Go to file
Linus Walleij 2744e8afb3 drivers: create a pin control subsystem
This creates a subsystem for handling of pin control devices.
These are devices that control different aspects of package
pins.

Currently it handles pinmuxing, i.e. assigning electronic
functions to groups of pins on primarily PGA and BGA type of
chip packages which are common in embedded systems.

The plan is to also handle other I/O pin control aspects
such as biasing, driving, input properties such as
schmitt-triggering, load capacitance etc within this
subsystem, to remove a lot of ARM arch code as well as
feature-creepy GPIO drivers which are implementing the same
thing over and over again.

This is being done to depopulate the arch/arm/* directory
of such custom drivers and try to abstract the infrastructure
they all need. See the Documentation/pinctrl.txt file that is
part of this patch for more details.

ChangeLog v1->v2:

- Various minor fixes from Joe's and Stephens review comments
- Added a pinmux_config() that can invoke custom configuration
  with arbitrary data passed in or out to/from the pinmux driver

ChangeLog v2->v3:

- Renamed subsystem folder to "pinctrl" since we will likely
  want to keep other pin control such as biasing in this
  subsystem too, so let us keep to something generic even though
  we're mainly doing pinmux now.
- As a consequence, register pins as an abstract entity separate
  from the pinmux. The muxing functions will claim pins out of the
  pin pool and make sure they do not collide. Pins can now be
  named by the pinctrl core.
- Converted the pin lookup from a static array into a radix tree,
  I agreed with Grant Likely to try to avoid any static allocation
  (which is crap for device tree stuff) so I just rewrote this
  to be dynamic, just like irq number descriptors. The
  platform-wide definition of number of pins goes away - this is
  now just the sum total of the pins registered to the subsystem.
- Make sure mappings with only a function name and no device
  works properly.

ChangeLog v3->v4:

- Define a number space per controller instead of globally,
  Stephen and Grant requested the same thing so now maps need to
  define target controller, and the radix tree of pin descriptors
  is a property on each pin controller device.
- Add a compulsory pinctrl device entry to the pinctrl mapping
  table. This must match the pinctrl device, like "pinctrl.0"
- Split the file core.c in two: core.c and pinmux.c where the
  latter carry all pinmux stuff, the core is for generic pin
  control, and use local headers to access functionality between
  files. It is now possible to implement a "blank" pin controller
  without pinmux capabilities. This split will make new additions
  like pindrive.c, pinbias.c etc possible for combined drivers
  and chunks of functionality which is a GoodThing(TM).
- Rewrite the interaction with the GPIO subsystem - the pin
  controller descriptor now handles this by defining an offset
  into the GPIO numberspace for its handled pin range. This is
  used to look up the apropriate pin controller for a GPIO pin.
  Then that specific GPIO range is matched 1-1 for the target
  controller instance.
- Fixed a number of review comments from Joe Perches.
- Broke out a header file pinctrl.h for the core pin handling
  stuff that will be reused by other stuff than pinmux.
- Fixed some erroneous EXPORT() stuff.
- Remove mispatched U300 Kconfig and Makefile entries
- Fixed a number of review comments from Stephen Warren, not all
  of them - still WIP. But I think the new mapping that will
  specify which function goes to which pin mux controller address
  50% of your concerns (else beat me up).

ChangeLog v4->v5:

- Defined a "position" for each function, so the pin controller now
  tracks a function in a certain position, and the pinmux maps define
  what position you want the function in. (Feedback from Stephen
  Warren and Sascha Hauer).
- Since we now need to request a combined function+position from
  the machine mapping table that connect mux settings to drivers,
  it was extended with a position field and a name field. The
  name field is now used if you e.g. need to switch between two
  mux map settings at runtime.
- Switched from a class device to using struct bus_type for this
  subsystem. Verified sysfs functionality: seems to work fine.
  (Feedback from Arnd Bergmann and Greg Kroah-Hartman)
- Define a per pincontroller list of GPIO ranges from the GPIO
  pin space that can be handled by the pin controller. These can
  be added one by one at runtime. (Feedback from Barry Song)
- Expanded documentation of regulator_[get|enable|disable|put]
  semantics.
- Fixed a number of review comments from Barry Song. (Thanks!)

ChangeLog v5->v6:

- Create an abstract pin group concept that can sort pins into
  named and enumerated groups no matter what the use of these
  groups may be, one possible usecase is a group of pins being
  muxed in or so. The intention is however to also use these
  groups for other pin control activities.
- Make it compulsory for pinmux functions to associate with
  at least one group, so the abstract pin group concept is used
  to define the groups of pins affected by a pinmux function.
  The pinmux driver interface has been altered so as to enforce
  a function to list applicable groups per function.
- Provide an optional .group entry in the pinmux machine map
  so the map can select beteween different available groups
  to be used with a certain function.
- Consequent changes all over the place so that e.g. debugfs
  present reasonable information about the world.
- Drop the per-pin mux (*config) function in the pinmux_ops
  struct - I was afraid that this would start to be used for
  things totally unrelated to muxing, we can introduce that to
  the generic struct pinctrl_ops if needed. I want to keep
  muxing orthogonal to other pin control subjects and not mix
  these things up.

ChangeLog v6->v7:

- Make it possible to have several map entries matching the
  same device, pin controller and function, but using
  a different group, and alter the semantics so that
  pinmux_get() will pick all matching map entries, and
  store the associated groups in a list. The list will
  then be iterated over at pinmux_enable()/pinmux_disable()
  and corresponding driver functions called for each
  defined group. Notice that you're only allowed to map
  multiple *groups* to the same
  { device, pin controller, function } triplet, attempts
  to map the same device to multiple pin controllers will
  for example fail. This is hopefully the crucial feature
  requested by Stephen Warren.
- Add a pinmux hogging field to the pinmux mapping entries,
  and enable the pinmux core to hog pinmux map entries.
  This currently only works for pinmuxes without assigned
  devices as it looks now, but with device trees we can
  look up the corresponding struct device * entries when
  we register the pinmux driver, and have it hog each
  pinmux map in turn, for a simple approach to
  non-dynamic pin muxing. This addresses an issue from
  Grant Likely that the machine should take care of as
  much of the pinmux setup as possible, not the devices.
  By supplying a list of hogs, it can now instruct the
  core to take care of any static mappings.
- Switch pinmux group retrieveal function to grab an
  array of strings representing the groups rather than an
  array of unsigned and rewrite accordingly.
- Alter debugfs to show the grouplist handled by each
  pinmux. Also add a list of hogs.
- Dynamically allocate a struct pinmux at pinmux_get() and
  free it at pinmux_put(), then add these to the global
  list of pinmuxes active as we go along.
- Go over the list of pinmux maps at pinmux_get() time
  and repeatedly apply matches.
- Retrieve applicable groups per function from the driver
  as a string array rather than a unsigned array, then
  lookup the enumerators.
- Make the device to pinmux map a singleton - only allow the
  mapping table to be registered once and even tag the
  registration function with __init so it surely won't be
  abused.
- Create a separate debugfs file to view the pinmux map at
  runtime.
- Introduce a spin lock to the pin descriptor struct, lock it
  when modifying pin status entries. Reported by Stijn Devriendt.
- Fix up the documentation after review from Stephen Warren.
- Let the GPIO ranges give names as const char * instead of some
  fixed-length string.
- add a function to unregister GPIO ranges to mirror the
  registration function.
- Privatized the struct pinctrl_device and removed it from the
  <linux/pinctrl/pinctrl.h> API, the drivers do not need to know
  the members of this struct. It is now in the local header
  "core.h".
- Rename the concept of "anonymous" mux maps to "system" muxes
  and add convenience macros and documentation.

ChangeLog v7->v8:

- Delete the leftover pinmux_config() function from the
 <linux/pinctrl/pinmux.h> header.
- Fix a race condition found by Stijn Devriendt in pin_request()

ChangeLog v8->v9:

- Drop the bus_type and the sysfs attributes and all, we're not on
  the clear about how this should be used for e.g. userspace
  interfaces so let us save this for the future.
- Use the right name in MAINTAINERS, PIN CONTROL rather than
  PINMUX
- Don't kfree() the device state holder, let the .remove() callback
  handle this.
- Fix up numerous kerneldoc headers to have one line for the function
  description and more verbose documentation below the parameters

ChangeLog v9->v10:
- pinctrl: EXPORT_SYMBOL needs export.h, folded in a patch
  from Steven Rothwell
- fix pinctrl_register error handling, folded in a patch from
  Axel Lin
- Various fixes to documentation text so that it's consistent.
- Removed pointless comment from drivers/Kconfig
- Removed dependency on SYSFS since we removed the bus in
  v9.
- Renamed hopelessly abbreviated pctldev_* functions to the
  more verbose pinctrl_dev_*
- Drop mutex properly when looking up GPIO ranges
- Return NULL instead of ERR_PTR() errors on registration of
  pin controllers, using cast pointers is fragile. We can
  live without the detailed error codes for sure.

Cc: Stijn Devriendt <highguy@gmail.com>
Cc: Joe Perches <joe@perches.com>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Barry Song <21cnbao@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2011-10-13 12:49:17 +02:00
arch Merge branch 'samsung-fixes-3' of git://github.com/kgene/linux-samsung 2011-09-26 16:29:26 -07:00
block blk-cgroup: be able to remove the record of unplugged device 2011-09-21 10:22:10 +02:00
crypto crypto: Move md5_transform to lib/md5.c 2011-08-06 18:32:45 -07:00
Documentation drivers: create a pin control subsystem 2011-10-13 12:49:17 +02:00
drivers drivers: create a pin control subsystem 2011-10-13 12:49:17 +02:00
firmware isci: Added support for C0 to SCU Driver 2011-07-03 04:04:50 -07:00
fs vfs: remove LOOKUP_NO_AUTOMOUNT flag 2011-09-27 08:12:33 -07:00
include drivers: create a pin control subsystem 2011-10-13 12:49:17 +02:00
init init: carefully handle loglevel option on kernel cmdline. 2011-09-21 13:18:52 -07:00
ipc Do 'shm_init_ns()' in an early pure_initcall 2011-08-04 19:35:59 -10:00
kernel ptrace: PTRACE_LISTEN forgets to unlock ->siglock 2011-09-25 11:02:00 -07:00
lib XZ: Fix incorrect XZ_BUF_ERROR 2011-09-21 13:39:59 -07:00
mm Merge branch 'for-linus' of git://git.kernel.dk/linux-block 2011-09-21 13:20:21 -07:00
net xfrm: Perform a replay check after return from async codepaths 2011-09-21 15:20:57 -04:00
samples perf: Add context field to perf_event 2011-07-01 11:06:38 +02:00
scripts checkpatch: add missing WARN argument for min_t and max_t tests 2011-08-25 16:25:33 -07:00
security TOMOYO: Fix incomplete read of /sys/kernel/security/tomoyo/profile 2011-08-08 13:13:45 +10:00
sound Merge branch 'fix/asoc' into for-linus 2011-09-27 18:21:41 +02:00
tools perf python: Add missing perf_event__parse_sample 'swapped' parm 2011-09-23 15:38:53 -03:00
usr initramfs: Use KBUILD_BUILD_TIMESTAMP for generated entries 2011-04-18 14:27:52 +02:00
virt/kvm KVM: IOMMU: Disable device assignment without interrupt remapping 2011-07-24 11:50:42 +03:00
.gitignore gitignore: ignore debian build directory 2011-07-01 15:21:24 +02:00
.mailmap Update my e-mail address 2011-07-07 15:18:01 +02:00
COPYING [PATCH] update FSF address in COPYING 2005-09-10 10:06:29 -07:00
CREDITS cpupowerutils: use COPYING, CREDITS from top-level directory 2011-07-29 18:35:36 +02:00
Kbuild Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6 2010-10-28 15:13:55 -07:00
Kconfig kbuild: migrate all arch to the kconfig mainmenu upgrade 2010-09-19 22:54:11 -04:00
MAINTAINERS drivers: create a pin control subsystem 2011-10-13 12:49:17 +02:00
Makefile Linux 3.1-rc8 2011-09-27 15:48:34 -07:00
README Update version number references in README 2011-07-01 13:25:34 -07:00
REPORTING-BUGS REPORTING-BUGS: add get_maintainer.pl blurb 2009-08-18 16:31:13 -07:00

	Linux kernel release 3.x <http://kernel.org/>

These are the release notes for Linux version 3.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

		gzip -cd linux-3.X.tar.gz | tar xvf -

   or
		bzip2 -dc linux-3.X.tar.bz2 | tar xvf -


   Replace "XX" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 3.x releases by patching.  Patches are
   distributed in the traditional gzip and the newer bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-3.x) and execute:

		gzip -cd ../patch-3.x.gz | patch -p1

   or
		bzip2 -dc ../patch-3.x.bz2 | patch -p1

   (repeat xx for all versions bigger than the version of your current
   source tree, _in_order_) and you should be ok.  You may want to remove
   the backup files (xxx~ or xxx.orig), and make sure that there are no
   failed patches (xxx# or xxx.rej). If there are, either you or me has
   made a mistake.

   Unlike patches for the 3.x kernels, patches for the 3.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 3.x kernel.  Please read
   Documentation/applying-patches.txt for more information.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

		linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - If you are upgrading between releases using the stable series patches
   (for example, patch-3.x.y), note that these "dot-releases" are
   not incremental and must be applied to the 3.x base tree. For
   example, if your base kernel is 3.0 and you want to apply the
   3.0.3 patch, you do not and indeed must not first apply the
   3.0.1 and 3.0.2 patches. Similarly, if you are running kernel
   version 3.0.2 and want to jump to 3.0.3, you must first
   reverse the 3.0.2 patch (that is, patch -R) _before_ applying
   the 3.0.3 patch.
   You can read more on this in Documentation/applying-patches.txt

 - Make sure you have no stale .o files and dependencies lying around:

		cd linux
		make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 3.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:
     kernel source code:	/usr/src/linux-3.N
     build directory:		/home/name/build/kernel

   To configure and build the kernel use:
   cd /usr/src/linux-3.N
   make O=/home/name/build/kernel menuconfig
   make O=/home/name/build/kernel
   sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternate configuration commands are:
	"make config"      Plain text interface.
	"make menuconfig"  Text based color menus, radiolists & dialogs.
	"make nconfig"     Enhanced text based color menus.
	"make xconfig"     X windows (Qt) based configuration tool.
	"make gconfig"     X windows (Gtk) based configuration tool.
	"make oldconfig"   Default all questions based on the contents of
			   your existing ./.config file and asking about
			   new config symbols.
	"make silentoldconfig"
			   Like above, but avoids cluttering the screen
			   with questions already answered.
			   Additionally updates the dependencies.
	"make defconfig"   Create a ./.config file by using the default
			   symbol values from either arch/$ARCH/defconfig
			   or arch/$ARCH/configs/${PLATFORM}_defconfig,
			   depending on the architecture.
	"make ${PLATFORM}_defconfig"
			  Create a ./.config file by using the default
			  symbol values from
			  arch/$ARCH/configs/${PLATFORM}_defconfig.
			  Use "make help" to get a list of all available
			  platforms of your architecture.
	"make allyesconfig"
			   Create a ./.config file by setting symbol
			   values to 'y' as much as possible.
	"make allmodconfig"
			   Create a ./.config file by setting symbol
			   values to 'm' as much as possible.
	"make allnoconfig" Create a ./.config file by setting symbol
			   values to 'n' as much as possible.
	"make randconfig"  Create a ./.config file by setting symbol
			   values to random values.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

	NOTES on "make config":
	- having unnecessary drivers will make the kernel bigger, and can
	  under some circumstances lead to problems: probing for a
	  nonexistent controller card may confuse your other controllers
	- compiling the kernel with "Processor type" set higher than 386
	  will result in a kernel that does NOT work on a 386.  The
	  kernel will detect this on bootup, and give up.
	- A kernel with math-emulation compiled in will still use the
	  coprocessor if one is present: the math emulation will just
	  never get used in that case.  The kernel will be slightly larger,
	  but will work on different machines regardless of whether they
	  have a math coprocessor or not. 
	- the "kernel hacking" configuration details usually result in a
	  bigger or slower kernel (or both), and can even make the kernel
	  less stable by configuring some routines to actively try to
	  break bad code to find kernel problems (kmalloc()).  Thus you
	  should probably answer 'n' to the questions for
          "development", "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

	make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".
   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

	unable to handle kernel paging request at address C0000010
	Oops: 0002
	EIP:   0010:XXXXXXXX
	eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
	esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
	ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
	Pid: xx, process nr: xx
	xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternately you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

		nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.