbd)) {
/* Can't record this packet */
return NULL;
} else {
/*
* Ok, the block was released by user-space.
* Now let's open that block.
* opening a block also thaws the queue.
* Thawing is a side effect.
*/
prb_open_block(pkc, pbd);
}
}
smp_mb();
curr = pkc->nxt_offset;
pkc->skb = skb;
end = (char *)pbd + pkc->kblk_size;
/* first try the current block */
if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
prb_fill_curr_block(curr, pkc, pbd, len);
return (void *)curr;
}
/* Ok, close the current block */
prb_retire_current_block(pkc, po, 0);
/* Now, try to dispatch the next block */
curr = (char *)prb_dispatch_next_block(pkc, po);
if (curr) {
pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
prb_fill_curr_block(curr, pkc, pbd, len);
return (void *)curr;
}
/*
* No free blocks are available.user_space hasn't caught up yet.
* Queue was just frozen and now this packet will get dropped.
*/
return NULL;
}
static void *packet_current_rx_frame(struct packet_sock *po,
struct sk_buff *skb,
int status, unsigned int len)
{
char *curr = NULL;
switch (po->tp_version) {
case TPACKET_V1:
case TPACKET_V2:
curr = packet_lookup_frame(po, &po->rx_ring,
po->rx_ring.head, status);
return curr;
case TPACKET_V3:
return __packet_lookup_frame_in_block(po, skb, status, len);
default:
WARN(1, "TPACKET version not supported\n");
BUG();
return NULL;
}
}
static void *prb_lookup_block(struct packet_sock *po,
struct packet_ring_buffer *rb,
unsigned int idx,
int status)
{
struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
if (status != BLOCK_STATUS(pbd))
return NULL;
return pbd;
}
static int prb_previous_blk_num(struct packet_ring_buffer *rb)
{
unsigned int prev;
if (rb->prb_bdqc.kactive_blk_num)
prev = rb->prb_bdqc.kactive_blk_num-1;
else
prev = rb->prb_bdqc.knum_blocks-1;
return prev;
}
/* Assumes caller has held the rx_queue.lock */
static void *__prb_previous_block(struct packet_sock *po,
struct packet_ring_buffer *rb,
int status)
{
unsigned int previous = prb_previous_blk_num(rb);
return prb_lookup_block(po, rb, previous, status);
}
static void *packet_previous_rx_frame(struct packet_sock *po,
struct packet_ring_buffer *rb,
int status)
{
if (po->tp_version <= TPACKET_V2)
return packet_previous_frame(po, rb, status);
return __prb_previous_block(po, rb, status);
}
static void packet_increment_rx_head(struct packet_sock *po,
struct packet_ring_buffer *rb)
{
switch (po->tp_version) {
case TPACKET_V1:
case TPACKET_V2:
return packet_increment_head(rb);
case TPACKET_V3:
default:
WARN(1, "TPACKET version not supported.\n");
BUG();
return;
}
}
static void *packet_previous_frame(struct packet_sock *po,
struct packet_ring_buffer *rb,
int status)
{
unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
return packet_lookup_frame(po, rb, previous, status);
}
static void packet_increment_head(struct packet_ring_buffer *buff)
{
buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
}
static void packet_inc_pending(struct packet_ring_buffer *rb)
{
this_cpu_inc(*rb->pending_refcnt);
}
static void packet_dec_pending(struct packet_ring_buffer *rb)
{
this_cpu_dec(*rb->pending_refcnt);
}
static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
{
unsigned int refcnt = 0;
int cpu;
/* We don't use pending refcount in rx_ring. */
if (rb->pending_refcnt == NULL)
return 0;
for_each_possible_cpu(cpu)
refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
return refcnt;
}
static int packet_alloc_pending(struct packet_sock *po)
{
po->rx_ring.pending_refcnt = NULL;
po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
if (unlikely(po->tx_ring.pending_refcnt == NULL))
return -ENOBUFS;
return 0;
}
static void packet_free_pending(struct packet_sock *po)
{
free_percpu(po->tx_ring.pending_refcnt);
}
#define ROOM_POW_OFF 2
#define ROOM_NONE 0x0
#define ROOM_LOW 0x1
#define ROOM_NORMAL 0x2
static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
{
int idx, len;
len = po->rx_ring.frame_max + 1;
idx = po->rx_ring.head;
if (pow_off)
idx += len >> pow_off;
if (idx >= len)
idx -= len;
return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
}
static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
{
int idx, len;
len = po->rx_ring.prb_bdqc.knum_blocks;
idx = po->rx_ring.prb_bdqc.kactive_blk_num;
if (pow_off)
idx += len >> pow_off;
if (idx >= len)
idx -= len;
return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
}
static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
{
struct sock *sk = &po->sk;
int ret = ROOM_NONE;
if (po->prot_hook.func != tpacket_rcv) {
int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
- (skb ? skb->truesize : 0);
if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
return ROOM_NORMAL;
else if (avail > 0)
return ROOM_LOW;
else
return ROOM_NONE;
}
if (po->tp_version == TPACKET_V3) {
if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
ret = ROOM_NORMAL;
else if (__tpacket_v3_has_room(po, 0))
ret = ROOM_LOW;
} else {
if (__tpacket_has_room(po, ROOM_POW_OFF))
ret = ROOM_NORMAL;
else if (__tpacket_has_room(po, 0))
ret = ROOM_LOW;
}
return ret;
}
static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
{
int ret;
bool has_room;
spin_lock_bh(&po->sk.sk_receive_queue.lock);
ret = __packet_rcv_has_room(po, skb);
has_room = ret == ROOM_NORMAL;
if (po->pressure == has_room)
po->pressure = !has_room;
spin_unlock_bh(&po->sk.sk_receive_queue.lock);
return ret;
}
static void packet_sock_destruct(struct sock *sk)
{
skb_queue_purge(&sk->sk_error_queue);
WARN_ON(atomic_read(&sk->sk_rmem_alloc));
WARN_ON(refcount_read(&sk->sk_wmem_alloc));
if (!sock_flag(sk, SOCK_DEAD)) {
pr_err("Attempt to release alive packet socket: %p\n", sk);
return;
}
sk_refcnt_debug_dec(sk);
}
static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
{
u32 rxhash;
int i, count = 0;
rxhash = skb_get_hash(skb);
for (i = 0; i < ROLLOVER_HLEN; i++)
if (po->rollover->history[i] == rxhash)
count++;
po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
return count > (ROLLOVER_HLEN >> 1);
}
static unsigned int fanout_demux_hash(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
}
static unsigned int fanout_demux_lb(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
unsigned int val = atomic_inc_return(&f->rr_cur);
return val % num;
}
static unsigned int fanout_demux_cpu(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
return smp_processor_id() % num;
}
static unsigned int fanout_demux_rnd(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
return prandom_u32_max(num);
}
static unsigned int fanout_demux_rollover(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int idx, bool try_self,
unsigned int num)
{
struct packet_sock *po, *po_next, *po_skip = NULL;
unsigned int i, j, room = ROOM_NONE;
po = pkt_sk(f->arr[idx]);
if (try_self) {
room = packet_rcv_has_room(po, skb);
if (room == ROOM_NORMAL ||
(room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
return idx;
po_skip = po;
}
i = j = min_t(int, po->rollover->sock, num - 1);
do {
po_next = pkt_sk(f->arr[i]);
if (po_next != po_skip && !po_next->pressure &&
packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
if (i != j)
po->rollover->sock = i;
atomic_long_inc(&po->rollover->num);
if (room == ROOM_LOW)
atomic_long_inc(&po->rollover->num_huge);
return i;
}
if (++i == num)
i = 0;
} while (i != j);
atomic_long_inc(&po->rollover->num_failed);
return idx;
}
static unsigned int fanout_demux_qm(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
return skb_get_queue_mapping(skb) % num;
}
static unsigned int fanout_demux_bpf(struct packet_fanout *f,
struct sk_buff *skb,
unsigned int num)
{
struct bpf_prog *prog;
unsigned int ret = 0;
rcu_read_lock();
prog = rcu_dereference(f->bpf_prog);
if (prog)
ret = bpf_prog_run_clear_cb(prog, skb) % num;
rcu_read_unlock();
return ret;
}
static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
{
return f->flags & (flag >> 8);
}
static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct packet_fanout *f = pt->af_packet_priv;
unsigned int num = READ_ONCE(f->num_members);
struct net *net = read_pnet(&f->net);
struct packet_sock *po;
unsigned int idx;
if (!net_eq(dev_net(dev), net) || !num) {
kfree_skb(skb);
return 0;
}
if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
if (!skb)
return 0;
}
switch (f->type) {
case PACKET_FANOUT_HASH:
default:
idx = fanout_demux_hash(f, skb, num);
break;
case PACKET_FANOUT_LB:
idx = fanout_demux_lb(f, skb, num);
break;
case PACKET_FANOUT_CPU:
idx = fanout_demux_cpu(f, skb, num);
break;
case PACKET_FANOUT_RND:
idx = fanout_demux_rnd(f, skb, num);
break;
case PACKET_FANOUT_QM:
idx = fanout_demux_qm(f, skb, num);
break;
case PACKET_FANOUT_ROLLOVER:
idx = fanout_demux_rollover(f, skb, 0, false, num);
break;
case PACKET_FANOUT_CBPF:
case PACKET_FANOUT_EBPF:
idx = fanout_demux_bpf(f, skb, num);
break;
}
if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
idx = fanout_demux_rollover(f, skb, idx, true, num);
po = pkt_sk(f->arr[idx]);
return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
}
DEFINE_MUTEX(fanout_mutex);
EXPORT_SYMBOL_GPL(fanout_mutex);
static LIST_HEAD(fanout_list);
static u16 fanout_next_id;
static void __fanout_link(struct sock *sk, struct packet_sock *po)
{
struct packet_fanout *f = po->fanout;
spin_lock(&f->lock);
f->arr[f->num_members] = sk;
smp_wmb();
f->num_members++;
if (f->num_members == 1)
dev_add_pack(&f->prot_hook);
spin_unlock(&f->lock);
}
static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
{
struct packet_fanout *f = po->fanout;
int i;
spin_lock(&f->lock);
for (i = 0; i < f->num_members; i++) {
if (f->arr[i] == sk)
break;
}
BUG_ON(i >= f->num_members);
f->arr[i] = f->arr[f->num_members - 1];
f->num_members--;
if (f->num_members == 0)
__dev_remove_pack(&f->prot_hook);
spin_unlock(&f->lock);
}
static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
{
if (sk->sk_family != PF_PACKET)
return false;
return ptype->af_packet_priv == pkt_sk(sk)->fanout;
}
static void fanout_init_data(struct packet_fanout *f)
{
switch (f->type) {
case PACKET_FANOUT_LB:
atomic_set(&f->rr_cur, 0);
break;
case PACKET_FANOUT_CBPF:
case PACKET_FANOUT_EBPF:
RCU_INIT_POINTER(f->bpf_prog, NULL);
break;
}
}
static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
{
struct bpf_prog *old;
spin_lock(&f->lock);
old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
rcu_assign_pointer(f->bpf_prog, new);
spin_unlock(&f->lock);
if (old) {
synchronize_net();
bpf_prog_destroy(old);
}
}
static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
unsigned int len)
{
struct bpf_prog *new;
struct sock_fprog fprog;
int ret;
if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
return -EPERM;
if (len != sizeof(fprog))
return -EINVAL;
if (copy_from_user(&fprog, data, len))
return -EFAULT;
ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
if (ret)
return ret;
__fanout_set_data_bpf(po->fanout, new);
return 0;
}
static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
unsigned int len)
{
struct bpf_prog *new;
u32 fd;
if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
return -EPERM;
if (len != sizeof(fd))
return -EINVAL;
if (copy_from_user(&fd, data, len))
return -EFAULT;
new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
if (IS_ERR(new))
return PTR_ERR(new);
__fanout_set_data_bpf(po->fanout, new);
return 0;
}
static int fanout_set_data(struct packet_sock *po, char __user *data,
unsigned int len)
{
switch (po->fanout->type) {
case PACKET_FANOUT_CBPF:
return fanout_set_data_cbpf(po, data, len);
case PACKET_FANOUT_EBPF:
return fanout_set_data_ebpf(po, data, len);
default:
return -EINVAL;
};
}
static void fanout_release_data(struct packet_fanout *f)
{
switch (f->type) {
case PACKET_FANOUT_CBPF:
case PACKET_FANOUT_EBPF:
__fanout_set_data_bpf(f, NULL);
};
}
static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
{
struct packet_fanout *f;
list_for_each_entry(f, &fanout_list, list) {
if (f->id == candidate_id &&
read_pnet(&f->net) == sock_net(sk)) {
return false;
}
}
return true;
}
static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
{
u16 id = fanout_next_id;
do {
if (__fanout_id_is_free(sk, id)) {
*new_id = id;
fanout_next_id = id + 1;
return true;
}
id++;
} while (id != fanout_next_id);
return false;
}
static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
{
struct packet_rollover *rollover = NULL;
struct packet_sock *po = pkt_sk(sk);
struct packet_fanout *f, *match;
u8 type = type_flags & 0xff;
u8 flags = type_flags >> 8;
int err;
switch (type) {
case PACKET_FANOUT_ROLLOVER:
if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
return -EINVAL;
case PACKET_FANOUT_HASH:
case PACKET_FANOUT_LB:
case PACKET_FANOUT_CPU:
case PACKET_FANOUT_RND:
case PACKET_FANOUT_QM:
case PACKET_FANOUT_CBPF:
case PACKET_FANOUT_EBPF:
break;
default:
return -EINVAL;
}
mutex_lock(&fanout_mutex);
err = -EALREADY;
if (po->fanout)
goto out;
if (type == PACKET_FANOUT_ROLLOVER ||
(type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
err = -ENOMEM;
rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
if (!rollover)
goto out;
atomic_long_set(&rollover->num, 0);
atomic_long_set(&rollover->num_huge, 0);
atomic_long_set(&rollover->num_failed, 0);
}
if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
if (id != 0) {
err = -EINVAL;
goto out;
}
if (!fanout_find_new_id(sk, &id)) {
err = -ENOMEM;
goto out;
}
/* ephemeral flag for the first socket in the group: drop it */
flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
}
match = NULL;
list_for_each_entry(f, &fanout_list, list) {
if (f->id == id &&
read_pnet(&f->net) == sock_net(sk)) {
match = f;
break;
}
}
err = -EINVAL;
if (match && match->flags != flags)
goto out;
if (!match) {
err = -ENOMEM;
match = kzalloc(sizeof(*match), GFP_KERNEL);
if (!match)
goto out;
write_pnet(&match->net, sock_net(sk));
match->id = id;
match->type = type;
match->flags = flags;
INIT_LIST_HEAD(&match->list);
spin_lock_init(&match->lock);
refcount_set(&match->sk_ref, 0);
fanout_init_data(match);
match->prot_hook.type = po->prot_hook.type;
match->prot_hook.dev = po->prot_hook.dev;
match->prot_hook.func = packet_rcv_fanout;
match->prot_hook.af_packet_priv = match;
match->prot_hook.id_match = match_fanout_group;
list_add(&match->list, &fanout_list);
}
err = -EINVAL;
spin_lock(&po->bind_lock);
if (po->running &&
match->type == type &&
match->prot_hook.type == po->prot_hook.type &&
match->prot_hook.dev == po->prot_hook.dev) {
err = -ENOSPC;
if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
__dev_remove_pack(&po->prot_hook);
po->fanout = match;
po->rollover = rollover;
rollover = NULL;
refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
__fanout_link(sk, po);
err = 0;
}
}
spin_unlock(&po->bind_lock);
if (err && !refcount_read(&match->sk_ref)) {
list_del(&match->list);
kfree(match);
}
out:
kfree(rollover);
mutex_unlock(&fanout_mutex);
return err;
}
/* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
* pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
* It is the responsibility of the caller to call fanout_release_data() and
* free the returned packet_fanout (after synchronize_net())
*/
static struct packet_fanout *fanout_release(struct sock *sk)
{
struct packet_sock *po = pkt_sk(sk);
struct packet_fanout *f;
mutex_lock(&fanout_mutex);
f = po->fanout;
if (f) {
po->fanout = NULL;
if (refcount_dec_and_test(&f->sk_ref))
list_del(&f->list);
else
f = NULL;
}
mutex_unlock(&fanout_mutex);
return f;
}
static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
struct sk_buff *skb)
{
/* Earlier code assumed this would be a VLAN pkt, double-check
* this now that we have the actual packet in hand. We can only
* do this check on Ethernet devices.
*/
if (unlikely(dev->type != ARPHRD_ETHER))
return false;
skb_reset_mac_header(skb);
return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
}
static const struct proto_ops packet_ops;
static const struct proto_ops packet_ops_spkt;
static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct sock *sk;
struct sockaddr_pkt *spkt;
/*
* When we registered the protocol we saved the socket in the data
* field for just this event.
*/
sk = pt->af_packet_priv;
/*
* Yank back the headers [hope the device set this
* right or kerboom...]
*
* Incoming packets have ll header pulled,
* push it back.
*
* For outgoing ones skb->data == skb_mac_header(skb)
* so that this procedure is noop.
*/
if (skb->pkt_type == PACKET_LOOPBACK)
goto out;
if (!net_eq(dev_net(dev), sock_net(sk)))
goto out;
skb = skb_share_check(skb, GFP_ATOMIC);
if (skb == NULL)
goto oom;
/* drop any routing info */
skb_dst_drop(skb);
/* drop conntrack reference */
nf_reset(skb);
spkt = &PACKET_SKB_CB(skb)->sa.pkt;
skb_push(skb, skb->data - skb_mac_header(skb));
/*
* The SOCK_PACKET socket receives _all_ frames.
*/
spkt->spkt_family = dev->type;
strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
spkt->spkt_protocol = skb->protocol;
/*
* Charge the memory to the socket. This is done specifically
* to prevent sockets using all the memory up.
*/
if (sock_queue_rcv_skb(sk, skb) == 0)
return 0;
out:
kfree_skb(skb);
oom:
return 0;
}
/*
* Output a raw packet to a device layer. This bypasses all the other
* protocol layers and you must therefore supply it with a complete frame
*/
static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
size_t len)
{
struct sock *sk = sock->sk;
DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
struct sk_buff *skb = NULL;
struct net_device *dev;
struct sockcm_cookie sockc;
__be16 proto = 0;
int err;
int extra_len = 0;
/*
* Get and verify the address.
*/
if (saddr) {
if (msg->msg_namelen < sizeof(struct sockaddr))
return -EINVAL;
if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
proto = saddr->spkt_protocol;
} else
return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
/*
* Find the device first to size check it
*/
saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
retry:
rcu_read_lock();
dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
err = -ENODEV;
if (dev == NULL)
goto out_unlock;
err = -ENETDOWN;
if (!(dev->flags & IFF_UP))
goto out_unlock;
/*
* You may not queue a frame bigger than the mtu. This is the lowest level
* raw protocol and you must do your own fragmentation at this level.
*/
if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
if (!netif_supports_nofcs(dev)) {
err = -EPROTONOSUPPORT;
goto out_unlock;
}
extra_len = 4; /* We're doing our own CRC */
}
err = -EMSGSIZE;
if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
goto out_unlock;
if (!skb) {
size_t reserved = LL_RESERVED_SPACE(dev);
int tlen = dev->needed_tailroom;
unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
rcu_read_unlock();
skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
if (skb == NULL)
return -ENOBUFS;
/* FIXME: Save some space for broken drivers that write a hard
* header at transmission time by themselves. PPP is the notable
* one here. This should really be fixed at the driver level.
*/
skb_reserve(skb, reserved);
skb_reset_network_header(skb);
/* Try to align data part correctly */
if (hhlen) {
skb->data -= hhlen;
skb->tail -= hhlen;
if (len < hhlen)
skb_reset_network_header(skb);
}
err = memcpy_from_msg(skb_put(skb, len), msg, len);
if (err)
goto out_free;
goto retry;
}
if (!dev_validate_header(dev, skb->data, len)) {
err = -EINVAL;
goto out_unlock;
}
if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
!packet_extra_vlan_len_allowed(dev, skb)) {
err = -EMSGSIZE;
goto out_unlock;
}
sockc.tsflags = sk->sk_tsflags;
if (msg->msg_controllen) {
err = sock_cmsg_send(sk, msg, &sockc);
if (unlikely(err))
goto out_unlock;
}
skb->protocol = proto;
skb->dev = dev;
skb->priority = sk->sk_priority;
skb->mark = sk->sk_mark;
sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
if (unlikely(extra_len == 4))
skb->no_fcs = 1;
skb_probe_transport_header(skb, 0);
dev_queue_xmit(skb);
rcu_read_unlock();
return len;
out_unlock:
rcu_read_unlock();
out_free:
kfree_skb(skb);
return err;
}
static unsigned int run_filter(struct sk_buff *skb,
const struct sock *sk,
unsigned int res)
{
struct sk_filter *filter;
rcu_read_lock();
filter = rcu_dereference(sk->sk_filter);
if (filter != NULL)
res = bpf_prog_run_clear_cb(filter->prog, skb);
rcu_read_unlock();
return res;
}
static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
size_t *len)
{
struct virtio_net_hdr vnet_hdr;
if (*len < sizeof(vnet_hdr))
return -EINVAL;
*len -= sizeof(vnet_hdr);
if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
return -EINVAL;
return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
}
/*
* This function makes lazy skb cloning in hope that most of packets
* are discarded by BPF.
*
* Note tricky part: we DO mangle shared skb! skb->data, skb->len
* and skb->cb are mangled. It works because (and until) packets
* falling here are owned by current CPU. Output packets are cloned
* by dev_queue_xmit_nit(), input packets are processed by net_bh
* sequencially, so that if we return skb to original state on exit,
* we will not harm anyone.
*/
static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct sock *sk;
struct sockaddr_ll *sll;
struct packet_sock *po;
u8 *skb_head = skb->data;
int skb_len = skb->len;
unsigned int snaplen, res;
bool is_drop_n_account = false;
if (skb->pkt_type == PACKET_LOOPBACK)
goto drop;
sk = pt->af_packet_priv;
po = pkt_sk(sk);
if (!net_eq(dev_net(dev), sock_net(sk)))
goto drop;
skb->dev = dev;
if (dev->header_ops) {
/* The device has an explicit notion of ll header,
* exported to higher levels.
*
* Otherwise, the device hides details of its frame
* structure, so that corresponding packet head is
* never delivered to user.
*/
if (sk->sk_type != SOCK_DGRAM)
skb_push(skb, skb->data - skb_mac_header(skb));
else if (skb->pkt_type == PACKET_OUTGOING) {
/* Special case: outgoing packets have ll header at head */
skb_pull(skb, skb_network_offset(skb));
}
}
snaplen = skb->len;
res = run_filter(skb, sk, snaplen);
if (!res)
goto drop_n_restore;
if (snaplen > res)
snaplen = res;
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
goto drop_n_acct;
if (skb_shared(skb)) {
struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
if (nskb == NULL)
goto drop_n_acct;
if (skb_head != skb->data) {
skb->data = skb_head;
skb->len = skb_len;
}
consume_skb(skb);
skb = nskb;
}
sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
sll = &PACKET_SKB_CB(skb)->sa.ll;
sll->sll_hatype = dev->type;
sll->sll_pkttype = skb->pkt_type;
if (unlikely(po->origdev))
sll->sll_ifindex = orig_dev->ifindex;
else
sll->sll_ifindex = dev->ifindex;
sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
/* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
* Use their space for storing the original skb length.
*/
PACKET_SKB_CB(skb)->sa.origlen = skb->len;
if (pskb_trim(skb, snaplen))
goto drop_n_acct;
skb_set_owner_r(skb, sk);
skb->dev = NULL;
skb_dst_drop(skb);
/* drop conntrack reference */
nf_reset(skb);
spin_lock(&sk->sk_receive_queue.lock);
po->stats.stats1.tp_packets++;
sock_skb_set_dropcount(sk, skb);
__skb_queue_tail(&sk->sk_receive_queue, skb);
spin_unlock(&sk->sk_receive_queue.lock);
sk->sk_data_ready(sk);
return 0;
drop_n_acct:
is_drop_n_account = true;
spin_lock(&sk->sk_receive_queue.lock);
po->stats.stats1.tp_drops++;
atomic_inc(&sk->sk_drops);
spin_unlock(&sk->sk_receive_queue.lock);
drop_n_restore:
if (skb_head != skb->data && skb_shared(skb)) {
skb->data = skb_head;
skb->len = skb_len;
}
drop:
if (!is_drop_n_account)
consume_skb(skb);
else
kfree_skb(skb);
return 0;
}
static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
struct sock *sk;
struct packet_sock *po;
struct sockaddr_ll *sll;
union tpacket_uhdr h;
u8 *skb_head = skb->data;
int skb_len = skb->len;
unsigned int snaplen, res;
unsigned long status = TP_STATUS_USER;
unsigned short macoff, netoff, hdrlen;
struct sk_buff *copy_skb = NULL;
struct timespec ts;
__u32 ts_status;
bool is_drop_n_account = false;
bool do_vnet = false;
/* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
* We may add members to them until current aligned size without forcing
* userspace to call getsockopt(..., PACKET_HDRLEN, ...).
*/
BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
if (skb->pkt_type == PACKET_LOOPBACK)
goto drop;
sk = pt->af_packet_priv;
po = pkt_sk(sk);
if (!net_eq(dev_net(dev), sock_net(sk)))
goto drop;
if (dev->header_ops) {
if (sk->sk_type != SOCK_DGRAM)
skb_push(skb, skb->data - skb_mac_header(skb));
else if (skb->pkt_type == PACKET_OUTGOING) {
/* Special case: outgoing packets have ll header at head */
skb_pull(skb, skb_network_offset(skb));
}
}
snaplen = skb->len;
res = run_filter(skb, sk, snaplen);
if (!res)
goto drop_n_restore;
if (skb->ip_summed == CHECKSUM_PARTIAL)
status |= TP_STATUS_CSUMNOTREADY;
else if (skb->pkt_type != PACKET_OUTGOING &&
(skb->ip_summed == CHECKSUM_COMPLETE ||
skb_csum_unnecessary(skb)))
status |= TP_STATUS_CSUM_VALID;
if (snaplen > res)
snaplen = res;
if (sk->sk_type == SOCK_DGRAM) {
macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
po->tp_reserve;
} else {
unsigned int maclen = skb_network_offset(skb);
netoff = TPACKET_ALIGN(po->tp_hdrlen +
(maclen < 16 ? 16 : maclen)) +
po->tp_reserve;
if (po->has_vnet_hdr) {
netoff += sizeof(struct virtio_net_hdr);
do_vnet = true;
}
macoff = netoff - maclen;
}
if (po->tp_version <= TPACKET_V2) {
if (macoff + snaplen > po->rx_ring.frame_size) {
if (po->copy_thresh &&
atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
if (skb_shared(skb)) {
copy_skb = skb_clone(skb, GFP_ATOMIC);
} else {
copy_skb = skb_get(skb);
skb_head = skb->data;
}
if (copy_skb)
skb_set_owner_r(copy_skb, sk);
}
snaplen = po->rx_ring.frame_size - macoff;
if ((int)snaplen < 0) {
snaplen = 0;
do_vnet = false;
}
}
} else if (unlikely(macoff + snaplen >
GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
u32 nval;
nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
snaplen, nval, macoff);
snaplen = nval;
if (unlikely((int)snaplen < 0)) {
snaplen = 0;
macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
do_vnet = false;
}
}
spin_lock(&sk->sk_receive_queue.lock);
h.raw = packet_current_rx_frame(po, skb,
TP_STATUS_KERNEL, (macoff+snaplen));
if (!h.raw)
goto drop_n_account;
if (po->tp_version <= TPACKET_V2) {
packet_increment_rx_head(po, &po->rx_ring);
/*
* LOSING will be reported till you read the stats,
* because it's COR - Clear On Read.
* Anyways, moving it for V1/V2 only as V3 doesn't need this
* at packet level.
*/
if (po->stats.stats1.tp_drops)
status |= TP_STATUS_LOSING;
}
po->stats.stats1.tp_packets++;
if (copy_skb) {
status |= TP_STATUS_COPY;
__skb_queue_tail(&sk->sk_receive_queue, copy_skb);
}
spin_unlock(&sk->sk_receive_queue.lock);
if (do_vnet) {
if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
sizeof(struct virtio_net_hdr),
vio_le(), true)) {
spin_lock(&sk->sk_receive_queue.lock);
goto drop_n_account;
}
}
skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
getnstimeofday(&ts);
status |= ts_status;
switch (po->tp_version) {
case TPACKET_V1:
h.h1->tp_len = skb->len;
h.h1->tp_snaplen = snaplen;
h.h1->tp_mac = macoff;
h.h1->tp_net = netoff;
h.h1->tp_sec = ts.tv_sec;
h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
hdrlen = sizeof(*h.h1);
break;
case TPACKET_V2:
h.h2->tp_len = skb->len;
h.h2->tp_snaplen = snaplen;
h.h2->tp_mac = macoff;
h.h2->tp_net = netoff;
h.h2->tp_sec = ts.tv_sec;
h.h2->tp_nsec = ts.tv_nsec;
if (skb_vlan_tag_present(skb)) {
h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
} else {
h.h2->tp_vlan_tci = 0;
h.h2->tp_vlan_tpid = 0;
}
memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
hdrlen = sizeof(*h.h2);
break;
case TPACKET_V3:
/* tp_nxt_offset,vlan are already populated above.
* So DONT clear those fields here
*/
h.h3->tp_status |= status;
h.h3->tp_len = skb->len;
h.h3->tp_snaplen = snaplen;
h.h3->tp_mac = macoff;
h.h3->tp_net = netoff;
h.h3->tp_sec = ts.tv_sec;
h.h3->tp_nsec = ts.tv_nsec;
memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
hdrlen = sizeof(*h.h3);
break;
default:
BUG();
}
sll = h.raw + TPACKET_ALIGN(hdrlen);
sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
sll->sll_family = AF_PACKET;
sll->sll_hatype = dev->type;
sll->sll_protocol = skb->protocol;
sll->sll_pkttype = skb->pkt_type;
if (unlikely(po->origdev))
sll->sll_ifindex = orig_dev->ifindex;
else
sll->sll_ifindex = dev->ifindex;
smp_mb();
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
if (po->tp_version <= TPACKET_V2) {
u8 *start, *end;
end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
macoff + snaplen);
for (start = h.raw; start < end; start += PAGE_SIZE)
flush_dcache_page(pgv_to_page(start));
}
smp_wmb();
#endif
if (po->tp_version <= TPACKET_V2) {
__packet_set_status(po, h.raw, status);
sk->sk_data_ready(sk);
} else {
prb_clear_blk_fill_status(&po->rx_ring);
}
drop_n_restore:
if (skb_head != skb->data && skb_shared(skb)) {
skb->data = skb_head;
skb->len = skb_len;
}
drop:
if (!is_drop_n_account)
consume_skb(skb);
else
kfree_skb(skb);
return 0;
drop_n_account:
is_drop_n_account = true;
po->stats.stats1.tp_drops++;
spin_unlock(&sk->sk_receive_queue.lock);
sk->sk_data_ready(sk);
kfree_skb(copy_skb);
goto drop_n_restore;
}
static void tpacket_destruct_skb(struct sk_buff *skb)
{
struct packet_sock *po = pkt_sk(skb->sk);
if (likely(po->tx_ring.pg_vec)) {
void *ph;
__u32 ts;
ph = skb_shinfo(skb)->destructor_arg;
packet_dec_pending(&po->tx_ring);
ts = __packet_set_timestamp(po, ph, skb);
__packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
}
sock_wfree(skb);
}
static void tpacket_set_protocol(const struct net_device *dev,
struct sk_buff *skb)
{
if (dev->type == ARPHRD_ETHER) {
skb_reset_mac_header(skb);
skb->protocol = eth_hdr(skb)->h_proto;
}
}
static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
{
if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
(__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
__virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
return -EINVAL;
return 0;
}
static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
struct virtio_net_hdr *vnet_hdr)
{
if (*len < sizeof(*vnet_hdr))
return -EINVAL;
*len -= sizeof(*vnet_hdr);
if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
return -EFAULT;
return __packet_snd_vnet_parse(vnet_hdr, *len);
}
static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
void *frame, struct net_device *dev, void *data, int tp_len,
__be16 proto, unsigned char *addr, int hlen, int copylen,
const struct sockcm_cookie *sockc)
{
union tpacket_uhdr ph;
int to_write, offset, len, nr_frags, len_max;
struct socket *sock = po->sk.sk_socket;
struct page *page;
int err;
ph.raw = frame;
skb->protocol = proto;
skb->dev = dev;
skb->priority = po->sk.sk_priority;
skb->mark = po->sk.sk_mark;
sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
skb_shinfo(skb)->destructor_arg = ph.raw;
skb_reserve(skb, hlen);
skb_reset_network_header(skb);
to_write = tp_len;
if (sock->type == SOCK_DGRAM) {
err = dev_hard_header(skb, dev, ntohs(proto), addr,
NULL, tp_len);
if (unlikely(err < 0))
return -EINVAL;
} else if (copylen) {
int hdrlen = min_t(int, copylen, tp_len);
skb_push(skb, dev->hard_header_len);
skb_put(skb, copylen - dev->hard_header_len);
err = skb_store_bits(skb, 0, data, hdrlen);
if (unlikely(err))
return err;
if (!dev_validate_header(dev, skb->data, hdrlen))
return -EINVAL;
if (!skb->protocol)
tpacket_set_protocol(dev, skb);
data += hdrlen;
to_write -= hdrlen;
}
offset = offset_in_page(data);
len_max = PAGE_SIZE - offset;
len = ((to_write > len_max) ? len_max : to_write);
skb->data_len = to_write;
skb->len += to_write;
skb->truesize += to_write;
refcount_add(to_write, &po->sk.sk_wmem_alloc);
while (likely(to_write)) {
nr_frags = skb_shinfo(skb)->nr_frags;
if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
pr_err("Packet exceed the number of skb frags(%lu)\n",
MAX_SKB_FRAGS);
return -EFAULT;
}
page = pgv_to_page(data);
data += len;
flush_dcache_page(page);
get_page(page);
skb_fill_page_desc(skb, nr_frags, page, offset, len);
to_write -= len;
offset = 0;
len_max = PAGE_SIZE;
len = ((to_write > len_max) ? len_max : to_write);
}
skb_probe_transport_header(skb, 0);
return tp_len;
}
static int tpacket_parse_header(struct packet_sock *po, void *frame,
int size_max, void **data)
{
union tpacket_uhdr ph;
int tp_len, off;
ph.raw = frame;
switch (po->tp_version) {
case TPACKET_V3:
if (ph.h3->tp_next_offset != 0) {
pr_warn_once("variable sized slot not supported");
return -EINVAL;
}
tp_len = ph.h3->tp_len;
break;
case TPACKET_V2:
tp_len = ph.h2->tp_len;
break;
default:
tp_len = ph.h1->tp_len;
break;
}
if (unlikely(tp_len > size_max)) {
pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
return -EMSGSIZE;
}
if (unlikely(po->tp_tx_has_off)) {
int off_min, off_max;
off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
off_max = po->tx_ring.frame_size - tp_len;
if (po->sk.sk_type == SOCK_DGRAM) {
switch (po->tp_version) {
case TPACKET_V3:
off = ph.h3->tp_net;
break;
case TPACKET_V2:
off = ph.h2->tp_net;
break;
default:
off = ph.h1->tp_net;
break;
}
} else {
switch (po->tp_version) {
case TPACKET_V3:
off = ph.h3->tp_mac;
break;
case TPACKET_V2:
off = ph.h2->tp_mac;
break;
default:
off = ph.h1->tp_mac;
break;
}
}
if (unlikely((off < off_min) || (off_max < off)))
return -EINVAL;
} else {
off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
}
*data = frame + off;
return tp_len;
}
static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
{
struct sk_buff *skb;
struct net_device *dev;
struct virtio_net_hdr *vnet_hdr = NULL;
struct sockcm_cookie sockc;
__be16 proto;
int err, reserve = 0;
void *ph;
DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
int tp_len, size_max;
unsigned char *addr;
void *data;
int len_sum = 0;
int status = TP_STATUS_AVAILABLE;
int hlen, tlen, copylen = 0;
mutex_lock(&po->pg_vec_lock);
if (likely(saddr == NULL)) {
dev = packet_cached_dev_get(po);
proto = po->num;
addr = NULL;
} else {
err = -EINVAL;
if (msg->msg_namelen < sizeof(struct sockaddr_ll))
goto out;
if (msg->msg_namelen < (saddr->sll_halen
+ offsetof(struct sockaddr_ll,
sll_addr)))
goto out;
proto = saddr->sll_protocol;
addr = saddr->sll_addr;
dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
}
err = -ENXIO;
if (unlikely(dev == NULL))
goto out;
err = -ENETDOWN;
if (unlikely(!(dev->flags & IFF_UP)))
goto out_put;
sockc.tsflags = po->sk.sk_tsflags;
if (msg->msg_controllen) {
err = sock_cmsg_send(&po->sk, msg, &sockc);
if (unlikely(err))
goto out_put;
}
if (po->sk.sk_socket->type == SOCK_RAW)
reserve = dev->hard_header_len;
size_max = po->tx_ring.frame_size
- (po->tp_hdrlen - sizeof(struct sockaddr_ll));
if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
size_max = dev->mtu + reserve + VLAN_HLEN;
do {
ph = packet_current_frame(po, &po->tx_ring,
TP_STATUS_SEND_REQUEST);
if (unlikely(ph == NULL)) {
if (need_wait && need_resched())
schedule();
continue;
}
skb = NULL;
tp_len = tpacket_parse_header(po, ph, size_max, &data);
if (tp_len < 0)
goto tpacket_error;
status = TP_STATUS_SEND_REQUEST;
hlen = LL_RESERVED_SPACE(dev);
tlen = dev->needed_tailroom;
if (po->has_vnet_hdr) {
vnet_hdr = data;
data += sizeof(*vnet_hdr);
tp_len -= sizeof(*vnet_hdr);
if (tp_len < 0 ||
__packet_snd_vnet_parse(vnet_hdr, tp_len)) {
tp_len = -EINVAL;
goto tpacket_error;
}
copylen = __virtio16_to_cpu(vio_le(),
vnet_hdr->hdr_len);
}
copylen = max_t(int, copylen, dev->hard_header_len);
skb = sock_alloc_send_skb(&po->sk,
hlen + tlen + sizeof(struct sockaddr_ll) +
(copylen - dev->hard_header_len),
!need_wait, &err);
if (unlikely(skb == NULL)) {
/* we assume the socket was initially writeable ... */
if (likely(len_sum > 0))
err = len_sum;
goto out_status;
}
tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
addr, hlen, copylen, &sockc);
if (likely(tp_len >= 0) &&
tp_len > dev->mtu + reserve &&
!po->has_vnet_hdr &&
!packet_extra_vlan_len_allowed(dev, skb))
tp_len = -EMSGSIZE;
if (unlikely(tp_len < 0)) {
tpacket_error:
if (po->tp_loss) {
__packet_set_status(po, ph,
TP_STATUS_AVAILABLE);
packet_increment_head(&po->tx_ring);
kfree_skb(skb);
continue;
} else {
status = TP_STATUS_WRONG_FORMAT;
err = tp_len;
goto out_status;
}
}
if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
vio_le())) {
tp_len = -EINVAL;
goto tpacket_error;
}
skb->destructor = tpacket_destruct_skb;
__packet_set_status(po, ph, TP_STATUS_SENDING);
packet_inc_pending(&po->tx_ring);
status = TP_STATUS_SEND_REQUEST;
err = po->xmit(skb);
if (unlikely(err > 0)) {
err = net_xmit_errno(err);
if (err && __packet_get_status(po, ph) ==
TP_STATUS_AVAILABLE) {
/* skb was destructed already */
skb = NULL;
goto out_status;
}
/*
* skb was dropped but not destructed yet;
* let's treat it like congestion or err < 0
*/
err = 0;
}
packet_increment_head(&po->tx_ring);
len_sum += tp_len;
} while (likely((ph != NULL) ||
/* Note: packet_read_pending() might be slow if we have
* to call it as it's per_cpu variable, but in fast-path
* we already short-circuit the loop with the first
* condition, and luckily don't have to go that path
* anyway.
*/
(need_wait && packet_read_pending(&po->tx_ring))));
err = len_sum;
goto out_put;
out_status:
__packet_set_status(po, ph, status);
kfree_skb(skb);
out_put:
dev_put(dev);
out:
mutex_unlock(&po->pg_vec_lock);
return err;
}
static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
size_t reserve, size_t len,
size_t linear, int noblock,
int *err)
{
struct sk_buff *skb;
/* Under a page? Don't bother with paged skb. */
if (prepad + len < PAGE_SIZE || !linear)
linear = len;
skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
err, 0);
if (!skb)
return NULL;
skb_reserve(skb, reserve);
skb_put(skb, linear);
skb->data_len = len - linear;
skb->len += len - linear;
return skb;
}
static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
struct sk_buff *skb;
struct net_device *dev;
__be16 proto;
unsigned char *addr;
int err, reserve = 0;
struct sockcm_cookie sockc;
struct virtio_net_hdr vnet_hdr = { 0 };
int offset = 0;
struct packet_sock *po = pkt_sk(sk);
bool has_vnet_hdr = false;
int hlen, tlen, linear;
int extra_len = 0;
/*
* Get and verify the address.
*/
if (likely(saddr == NULL)) {
dev = packet_cached_dev_get(po);
proto = po->num;
addr = NULL;
} else {
err = -EINVAL;
if (msg->msg_namelen < sizeof(struct sockaddr_ll))
goto out;
if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
goto out;
proto = saddr->sll_protocol;
addr = saddr->sll_addr;
dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
}
err = -ENXIO;
if (unlikely(dev == NULL))
goto out_unlock;
err = -ENETDOWN;
if (unlikely(!(dev->flags & IFF_UP)))
goto out_unlock;
sockc.tsflags = sk->sk_tsflags;
sockc.mark = sk->sk_mark;
if (msg->msg_controllen) {
err = sock_cmsg_send(sk, msg, &sockc);
if (unlikely(err))
goto out_unlock;
}
if (sock->type == SOCK_RAW)
reserve = dev->hard_header_len;
if (po->has_vnet_hdr) {
err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
if (err)
goto out_unlock;
has_vnet_hdr = true;
}
if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
if (!netif_supports_nofcs(dev)) {
err = -EPROTONOSUPPORT;
goto out_unlock;
}
extra_len = 4; /* We're doing our own CRC */
}
err = -EMSGSIZE;
if (!vnet_hdr.gso_type &&
(len > dev->mtu + reserve + VLAN_HLEN + extra_len))
goto out_unlock;
err = -ENOBUFS;
hlen = LL_RESERVED_SPACE(dev);
tlen = dev->needed_tailroom;
linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
linear = max(linear, min_t(int, len, dev->hard_header_len));
skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
msg->msg_flags & MSG_DONTWAIT, &err);
if (skb == NULL)
goto out_unlock;
skb_set_network_header(skb, reserve);
err = -EINVAL;
if (sock->type == SOCK_DGRAM) {
offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
if (unlikely(offset < 0))
goto out_free;
}
/* Returns -EFAULT on error */
err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
if (err)
goto out_free;
if (sock->type == SOCK_RAW &&
!dev_validate_header(dev, skb->data, len)) {
err = -EINVAL;
goto out_free;
}
sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
!packet_extra_vlan_len_allowed(dev, skb)) {
err = -EMSGSIZE;
goto out_free;
}
skb->protocol = proto;
skb->dev = dev;
skb->priority = sk->sk_priority;
skb->mark = sockc.mark;
if (has_vnet_hdr) {
err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
if (err)
goto out_free;
len += sizeof(vnet_hdr);
}
skb_probe_transport_header(skb, reserve);
if (unlikely(extra_len == 4))
skb->no_fcs = 1;
err = po->xmit(skb);
if (err > 0 && (err = net_xmit_errno(err)) != 0)
goto out_unlock;
dev_put(dev);
return len;
out_free:
kfree_skb(skb);
out_unlock:
if (dev)
dev_put(dev);
out:
return err;
}
static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
if (po->tx_ring.pg_vec)
return tpacket_snd(po, msg);
else
return packet_snd(sock, msg, len);
}
/*
* Close a PACKET socket. This is fairly simple. We immediately go
* to 'closed' state and remove our protocol entry in the device list.
*/
static int packet_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct packet_sock *po;
struct packet_fanout *f;
struct net *net;
union tpacket_req_u req_u;
if (!sk)
return 0;
net = sock_net(sk);
po = pkt_sk(sk);
mutex_lock(&net->packet.sklist_lock);
sk_del_node_init_rcu(sk);
mutex_unlock(&net->packet.sklist_lock);
preempt_disable();
sock_prot_inuse_add(net, sk->sk_prot, -1);
preempt_enable();
spin_lock(&po->bind_lock);
unregister_prot_hook(sk, false);
packet_cached_dev_reset(po);
if (po->prot_hook.dev) {
dev_put(po->prot_hook.dev);
po->prot_hook.dev = NULL;
}
spin_unlock(&po->bind_lock);
packet_flush_mclist(sk);
if (po->rx_ring.pg_vec) {
memset(&req_u, 0, sizeof(req_u));
packet_set_ring(sk, &req_u, 1, 0);
}
if (po->tx_ring.pg_vec) {
memset(&req_u, 0, sizeof(req_u));
packet_set_ring(sk, &req_u, 1, 1);
}
f = fanout_release(sk);
synchronize_net();
if (f) {
kfree(po->rollover);
fanout_release_data(f);
kfree(f);
}
/*
* Now the socket is dead. No more input will appear.
*/
sock_orphan(sk);
sock->sk = NULL;
/* Purge queues */
skb_queue_purge(&sk->sk_receive_queue);
packet_free_pending(po);
sk_refcnt_debug_release(sk);
sock_put(sk);
return 0;
}
/*
* Attach a packet hook.
*/
static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
__be16 proto)
{
struct packet_sock *po = pkt_sk(sk);
struct net_device *dev_curr;
__be16 proto_curr;
bool need_rehook;
struct net_device *dev = NULL;
int ret = 0;
bool unlisted = false;
lock_sock(sk);
spin_lock(&po->bind_lock);
rcu_read_lock();
if (po->fanout) {
ret = -EINVAL;
goto out_unlock;
}
if (name) {
dev = dev_get_by_name_rcu(sock_net(sk), name);
if (!dev) {
ret = -ENODEV;
goto out_unlock;
}
} else if (ifindex) {
dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
if (!dev) {
ret = -ENODEV;
goto out_unlock;
}
}
if (dev)
dev_hold(dev);
proto_curr = po->prot_hook.type;
dev_curr = po->prot_hook.dev;
need_rehook = proto_curr != proto || dev_curr != dev;
if (need_rehook) {
if (po->running) {
rcu_read_unlock();
/* prevents packet_notifier() from calling
* register_prot_hook()
*/
po->num = 0;
__unregister_prot_hook(sk, true);
rcu_read_lock();
dev_curr = po->prot_hook.dev;
if (dev)
unlisted = !dev_get_by_index_rcu(sock_net(sk),
dev->ifindex);
}
BUG_ON(po->running);
po->num = proto;
po->prot_hook.type = proto;
if (unlikely(unlisted)) {
dev_put(dev);
po->prot_hook.dev = NULL;
po->ifindex = -1;
packet_cached_dev_reset(po);
} else {
po->prot_hook.dev = dev;
po->ifindex = dev ? dev->ifindex : 0;
packet_cached_dev_assign(po, dev);
}
}
if (dev_curr)
dev_put(dev_curr);
if (proto == 0 || !need_rehook)
goto out_unlock;
if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
register_prot_hook(sk);
} else {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
}
out_unlock:
rcu_read_unlock();
spin_unlock(&po->bind_lock);
release_sock(sk);
return ret;
}
/*
* Bind a packet socket to a device
*/
static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
int addr_len)
{
struct sock *sk = sock->sk;
char name[sizeof(uaddr->sa_data) + 1];
/*
* Check legality
*/
if (addr_len != sizeof(struct sockaddr))
return -EINVAL;
/* uaddr->sa_data comes from the userspace, it's not guaranteed to be
* zero-terminated.
*/
memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
name[sizeof(uaddr->sa_data)] = 0;
return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
}
static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
struct sock *sk = sock->sk;
/*
* Check legality
*/
if (addr_len < sizeof(struct sockaddr_ll))
return -EINVAL;
if (sll->sll_family != AF_PACKET)
return -EINVAL;
return packet_do_bind(sk, NULL, sll->sll_ifindex,
sll->sll_protocol ? : pkt_sk(sk)->num);
}
static struct proto packet_proto = {
.name = "PACKET",
.owner = THIS_MODULE,
.obj_size = sizeof(struct packet_sock),
};
/*
* Create a packet of type SOCK_PACKET.
*/
static int packet_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
struct packet_sock *po;
__be16 proto = (__force __be16)protocol; /* weird, but documented */
int err;
if (!ns_capable(net->user_ns, CAP_NET_RAW))
return -EPERM;
if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
sock->type != SOCK_PACKET)
return -ESOCKTNOSUPPORT;
sock->state = SS_UNCONNECTED;
err = -ENOBUFS;
sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
if (sk == NULL)
goto out;
sock->ops = &packet_ops;
if (sock->type == SOCK_PACKET)
sock->ops = &packet_ops_spkt;
sock_init_data(sock, sk);
po = pkt_sk(sk);
sk->sk_family = PF_PACKET;
po->num = proto;
po->xmit = dev_queue_xmit;
err = packet_alloc_pending(po);
if (err)
goto out2;
packet_cached_dev_reset(po);
sk->sk_destruct = packet_sock_destruct;
sk_refcnt_debug_inc(sk);
/*
* Attach a protocol block
*/
spin_lock_init(&po->bind_lock);
mutex_init(&po->pg_vec_lock);
po->rollover = NULL;
po->prot_hook.func = packet_rcv;
if (sock->type == SOCK_PACKET)
po->prot_hook.func = packet_rcv_spkt;
po->prot_hook.af_packet_priv = sk;
if (proto) {
po->prot_hook.type = proto;
register_prot_hook(sk);
}
mutex_lock(&net->packet.sklist_lock);
sk_add_node_rcu(sk, &net->packet.sklist);
mutex_unlock(&net->packet.sklist_lock);
preempt_disable();
sock_prot_inuse_add(net, &packet_proto, 1);
preempt_enable();
return 0;
out2:
sk_free(sk);
out:
return err;
}
/*
* Pull a packet from our receive queue and hand it to the user.
* If necessary we block.
*/
static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
int flags)
{
struct sock *sk = sock->sk;
struct sk_buff *skb;
int copied, err;
int vnet_hdr_len = 0;
unsigned int origlen = 0;
err = -EINVAL;
if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
goto out;
#if 0
/* What error should we return now? EUNATTACH? */
if (pkt_sk(sk)->ifindex < 0)
return -ENODEV;
#endif
if (flags & MSG_ERRQUEUE) {
err = sock_recv_errqueue(sk, msg, len,
SOL_PACKET, PACKET_TX_TIMESTAMP);
goto out;
}
/*
* Call the generic datagram receiver. This handles all sorts
* of horrible races and re-entrancy so we can forget about it
* in the protocol layers.
*
* Now it will return ENETDOWN, if device have just gone down,
* but then it will block.
*/
skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
/*
* An error occurred so return it. Because skb_recv_datagram()
* handles the blocking we don't see and worry about blocking
* retries.
*/
if (skb == NULL)
goto out;
if (pkt_sk(sk)->pressure)
packet_rcv_has_room(pkt_sk(sk), NULL);
if (pkt_sk(sk)->has_vnet_hdr) {
err = packet_rcv_vnet(msg, skb, &len);
if (err)
goto out_free;
vnet_hdr_len = sizeof(struct virtio_net_hdr);
}
/* You lose any data beyond the buffer you gave. If it worries
* a user program they can ask the device for its MTU
* anyway.
*/
copied = skb->len;
if (copied > len) {
copied = len;
msg->msg_flags |= MSG_TRUNC;
}
err = skb_copy_datagram_msg(skb, 0, msg, copied);
if (err)
goto out_free;
if (sock->type != SOCK_PACKET) {
struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
/* Original length was stored in sockaddr_ll fields */
origlen = PACKET_SKB_CB(skb)->sa.origlen;
sll->sll_family = AF_PACKET;
sll->sll_protocol = skb->protocol;
}
sock_recv_ts_and_drops(msg, sk, skb);
if (msg->msg_name) {
/* If the address length field is there to be filled
* in, we fill it in now.
*/
if (sock->type == SOCK_PACKET) {
__sockaddr_check_size(sizeof(struct sockaddr_pkt));
msg->msg_namelen = sizeof(struct sockaddr_pkt);
} else {
struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
msg->msg_namelen = sll->sll_halen +
offsetof(struct sockaddr_ll, sll_addr);
}
memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
msg->msg_namelen);
}
if (pkt_sk(sk)->auxdata) {
struct tpacket_auxdata aux;
aux.tp_status = TP_STATUS_USER;
if (skb->ip_summed == CHECKSUM_PARTIAL)
aux.tp_status |= TP_STATUS_CSUMNOTREADY;
else if (skb->pkt_type != PACKET_OUTGOING &&
(skb->ip_summed == CHECKSUM_COMPLETE ||
skb_csum_unnecessary(skb)))
aux.tp_status |= TP_STATUS_CSUM_VALID;
aux.tp_len = origlen;
aux.tp_snaplen = skb->len;
aux.tp_mac = 0;
aux.tp_net = skb_network_offset(skb);
if (skb_vlan_tag_present(skb)) {
aux.tp_vlan_tci = skb_vlan_tag_get(skb);
aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
} else {
aux.tp_vlan_tci = 0;
aux.tp_vlan_tpid = 0;
}
put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
}
/*
* Free or return the buffer as appropriate. Again this
* hides all the races and re-entrancy issues from us.
*/
err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
out_free:
skb_free_datagram(sk, skb);
out:
return err;
}
static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct net_device *dev;
struct sock *sk = sock->sk;
if (peer)
return -EOPNOTSUPP;
uaddr->sa_family = AF_PACKET;
memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
if (dev)
strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
rcu_read_unlock();
*uaddr_len = sizeof(*uaddr);
return 0;
}
static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct net_device *dev;
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
if (peer)
return -EOPNOTSUPP;
sll->sll_family = AF_PACKET;
sll->sll_ifindex = po->ifindex;
sll->sll_protocol = po->num;
sll->sll_pkttype = 0;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
if (dev) {
sll->sll_hatype = dev->type;
sll->sll_halen = dev->addr_len;
memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
} else {
sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
sll->sll_halen = 0;
}
rcu_read_unlock();
*uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
return 0;
}
static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
int what)
{
switch (i->type) {
case PACKET_MR_MULTICAST:
if (i->alen != dev->addr_len)
return -EINVAL;
if (what > 0)
return dev_mc_add(dev, i->addr);
else
return dev_mc_del(dev, i->addr);
break;
case PACKET_MR_PROMISC:
return dev_set_promiscuity(dev, what);
case PACKET_MR_ALLMULTI:
return dev_set_allmulti(dev, what);
case PACKET_MR_UNICAST:
if (i->alen != dev->addr_len)
return -EINVAL;
if (what > 0)
return dev_uc_add(dev, i->addr);
else
return dev_uc_del(dev, i->addr);
break;
default:
break;
}
return 0;
}
static void packet_dev_mclist_delete(struct net_device *dev,
struct packet_mclist **mlp)
{
struct packet_mclist *ml;
while ((ml = *mlp) != NULL) {
if (ml->ifindex == dev->ifindex) {
packet_dev_mc(dev, ml, -1);
*mlp = ml->next;
kfree(ml);
} else
mlp = &ml->next;
}
}
static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
{
struct packet_sock *po = pkt_sk(sk);
struct packet_mclist *ml, *i;
struct net_device *dev;
int err;
rtnl_lock();
err = -ENODEV;
dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
if (!dev)
goto done;
err = -EINVAL;
if (mreq->mr_alen > dev->addr_len)
goto done;
err = -ENOBUFS;
i = kmalloc(sizeof(*i), GFP_KERNEL);
if (i == NULL)
goto done;
err = 0;
for (ml = po->mclist; ml; ml = ml->next) {
if (ml->ifindex == mreq->mr_ifindex &&
ml->type == mreq->mr_type &&
ml->alen == mreq->mr_alen &&
memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
ml->count++;
/* Free the new element ... */
kfree(i);
goto done;
}
}
i->type = mreq->mr_type;
i->ifindex = mreq->mr_ifindex;
i->alen = mreq->mr_alen;
memcpy(i->addr, mreq->mr_address, i->alen);
memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
i->count = 1;
i->next = po->mclist;
po->mclist = i;
err = packet_dev_mc(dev, i, 1);
if (err) {
po->mclist = i->next;
kfree(i);
}
done:
rtnl_unlock();
return err;
}
static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
{
struct packet_mclist *ml, **mlp;
rtnl_lock();
for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
if (ml->ifindex == mreq->mr_ifindex &&
ml->type == mreq->mr_type &&
ml->alen == mreq->mr_alen &&
memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
if (--ml->count == 0) {
struct net_device *dev;
*mlp = ml->next;
dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
if (dev)
packet_dev_mc(dev, ml, -1);
kfree(ml);
}
break;
}
}
rtnl_unlock();
return 0;
}
static void packet_flush_mclist(struct sock *sk)
{
struct packet_sock *po = pkt_sk(sk);
struct packet_mclist *ml;
if (!po->mclist)
return;
rtnl_lock();
while ((ml = po->mclist) != NULL) {
struct net_device *dev;
po->mclist = ml->next;
dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
if (dev != NULL)
packet_dev_mc(dev, ml, -1);
kfree(ml);
}
rtnl_unlock();
}
static int
packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
int ret;
if (level != SOL_PACKET)
return -ENOPROTOOPT;
switch (optname) {
case PACKET_ADD_MEMBERSHIP:
case PACKET_DROP_MEMBERSHIP:
{
struct packet_mreq_max mreq;
int len = optlen;
memset(&mreq, 0, sizeof(mreq));
if (len < sizeof(struct packet_mreq))
return -EINVAL;
if (len > sizeof(mreq))
len = sizeof(mreq);
if (copy_from_user(&mreq, optval, len))
return -EFAULT;
if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
return -EINVAL;
if (optname == PACKET_ADD_MEMBERSHIP)
ret = packet_mc_add(sk, &mreq);
else
ret = packet_mc_drop(sk, &mreq);
return ret;
}
case PACKET_RX_RING:
case PACKET_TX_RING:
{
union tpacket_req_u req_u;
int len;
switch (po->tp_version) {
case TPACKET_V1:
case TPACKET_V2:
len = sizeof(req_u.req);
break;
case TPACKET_V3:
default:
len = sizeof(req_u.req3);
break;
}
if (optlen < len)
return -EINVAL;
if (copy_from_user(&req_u.req, optval, len))
return -EFAULT;
return packet_set_ring(sk, &req_u, 0,
optname == PACKET_TX_RING);
}
case PACKET_COPY_THRESH:
{
int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
pkt_sk(sk)->copy_thresh = val;
return 0;
}
case PACKET_VERSION:
{
int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
switch (val) {
case TPACKET_V1:
case TPACKET_V2:
case TPACKET_V3:
break;
default:
return -EINVAL;
}
lock_sock(sk);
if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
ret = -EBUSY;
} else {
po->tp_version = val;
ret = 0;
}
release_sock(sk);
return ret;
}
case PACKET_RESERVE:
{
unsigned int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
if (val > INT_MAX)
return -EINVAL;
lock_sock(sk);
if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
ret = -EBUSY;
} else {
po->tp_reserve = val;
ret = 0;
}
release_sock(sk);
return ret;
}
case PACKET_LOSS:
{
unsigned int val;
if (optlen != sizeof(val))
return -EINVAL;
if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
return -EBUSY;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->tp_loss = !!val;
return 0;
}
case PACKET_AUXDATA:
{
int val;
if (optlen < sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->auxdata = !!val;
return 0;
}
case PACKET_ORIGDEV:
{
int val;
if (optlen < sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->origdev = !!val;
return 0;
}
case PACKET_VNET_HDR:
{
int val;
if (sock->type != SOCK_RAW)
return -EINVAL;
if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
return -EBUSY;
if (optlen < sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->has_vnet_hdr = !!val;
return 0;
}
case PACKET_TIMESTAMP:
{
int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->tp_tstamp = val;
return 0;
}
case PACKET_FANOUT:
{
int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
return fanout_add(sk, val & 0xffff, val >> 16);
}
case PACKET_FANOUT_DATA:
{
if (!po->fanout)
return -EINVAL;
return fanout_set_data(po, optval, optlen);
}
case PACKET_TX_HAS_OFF:
{
unsigned int val;
if (optlen != sizeof(val))
return -EINVAL;
if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
return -EBUSY;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->tp_tx_has_off = !!val;
return 0;
}
case PACKET_QDISC_BYPASS:
{
int val;
if (optlen != sizeof(val))
return -EINVAL;
if (copy_from_user(&val, optval, sizeof(val)))
return -EFAULT;
po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
return 0;
}
default:
return -ENOPROTOOPT;
}
}
static int packet_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
int len;
int val, lv = sizeof(val);
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
void *data = &val;
union tpacket_stats_u st;
struct tpacket_rollover_stats rstats;
if (level != SOL_PACKET)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case PACKET_STATISTICS:
spin_lock_bh(&sk->sk_receive_queue.lock);
memcpy(&st, &po->stats, sizeof(st));
memset(&po->stats, 0, sizeof(po->stats));
spin_unlock_bh(&sk->sk_receive_queue.lock);
if (po->tp_version == TPACKET_V3) {
lv = sizeof(struct tpacket_stats_v3);
st.stats3.tp_packets += st.stats3.tp_drops;
data = &st.stats3;
} else {
lv = sizeof(struct tpacket_stats);
st.stats1.tp_packets += st.stats1.tp_drops;
data = &st.stats1;
}
break;
case PACKET_AUXDATA:
val = po->auxdata;
break;
case PACKET_ORIGDEV:
val = po->origdev;
break;
case PACKET_VNET_HDR:
val = po->has_vnet_hdr;
break;
case PACKET_VERSION:
val = po->tp_version;
break;
case PACKET_HDRLEN:
if (len > sizeof(int))
len = sizeof(int);
if (len < sizeof(int))
return -EINVAL;
if (copy_from_user(&val, optval, len))
return -EFAULT;
switch (val) {
case TPACKET_V1:
val = sizeof(struct tpacket_hdr);
break;
case TPACKET_V2:
val = sizeof(struct tpacket2_hdr);
break;
case TPACKET_V3:
val = sizeof(struct tpacket3_hdr);
break;
default:
return -EINVAL;
}
break;
case PACKET_RESERVE:
val = po->tp_reserve;
break;
case PACKET_LOSS:
val = po->tp_loss;
break;
case PACKET_TIMESTAMP:
val = po->tp_tstamp;
break;
case PACKET_FANOUT:
val = (po->fanout ?
((u32)po->fanout->id |
((u32)po->fanout->type << 16) |
((u32)po->fanout->flags << 24)) :
0);
break;
case PACKET_ROLLOVER_STATS:
if (!po->rollover)
return -EINVAL;
rstats.tp_all = atomic_long_read(&po->rollover->num);
rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
data = &rstats;
lv = sizeof(rstats);
break;
case PACKET_TX_HAS_OFF:
val = po->tp_tx_has_off;
break;
case PACKET_QDISC_BYPASS:
val = packet_use_direct_xmit(po);
break;
default:
return -ENOPROTOOPT;
}
if (len > lv)
len = lv;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, data, len))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct packet_sock *po = pkt_sk(sock->sk);
if (level != SOL_PACKET)
return -ENOPROTOOPT;
if (optname == PACKET_FANOUT_DATA &&
po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
optval = (char __user *)get_compat_bpf_fprog(optval);
if (!optval)
return -EFAULT;
optlen = sizeof(struct sock_fprog);
}
return packet_setsockopt(sock, level, optname, optval, optlen);
}
#endif
static int packet_notifier(struct notifier_block *this,
unsigned long msg, void *ptr)
{
struct sock *sk;
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
rcu_read_lock();
sk_for_each_rcu(sk, &net->packet.sklist) {
struct packet_sock *po = pkt_sk(sk);
switch (msg) {
case NETDEV_UNREGISTER:
if (po->mclist)
packet_dev_mclist_delete(dev, &po->mclist);
/* fallthrough */
case NETDEV_DOWN:
if (dev->ifindex == po->ifindex) {
spin_lock(&po->bind_lock);
if (po->running) {
__unregister_prot_hook(sk, false);
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
}
if (msg == NETDEV_UNREGISTER) {
packet_cached_dev_reset(po);
po->ifindex = -1;
if (po->prot_hook.dev)
dev_put(po->prot_hook.dev);
po->prot_hook.dev = NULL;
}
spin_unlock(&po->bind_lock);
}
break;
case NETDEV_UP:
if (dev->ifindex == po->ifindex) {
spin_lock(&po->bind_lock);
if (po->num)
register_prot_hook(sk);
spin_unlock(&po->bind_lock);
}
break;
}
}
rcu_read_unlock();
return NOTIFY_DONE;
}
static int packet_ioctl(struct socket *sock, unsigned int cmd,
unsigned long arg)
{
struct sock *sk = sock->sk;
switch (cmd) {
case SIOCOUTQ:
{
int amount = sk_wmem_alloc_get(sk);
return put_user(amount, (int __user *)arg);
}
case SIOCINQ:
{
struct sk_buff *skb;
int amount = 0;
spin_lock_bh(&sk->sk_receive_queue.lock);
skb = skb_peek(&sk->sk_receive_queue);
if (skb)
amount = skb->len;
spin_unlock_bh(&sk->sk_receive_queue.lock);
return put_user(amount, (int __user *)arg);
}
case SIOCGSTAMP:
return sock_get_timestamp(sk, (struct timeval __user *)arg);
case SIOCGSTAMPNS:
return sock_get_timestampns(sk, (struct timespec __user *)arg);
#ifdef CONFIG_INET
case SIOCADDRT:
case SIOCDELRT:
case SIOCDARP:
case SIOCGARP:
case SIOCSARP:
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCSIFFLAGS:
return inet_dgram_ops.ioctl(sock, cmd, arg);
#endif
default:
return -ENOIOCTLCMD;
}
return 0;
}
static __poll_t packet_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
__poll_t mask = datagram_poll(file, sock, wait);
spin_lock_bh(&sk->sk_receive_queue.lock);
if (po->rx_ring.pg_vec) {
if (!packet_previous_rx_frame(po, &po->rx_ring,
TP_STATUS_KERNEL))
mask |= EPOLLIN | EPOLLRDNORM;
}
if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
po->pressure = 0;
spin_unlock_bh(&sk->sk_receive_queue.lock);
spin_lock_bh(&sk->sk_write_queue.lock);
if (po->tx_ring.pg_vec) {
if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
mask |= EPOLLOUT | EPOLLWRNORM;
}
spin_unlock_bh(&sk->sk_write_queue.lock);
return mask;
}
/* Dirty? Well, I still did not learn better way to account
* for user mmaps.
*/
static void packet_mm_open(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct socket *sock = file->private_data;
struct sock *sk = sock->sk;
if (sk)
atomic_inc(&pkt_sk(sk)->mapped);
}
static void packet_mm_close(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct socket *sock = file->private_data;
struct sock *sk = sock->sk;
if (sk)
atomic_dec(&pkt_sk(sk)->mapped);
}
static const struct vm_operations_struct packet_mmap_ops = {
.open = packet_mm_open,
.close = packet_mm_close,
};
static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
unsigned int len)
{
int i;
for (i = 0; i < len; i++) {
if (likely(pg_vec[i].buffer)) {
if (is_vmalloc_addr(pg_vec[i].buffer))
vfree(pg_vec[i].buffer);
else
free_pages((unsigned long)pg_vec[i].buffer,
order);
pg_vec[i].buffer = NULL;
}
}
kfree(pg_vec);
}
static char *alloc_one_pg_vec_page(unsigned long order)
{
char *buffer;
gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
__GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
buffer = (char *) __get_free_pages(gfp_flags, order);
if (buffer)
return buffer;
/* __get_free_pages failed, fall back to vmalloc */
buffer = vzalloc((1 << order) * PAGE_SIZE);
if (buffer)
return buffer;
/* vmalloc failed, lets dig into swap here */
gfp_flags &= ~__GFP_NORETRY;
buffer = (char *) __get_free_pages(gfp_flags, order);
if (buffer)
return buffer;
/* complete and utter failure */
return NULL;
}
static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
{
unsigned int block_nr = req->tp_block_nr;
struct pgv *pg_vec;
int i;
pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
if (unlikely(!pg_vec))
goto out;
for (i = 0; i < block_nr; i++) {
pg_vec[i].buffer = alloc_one_pg_vec_page(order);
if (unlikely(!pg_vec[i].buffer))
goto out_free_pgvec;
}
out:
return pg_vec;
out_free_pgvec:
free_pg_vec(pg_vec, order, block_nr);
pg_vec = NULL;
goto out;
}
static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
int closing, int tx_ring)
{
struct pgv *pg_vec = NULL;
struct packet_sock *po = pkt_sk(sk);
int was_running, order = 0;
struct packet_ring_buffer *rb;
struct sk_buff_head *rb_queue;
__be16 num;
int err = -EINVAL;
/* Added to avoid minimal code churn */
struct tpacket_req *req = &req_u->req;
lock_sock(sk);
rb = tx_ring ? &po->tx_ring : &po->rx_ring;
rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
err = -EBUSY;
if (!closing) {
if (atomic_read(&po->mapped))
goto out;
if (packet_read_pending(rb))
goto out;
}
if (req->tp_block_nr) {
/* Sanity tests and some calculations */
err = -EBUSY;
if (unlikely(rb->pg_vec))
goto out;
switch (po->tp_version) {
case TPACKET_V1:
po->tp_hdrlen = TPACKET_HDRLEN;
break;
case TPACKET_V2:
po->tp_hdrlen = TPACKET2_HDRLEN;
break;
case TPACKET_V3:
po->tp_hdrlen = TPACKET3_HDRLEN;
break;
}
err = -EINVAL;
if (unlikely((int)req->tp_block_size <= 0))
goto out;
if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
goto out;
if (po->tp_version >= TPACKET_V3 &&
req->tp_block_size <=
BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
goto out;
if (unlikely(req->tp_frame_size < po->tp_hdrlen +
po->tp_reserve))
goto out;
if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
goto out;
rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
if (unlikely(rb->frames_per_block == 0))
goto out;
if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
goto out;
if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
req->tp_frame_nr))
goto out;
err = -ENOMEM;
order = get_order(req->tp_block_size);
pg_vec = alloc_pg_vec(req, order);
if (unlikely(!pg_vec))
goto out;
switch (po->tp_version) {
case TPACKET_V3:
/* Block transmit is not supported yet */
if (!tx_ring) {
init_prb_bdqc(po, rb, pg_vec, req_u);
} else {
struct tpacket_req3 *req3 = &req_u->req3;
if (req3->tp_retire_blk_tov ||
req3->tp_sizeof_priv ||
req3->tp_feature_req_word) {
err = -EINVAL;
goto out;
}
}
break;
default:
break;
}
}
/* Done */
else {
err = -EINVAL;
if (unlikely(req->tp_frame_nr))
goto out;
}
/* Detach socket from network */
spin_lock(&po->bind_lock);
was_running = po->running;
num = po->num;
if (was_running) {
po->num = 0;
__unregister_prot_hook(sk, false);
}
spin_unlock(&po->bind_lock);
synchronize_net();
err = -EBUSY;
mutex_lock(&po->pg_vec_lock);
if (closing || atomic_read(&po->mapped) == 0) {
err = 0;
spin_lock_bh(&rb_queue->lock);
swap(rb->pg_vec, pg_vec);
rb->frame_max = (req->tp_frame_nr - 1);
rb->head = 0;
rb->frame_size = req->tp_frame_size;
spin_unlock_bh(&rb_queue->lock);
swap(rb->pg_vec_order, order);
swap(rb->pg_vec_len, req->tp_block_nr);
rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
po->prot_hook.func = (po->rx_ring.pg_vec) ?
tpacket_rcv : packet_rcv;
skb_queue_purge(rb_queue);
if (atomic_read(&po->mapped))
pr_err("packet_mmap: vma is busy: %d\n",
atomic_read(&po->mapped));
}
mutex_unlock(&po->pg_vec_lock);
spin_lock(&po->bind_lock);
if (was_running) {
po->num = num;
register_prot_hook(sk);
}
spin_unlock(&po->bind_lock);
if (pg_vec && (po->tp_version > TPACKET_V2)) {
/* Because we don't support block-based V3 on tx-ring */
if (!tx_ring)
prb_shutdown_retire_blk_timer(po, rb_queue);
}
if (pg_vec)
free_pg_vec(pg_vec, order, req->tp_block_nr);
out:
release_sock(sk);
return err;
}
static int packet_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
struct sock *sk = sock->sk;
struct packet_sock *po = pkt_sk(sk);
unsigned long size, expected_size;
struct packet_ring_buffer *rb;
unsigned long start;
int err = -EINVAL;
int i;
if (vma->vm_pgoff)
return -EINVAL;
mutex_lock(&po->pg_vec_lock);
expected_size = 0;
for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
if (rb->pg_vec) {
expected_size += rb->pg_vec_len
* rb->pg_vec_pages
* PAGE_SIZE;
}
}
if (expected_size == 0)
goto out;
size = vma->vm_end - vma->vm_start;
if (size != expected_size)
goto out;
start = vma->vm_start;
for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
if (rb->pg_vec == NULL)
continue;
for (i = 0; i < rb->pg_vec_len; i++) {
struct page *page;
void *kaddr = rb->pg_vec[i].buffer;
int pg_num;
for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
page = pgv_to_page(kaddr);
err = vm_insert_page(vma, start, page);
if (unlikely(err))
goto out;
start += PAGE_SIZE;
kaddr += PAGE_SIZE;
}
}
}
atomic_inc(&po->mapped);
vma->vm_ops = &packet_mmap_ops;
err = 0;
out:
mutex_unlock(&po->pg_vec_lock);
return err;
}
static const struct proto_ops packet_ops_spkt = {
.family = PF_PACKET,
.owner = THIS_MODULE,
.release = packet_release,
.bind = packet_bind_spkt,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = packet_getname_spkt,
.poll = datagram_poll,
.ioctl = packet_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = sock_no_setsockopt,
.getsockopt = sock_no_getsockopt,
.sendmsg = packet_sendmsg_spkt,
.recvmsg = packet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static const struct proto_ops packet_ops = {
.family = PF_PACKET,
.owner = THIS_MODULE,
.release = packet_release,
.bind = packet_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = packet_getname,
.poll = packet_poll,
.ioctl = packet_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = packet_setsockopt,
.getsockopt = packet_getsockopt,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_packet_setsockopt,
#endif
.sendmsg = packet_sendmsg,
.recvmsg = packet_recvmsg,
.mmap = packet_mmap,
.sendpage = sock_no_sendpage,
};
static const struct net_proto_family packet_family_ops = {
.family = PF_PACKET,
.create = packet_create,
.owner = THIS_MODULE,
};
static struct notifier_block packet_netdev_notifier = {
.notifier_call = packet_notifier,
};
#ifdef CONFIG_PROC_FS
static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(RCU)
{
struct net *net = seq_file_net(seq);
rcu_read_lock();
return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
}
static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct net *net = seq_file_net(seq);
return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
}
static void packet_seq_stop(struct seq_file *seq, void *v)
__releases(RCU)
{
rcu_read_unlock();
}
static int packet_seq_show(struct seq_file *seq, void *v)
{
if (v == SEQ_START_TOKEN)
seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
else {
struct sock *s = sk_entry(v);
const struct packet_sock *po = pkt_sk(s);
seq_printf(seq,
"%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
s,
refcount_read(&s->sk_refcnt),
s->sk_type,
ntohs(po->num),
po->ifindex,
po->running,
atomic_read(&s->sk_rmem_alloc),
from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
sock_i_ino(s));
}
return 0;
}
static const struct seq_operations packet_seq_ops = {
.start = packet_seq_start,
.next = packet_seq_next,
.stop = packet_seq_stop,
.show = packet_seq_show,
};
static int packet_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &packet_seq_ops,
sizeof(struct seq_net_private));
}
static const struct file_operations packet_seq_fops = {
.open = packet_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
#endif
static int __net_init packet_net_init(struct net *net)
{
mutex_init(&net->packet.sklist_lock);
INIT_HLIST_HEAD(&net->packet.sklist);
if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
return -ENOMEM;
return 0;
}
static void __net_exit packet_net_exit(struct net *net)
{
remove_proc_entry("packet", net->proc_net);
WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
}
static struct pernet_operations packet_net_ops = {
.init = packet_net_init,
.exit = packet_net_exit,
};
static void __exit packet_exit(void)
{
unregister_netdevice_notifier(&packet_netdev_notifier);
unregister_pernet_subsys(&packet_net_ops);
sock_unregister(PF_PACKET);
proto_unregister(&packet_proto);
}
static int __init packet_init(void)
{
int rc = proto_register(&packet_proto, 0);
if (rc != 0)
goto out;
sock_register(&packet_family_ops);
register_pernet_subsys(&packet_net_ops);
register_netdevice_notifier(&packet_netdev_notifier);
out:
return rc;
}
module_init(packet_init);
module_exit(packet_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_PACKET);