mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-16 07:24:39 +08:00
a0df0a2680
The raid56 changes in 6.2 reworked the IO path to RMW, commit
93723095b5
("btrfs: raid56: switch write path to rmw_rbio()") in
particular removed the last use of the work member so it can be removed
as well. This was found by tool https://github.com/jirislaby/clang-struct .
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2782 lines
74 KiB
C
2782 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2012 Fusion-io All rights reserved.
|
|
* Copyright (C) 2012 Intel Corp. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/raid/pq.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/raid/xor.h>
|
|
#include <linux/mm.h>
|
|
#include "messages.h"
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "async-thread.h"
|
|
#include "file-item.h"
|
|
#include "btrfs_inode.h"
|
|
|
|
/* set when additional merges to this rbio are not allowed */
|
|
#define RBIO_RMW_LOCKED_BIT 1
|
|
|
|
/*
|
|
* set when this rbio is sitting in the hash, but it is just a cache
|
|
* of past RMW
|
|
*/
|
|
#define RBIO_CACHE_BIT 2
|
|
|
|
/*
|
|
* set when it is safe to trust the stripe_pages for caching
|
|
*/
|
|
#define RBIO_CACHE_READY_BIT 3
|
|
|
|
#define RBIO_CACHE_SIZE 1024
|
|
|
|
#define BTRFS_STRIPE_HASH_TABLE_BITS 11
|
|
|
|
/* Used by the raid56 code to lock stripes for read/modify/write */
|
|
struct btrfs_stripe_hash {
|
|
struct list_head hash_list;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
/* Used by the raid56 code to lock stripes for read/modify/write */
|
|
struct btrfs_stripe_hash_table {
|
|
struct list_head stripe_cache;
|
|
spinlock_t cache_lock;
|
|
int cache_size;
|
|
struct btrfs_stripe_hash table[];
|
|
};
|
|
|
|
/*
|
|
* A bvec like structure to present a sector inside a page.
|
|
*
|
|
* Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
|
|
*/
|
|
struct sector_ptr {
|
|
struct page *page;
|
|
unsigned int pgoff:24;
|
|
unsigned int uptodate:8;
|
|
};
|
|
|
|
static void rmw_rbio_work(struct work_struct *work);
|
|
static void rmw_rbio_work_locked(struct work_struct *work);
|
|
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
|
|
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
|
|
|
|
static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
|
|
static void scrub_rbio_work_locked(struct work_struct *work);
|
|
|
|
static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
|
|
{
|
|
bitmap_free(rbio->error_bitmap);
|
|
kfree(rbio->stripe_pages);
|
|
kfree(rbio->bio_sectors);
|
|
kfree(rbio->stripe_sectors);
|
|
kfree(rbio->finish_pointers);
|
|
}
|
|
|
|
static void free_raid_bio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int i;
|
|
|
|
if (!refcount_dec_and_test(&rbio->refs))
|
|
return;
|
|
|
|
WARN_ON(!list_empty(&rbio->stripe_cache));
|
|
WARN_ON(!list_empty(&rbio->hash_list));
|
|
WARN_ON(!bio_list_empty(&rbio->bio_list));
|
|
|
|
for (i = 0; i < rbio->nr_pages; i++) {
|
|
if (rbio->stripe_pages[i]) {
|
|
__free_page(rbio->stripe_pages[i]);
|
|
rbio->stripe_pages[i] = NULL;
|
|
}
|
|
}
|
|
|
|
btrfs_put_bioc(rbio->bioc);
|
|
free_raid_bio_pointers(rbio);
|
|
kfree(rbio);
|
|
}
|
|
|
|
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
|
|
{
|
|
INIT_WORK(&rbio->work, work_func);
|
|
queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
|
|
}
|
|
|
|
/*
|
|
* the stripe hash table is used for locking, and to collect
|
|
* bios in hopes of making a full stripe
|
|
*/
|
|
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_stripe_hash_table *table;
|
|
struct btrfs_stripe_hash_table *x;
|
|
struct btrfs_stripe_hash *cur;
|
|
struct btrfs_stripe_hash *h;
|
|
int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
|
|
int i;
|
|
|
|
if (info->stripe_hash_table)
|
|
return 0;
|
|
|
|
/*
|
|
* The table is large, starting with order 4 and can go as high as
|
|
* order 7 in case lock debugging is turned on.
|
|
*
|
|
* Try harder to allocate and fallback to vmalloc to lower the chance
|
|
* of a failing mount.
|
|
*/
|
|
table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&table->cache_lock);
|
|
INIT_LIST_HEAD(&table->stripe_cache);
|
|
|
|
h = table->table;
|
|
|
|
for (i = 0; i < num_entries; i++) {
|
|
cur = h + i;
|
|
INIT_LIST_HEAD(&cur->hash_list);
|
|
spin_lock_init(&cur->lock);
|
|
}
|
|
|
|
x = cmpxchg(&info->stripe_hash_table, NULL, table);
|
|
kvfree(x);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* caching an rbio means to copy anything from the
|
|
* bio_sectors array into the stripe_pages array. We
|
|
* use the page uptodate bit in the stripe cache array
|
|
* to indicate if it has valid data
|
|
*
|
|
* once the caching is done, we set the cache ready
|
|
* bit.
|
|
*/
|
|
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
ret = alloc_rbio_pages(rbio);
|
|
if (ret)
|
|
return;
|
|
|
|
for (i = 0; i < rbio->nr_sectors; i++) {
|
|
/* Some range not covered by bio (partial write), skip it */
|
|
if (!rbio->bio_sectors[i].page) {
|
|
/*
|
|
* Even if the sector is not covered by bio, if it is
|
|
* a data sector it should still be uptodate as it is
|
|
* read from disk.
|
|
*/
|
|
if (i < rbio->nr_data * rbio->stripe_nsectors)
|
|
ASSERT(rbio->stripe_sectors[i].uptodate);
|
|
continue;
|
|
}
|
|
|
|
ASSERT(rbio->stripe_sectors[i].page);
|
|
memcpy_page(rbio->stripe_sectors[i].page,
|
|
rbio->stripe_sectors[i].pgoff,
|
|
rbio->bio_sectors[i].page,
|
|
rbio->bio_sectors[i].pgoff,
|
|
rbio->bioc->fs_info->sectorsize);
|
|
rbio->stripe_sectors[i].uptodate = 1;
|
|
}
|
|
set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
}
|
|
|
|
/*
|
|
* we hash on the first logical address of the stripe
|
|
*/
|
|
static int rbio_bucket(struct btrfs_raid_bio *rbio)
|
|
{
|
|
u64 num = rbio->bioc->full_stripe_logical;
|
|
|
|
/*
|
|
* we shift down quite a bit. We're using byte
|
|
* addressing, and most of the lower bits are zeros.
|
|
* This tends to upset hash_64, and it consistently
|
|
* returns just one or two different values.
|
|
*
|
|
* shifting off the lower bits fixes things.
|
|
*/
|
|
return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
|
|
}
|
|
|
|
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
|
|
unsigned int page_nr)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
|
|
int i;
|
|
|
|
ASSERT(page_nr < rbio->nr_pages);
|
|
|
|
for (i = sectors_per_page * page_nr;
|
|
i < sectors_per_page * page_nr + sectors_per_page;
|
|
i++) {
|
|
if (!rbio->stripe_sectors[i].uptodate)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Update the stripe_sectors[] array to use correct page and pgoff
|
|
*
|
|
* Should be called every time any page pointer in stripes_pages[] got modified.
|
|
*/
|
|
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
u32 offset;
|
|
int i;
|
|
|
|
for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
|
|
int page_index = offset >> PAGE_SHIFT;
|
|
|
|
ASSERT(page_index < rbio->nr_pages);
|
|
rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
|
|
rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
|
|
}
|
|
}
|
|
|
|
static void steal_rbio_page(struct btrfs_raid_bio *src,
|
|
struct btrfs_raid_bio *dest, int page_nr)
|
|
{
|
|
const u32 sectorsize = src->bioc->fs_info->sectorsize;
|
|
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
|
|
int i;
|
|
|
|
if (dest->stripe_pages[page_nr])
|
|
__free_page(dest->stripe_pages[page_nr]);
|
|
dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
|
|
src->stripe_pages[page_nr] = NULL;
|
|
|
|
/* Also update the sector->uptodate bits. */
|
|
for (i = sectors_per_page * page_nr;
|
|
i < sectors_per_page * page_nr + sectors_per_page; i++)
|
|
dest->stripe_sectors[i].uptodate = true;
|
|
}
|
|
|
|
static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
|
|
{
|
|
const int sector_nr = (page_nr << PAGE_SHIFT) >>
|
|
rbio->bioc->fs_info->sectorsize_bits;
|
|
|
|
/*
|
|
* We have ensured PAGE_SIZE is aligned with sectorsize, thus
|
|
* we won't have a page which is half data half parity.
|
|
*
|
|
* Thus if the first sector of the page belongs to data stripes, then
|
|
* the full page belongs to data stripes.
|
|
*/
|
|
return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
|
|
}
|
|
|
|
/*
|
|
* Stealing an rbio means taking all the uptodate pages from the stripe array
|
|
* in the source rbio and putting them into the destination rbio.
|
|
*
|
|
* This will also update the involved stripe_sectors[] which are referring to
|
|
* the old pages.
|
|
*/
|
|
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
|
|
{
|
|
int i;
|
|
|
|
if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
|
|
return;
|
|
|
|
for (i = 0; i < dest->nr_pages; i++) {
|
|
struct page *p = src->stripe_pages[i];
|
|
|
|
/*
|
|
* We don't need to steal P/Q pages as they will always be
|
|
* regenerated for RMW or full write anyway.
|
|
*/
|
|
if (!is_data_stripe_page(src, i))
|
|
continue;
|
|
|
|
/*
|
|
* If @src already has RBIO_CACHE_READY_BIT, it should have
|
|
* all data stripe pages present and uptodate.
|
|
*/
|
|
ASSERT(p);
|
|
ASSERT(full_page_sectors_uptodate(src, i));
|
|
steal_rbio_page(src, dest, i);
|
|
}
|
|
index_stripe_sectors(dest);
|
|
index_stripe_sectors(src);
|
|
}
|
|
|
|
/*
|
|
* merging means we take the bio_list from the victim and
|
|
* splice it into the destination. The victim should
|
|
* be discarded afterwards.
|
|
*
|
|
* must be called with dest->rbio_list_lock held
|
|
*/
|
|
static void merge_rbio(struct btrfs_raid_bio *dest,
|
|
struct btrfs_raid_bio *victim)
|
|
{
|
|
bio_list_merge(&dest->bio_list, &victim->bio_list);
|
|
dest->bio_list_bytes += victim->bio_list_bytes;
|
|
/* Also inherit the bitmaps from @victim. */
|
|
bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
|
|
dest->stripe_nsectors);
|
|
bio_list_init(&victim->bio_list);
|
|
}
|
|
|
|
/*
|
|
* used to prune items that are in the cache. The caller
|
|
* must hold the hash table lock.
|
|
*/
|
|
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int bucket = rbio_bucket(rbio);
|
|
struct btrfs_stripe_hash_table *table;
|
|
struct btrfs_stripe_hash *h;
|
|
int freeit = 0;
|
|
|
|
/*
|
|
* check the bit again under the hash table lock.
|
|
*/
|
|
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
return;
|
|
|
|
table = rbio->bioc->fs_info->stripe_hash_table;
|
|
h = table->table + bucket;
|
|
|
|
/* hold the lock for the bucket because we may be
|
|
* removing it from the hash table
|
|
*/
|
|
spin_lock(&h->lock);
|
|
|
|
/*
|
|
* hold the lock for the bio list because we need
|
|
* to make sure the bio list is empty
|
|
*/
|
|
spin_lock(&rbio->bio_list_lock);
|
|
|
|
if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
|
|
list_del_init(&rbio->stripe_cache);
|
|
table->cache_size -= 1;
|
|
freeit = 1;
|
|
|
|
/* if the bio list isn't empty, this rbio is
|
|
* still involved in an IO. We take it out
|
|
* of the cache list, and drop the ref that
|
|
* was held for the list.
|
|
*
|
|
* If the bio_list was empty, we also remove
|
|
* the rbio from the hash_table, and drop
|
|
* the corresponding ref
|
|
*/
|
|
if (bio_list_empty(&rbio->bio_list)) {
|
|
if (!list_empty(&rbio->hash_list)) {
|
|
list_del_init(&rbio->hash_list);
|
|
refcount_dec(&rbio->refs);
|
|
BUG_ON(!list_empty(&rbio->plug_list));
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
spin_unlock(&h->lock);
|
|
|
|
if (freeit)
|
|
free_raid_bio(rbio);
|
|
}
|
|
|
|
/*
|
|
* prune a given rbio from the cache
|
|
*/
|
|
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct btrfs_stripe_hash_table *table;
|
|
|
|
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
return;
|
|
|
|
table = rbio->bioc->fs_info->stripe_hash_table;
|
|
|
|
spin_lock(&table->cache_lock);
|
|
__remove_rbio_from_cache(rbio);
|
|
spin_unlock(&table->cache_lock);
|
|
}
|
|
|
|
/*
|
|
* remove everything in the cache
|
|
*/
|
|
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_stripe_hash_table *table;
|
|
struct btrfs_raid_bio *rbio;
|
|
|
|
table = info->stripe_hash_table;
|
|
|
|
spin_lock(&table->cache_lock);
|
|
while (!list_empty(&table->stripe_cache)) {
|
|
rbio = list_entry(table->stripe_cache.next,
|
|
struct btrfs_raid_bio,
|
|
stripe_cache);
|
|
__remove_rbio_from_cache(rbio);
|
|
}
|
|
spin_unlock(&table->cache_lock);
|
|
}
|
|
|
|
/*
|
|
* remove all cached entries and free the hash table
|
|
* used by unmount
|
|
*/
|
|
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
|
|
{
|
|
if (!info->stripe_hash_table)
|
|
return;
|
|
btrfs_clear_rbio_cache(info);
|
|
kvfree(info->stripe_hash_table);
|
|
info->stripe_hash_table = NULL;
|
|
}
|
|
|
|
/*
|
|
* insert an rbio into the stripe cache. It
|
|
* must have already been prepared by calling
|
|
* cache_rbio_pages
|
|
*
|
|
* If this rbio was already cached, it gets
|
|
* moved to the front of the lru.
|
|
*
|
|
* If the size of the rbio cache is too big, we
|
|
* prune an item.
|
|
*/
|
|
static void cache_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct btrfs_stripe_hash_table *table;
|
|
|
|
if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
|
|
return;
|
|
|
|
table = rbio->bioc->fs_info->stripe_hash_table;
|
|
|
|
spin_lock(&table->cache_lock);
|
|
spin_lock(&rbio->bio_list_lock);
|
|
|
|
/* bump our ref if we were not in the list before */
|
|
if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
|
|
refcount_inc(&rbio->refs);
|
|
|
|
if (!list_empty(&rbio->stripe_cache)){
|
|
list_move(&rbio->stripe_cache, &table->stripe_cache);
|
|
} else {
|
|
list_add(&rbio->stripe_cache, &table->stripe_cache);
|
|
table->cache_size += 1;
|
|
}
|
|
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
|
|
if (table->cache_size > RBIO_CACHE_SIZE) {
|
|
struct btrfs_raid_bio *found;
|
|
|
|
found = list_entry(table->stripe_cache.prev,
|
|
struct btrfs_raid_bio,
|
|
stripe_cache);
|
|
|
|
if (found != rbio)
|
|
__remove_rbio_from_cache(found);
|
|
}
|
|
|
|
spin_unlock(&table->cache_lock);
|
|
}
|
|
|
|
/*
|
|
* helper function to run the xor_blocks api. It is only
|
|
* able to do MAX_XOR_BLOCKS at a time, so we need to
|
|
* loop through.
|
|
*/
|
|
static void run_xor(void **pages, int src_cnt, ssize_t len)
|
|
{
|
|
int src_off = 0;
|
|
int xor_src_cnt = 0;
|
|
void *dest = pages[src_cnt];
|
|
|
|
while(src_cnt > 0) {
|
|
xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
|
|
xor_blocks(xor_src_cnt, len, dest, pages + src_off);
|
|
|
|
src_cnt -= xor_src_cnt;
|
|
src_off += xor_src_cnt;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the bio list inside this rbio covers an entire stripe (no
|
|
* rmw required).
|
|
*/
|
|
static int rbio_is_full(struct btrfs_raid_bio *rbio)
|
|
{
|
|
unsigned long size = rbio->bio_list_bytes;
|
|
int ret = 1;
|
|
|
|
spin_lock(&rbio->bio_list_lock);
|
|
if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
|
|
ret = 0;
|
|
BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* returns 1 if it is safe to merge two rbios together.
|
|
* The merging is safe if the two rbios correspond to
|
|
* the same stripe and if they are both going in the same
|
|
* direction (read vs write), and if neither one is
|
|
* locked for final IO
|
|
*
|
|
* The caller is responsible for locking such that
|
|
* rmw_locked is safe to test
|
|
*/
|
|
static int rbio_can_merge(struct btrfs_raid_bio *last,
|
|
struct btrfs_raid_bio *cur)
|
|
{
|
|
if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
|
|
test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* we can't merge with cached rbios, since the
|
|
* idea is that when we merge the destination
|
|
* rbio is going to run our IO for us. We can
|
|
* steal from cached rbios though, other functions
|
|
* handle that.
|
|
*/
|
|
if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
|
|
test_bit(RBIO_CACHE_BIT, &cur->flags))
|
|
return 0;
|
|
|
|
if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
|
|
return 0;
|
|
|
|
/* we can't merge with different operations */
|
|
if (last->operation != cur->operation)
|
|
return 0;
|
|
/*
|
|
* We've need read the full stripe from the drive.
|
|
* check and repair the parity and write the new results.
|
|
*
|
|
* We're not allowed to add any new bios to the
|
|
* bio list here, anyone else that wants to
|
|
* change this stripe needs to do their own rmw.
|
|
*/
|
|
if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
|
|
return 0;
|
|
|
|
if (last->operation == BTRFS_RBIO_READ_REBUILD)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
|
|
unsigned int stripe_nr,
|
|
unsigned int sector_nr)
|
|
{
|
|
ASSERT(stripe_nr < rbio->real_stripes);
|
|
ASSERT(sector_nr < rbio->stripe_nsectors);
|
|
|
|
return stripe_nr * rbio->stripe_nsectors + sector_nr;
|
|
}
|
|
|
|
/* Return a sector from rbio->stripe_sectors, not from the bio list */
|
|
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
|
|
unsigned int stripe_nr,
|
|
unsigned int sector_nr)
|
|
{
|
|
return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
|
|
sector_nr)];
|
|
}
|
|
|
|
/* Grab a sector inside P stripe */
|
|
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
|
|
unsigned int sector_nr)
|
|
{
|
|
return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
|
|
}
|
|
|
|
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
|
|
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
|
|
unsigned int sector_nr)
|
|
{
|
|
if (rbio->nr_data + 1 == rbio->real_stripes)
|
|
return NULL;
|
|
return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
|
|
}
|
|
|
|
/*
|
|
* The first stripe in the table for a logical address
|
|
* has the lock. rbios are added in one of three ways:
|
|
*
|
|
* 1) Nobody has the stripe locked yet. The rbio is given
|
|
* the lock and 0 is returned. The caller must start the IO
|
|
* themselves.
|
|
*
|
|
* 2) Someone has the stripe locked, but we're able to merge
|
|
* with the lock owner. The rbio is freed and the IO will
|
|
* start automatically along with the existing rbio. 1 is returned.
|
|
*
|
|
* 3) Someone has the stripe locked, but we're not able to merge.
|
|
* The rbio is added to the lock owner's plug list, or merged into
|
|
* an rbio already on the plug list. When the lock owner unlocks,
|
|
* the next rbio on the list is run and the IO is started automatically.
|
|
* 1 is returned
|
|
*
|
|
* If we return 0, the caller still owns the rbio and must continue with
|
|
* IO submission. If we return 1, the caller must assume the rbio has
|
|
* already been freed.
|
|
*/
|
|
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct btrfs_stripe_hash *h;
|
|
struct btrfs_raid_bio *cur;
|
|
struct btrfs_raid_bio *pending;
|
|
struct btrfs_raid_bio *freeit = NULL;
|
|
struct btrfs_raid_bio *cache_drop = NULL;
|
|
int ret = 0;
|
|
|
|
h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
|
|
|
|
spin_lock(&h->lock);
|
|
list_for_each_entry(cur, &h->hash_list, hash_list) {
|
|
if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
|
|
continue;
|
|
|
|
spin_lock(&cur->bio_list_lock);
|
|
|
|
/* Can we steal this cached rbio's pages? */
|
|
if (bio_list_empty(&cur->bio_list) &&
|
|
list_empty(&cur->plug_list) &&
|
|
test_bit(RBIO_CACHE_BIT, &cur->flags) &&
|
|
!test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
|
|
list_del_init(&cur->hash_list);
|
|
refcount_dec(&cur->refs);
|
|
|
|
steal_rbio(cur, rbio);
|
|
cache_drop = cur;
|
|
spin_unlock(&cur->bio_list_lock);
|
|
|
|
goto lockit;
|
|
}
|
|
|
|
/* Can we merge into the lock owner? */
|
|
if (rbio_can_merge(cur, rbio)) {
|
|
merge_rbio(cur, rbio);
|
|
spin_unlock(&cur->bio_list_lock);
|
|
freeit = rbio;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
|
|
/*
|
|
* We couldn't merge with the running rbio, see if we can merge
|
|
* with the pending ones. We don't have to check for rmw_locked
|
|
* because there is no way they are inside finish_rmw right now
|
|
*/
|
|
list_for_each_entry(pending, &cur->plug_list, plug_list) {
|
|
if (rbio_can_merge(pending, rbio)) {
|
|
merge_rbio(pending, rbio);
|
|
spin_unlock(&cur->bio_list_lock);
|
|
freeit = rbio;
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No merging, put us on the tail of the plug list, our rbio
|
|
* will be started with the currently running rbio unlocks
|
|
*/
|
|
list_add_tail(&rbio->plug_list, &cur->plug_list);
|
|
spin_unlock(&cur->bio_list_lock);
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
lockit:
|
|
refcount_inc(&rbio->refs);
|
|
list_add(&rbio->hash_list, &h->hash_list);
|
|
out:
|
|
spin_unlock(&h->lock);
|
|
if (cache_drop)
|
|
remove_rbio_from_cache(cache_drop);
|
|
if (freeit)
|
|
free_raid_bio(freeit);
|
|
return ret;
|
|
}
|
|
|
|
static void recover_rbio_work_locked(struct work_struct *work);
|
|
|
|
/*
|
|
* called as rmw or parity rebuild is completed. If the plug list has more
|
|
* rbios waiting for this stripe, the next one on the list will be started
|
|
*/
|
|
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int bucket;
|
|
struct btrfs_stripe_hash *h;
|
|
int keep_cache = 0;
|
|
|
|
bucket = rbio_bucket(rbio);
|
|
h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
|
|
|
|
if (list_empty(&rbio->plug_list))
|
|
cache_rbio(rbio);
|
|
|
|
spin_lock(&h->lock);
|
|
spin_lock(&rbio->bio_list_lock);
|
|
|
|
if (!list_empty(&rbio->hash_list)) {
|
|
/*
|
|
* if we're still cached and there is no other IO
|
|
* to perform, just leave this rbio here for others
|
|
* to steal from later
|
|
*/
|
|
if (list_empty(&rbio->plug_list) &&
|
|
test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
|
|
keep_cache = 1;
|
|
clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
BUG_ON(!bio_list_empty(&rbio->bio_list));
|
|
goto done;
|
|
}
|
|
|
|
list_del_init(&rbio->hash_list);
|
|
refcount_dec(&rbio->refs);
|
|
|
|
/*
|
|
* we use the plug list to hold all the rbios
|
|
* waiting for the chance to lock this stripe.
|
|
* hand the lock over to one of them.
|
|
*/
|
|
if (!list_empty(&rbio->plug_list)) {
|
|
struct btrfs_raid_bio *next;
|
|
struct list_head *head = rbio->plug_list.next;
|
|
|
|
next = list_entry(head, struct btrfs_raid_bio,
|
|
plug_list);
|
|
|
|
list_del_init(&rbio->plug_list);
|
|
|
|
list_add(&next->hash_list, &h->hash_list);
|
|
refcount_inc(&next->refs);
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
spin_unlock(&h->lock);
|
|
|
|
if (next->operation == BTRFS_RBIO_READ_REBUILD) {
|
|
start_async_work(next, recover_rbio_work_locked);
|
|
} else if (next->operation == BTRFS_RBIO_WRITE) {
|
|
steal_rbio(rbio, next);
|
|
start_async_work(next, rmw_rbio_work_locked);
|
|
} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
|
|
steal_rbio(rbio, next);
|
|
start_async_work(next, scrub_rbio_work_locked);
|
|
}
|
|
|
|
goto done_nolock;
|
|
}
|
|
}
|
|
done:
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
spin_unlock(&h->lock);
|
|
|
|
done_nolock:
|
|
if (!keep_cache)
|
|
remove_rbio_from_cache(rbio);
|
|
}
|
|
|
|
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
|
|
{
|
|
struct bio *next;
|
|
|
|
while (cur) {
|
|
next = cur->bi_next;
|
|
cur->bi_next = NULL;
|
|
cur->bi_status = err;
|
|
bio_endio(cur);
|
|
cur = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* this frees the rbio and runs through all the bios in the
|
|
* bio_list and calls end_io on them
|
|
*/
|
|
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
|
|
{
|
|
struct bio *cur = bio_list_get(&rbio->bio_list);
|
|
struct bio *extra;
|
|
|
|
kfree(rbio->csum_buf);
|
|
bitmap_free(rbio->csum_bitmap);
|
|
rbio->csum_buf = NULL;
|
|
rbio->csum_bitmap = NULL;
|
|
|
|
/*
|
|
* Clear the data bitmap, as the rbio may be cached for later usage.
|
|
* do this before before unlock_stripe() so there will be no new bio
|
|
* for this bio.
|
|
*/
|
|
bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
|
|
|
|
/*
|
|
* At this moment, rbio->bio_list is empty, however since rbio does not
|
|
* always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
|
|
* hash list, rbio may be merged with others so that rbio->bio_list
|
|
* becomes non-empty.
|
|
* Once unlock_stripe() is done, rbio->bio_list will not be updated any
|
|
* more and we can call bio_endio() on all queued bios.
|
|
*/
|
|
unlock_stripe(rbio);
|
|
extra = bio_list_get(&rbio->bio_list);
|
|
free_raid_bio(rbio);
|
|
|
|
rbio_endio_bio_list(cur, err);
|
|
if (extra)
|
|
rbio_endio_bio_list(extra, err);
|
|
}
|
|
|
|
/*
|
|
* Get a sector pointer specified by its @stripe_nr and @sector_nr.
|
|
*
|
|
* @rbio: The raid bio
|
|
* @stripe_nr: Stripe number, valid range [0, real_stripe)
|
|
* @sector_nr: Sector number inside the stripe,
|
|
* valid range [0, stripe_nsectors)
|
|
* @bio_list_only: Whether to use sectors inside the bio list only.
|
|
*
|
|
* The read/modify/write code wants to reuse the original bio page as much
|
|
* as possible, and only use stripe_sectors as fallback.
|
|
*/
|
|
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
|
|
int stripe_nr, int sector_nr,
|
|
bool bio_list_only)
|
|
{
|
|
struct sector_ptr *sector;
|
|
int index;
|
|
|
|
ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
|
|
ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
|
|
|
|
index = stripe_nr * rbio->stripe_nsectors + sector_nr;
|
|
ASSERT(index >= 0 && index < rbio->nr_sectors);
|
|
|
|
spin_lock(&rbio->bio_list_lock);
|
|
sector = &rbio->bio_sectors[index];
|
|
if (sector->page || bio_list_only) {
|
|
/* Don't return sector without a valid page pointer */
|
|
if (!sector->page)
|
|
sector = NULL;
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
return sector;
|
|
}
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
|
|
return &rbio->stripe_sectors[index];
|
|
}
|
|
|
|
/*
|
|
* allocation and initial setup for the btrfs_raid_bio. Not
|
|
* this does not allocate any pages for rbio->pages.
|
|
*/
|
|
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_io_context *bioc)
|
|
{
|
|
const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
|
|
const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
|
|
const unsigned int num_pages = stripe_npages * real_stripes;
|
|
const unsigned int stripe_nsectors =
|
|
BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
|
|
const unsigned int num_sectors = stripe_nsectors * real_stripes;
|
|
struct btrfs_raid_bio *rbio;
|
|
|
|
/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
|
|
ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
|
|
/*
|
|
* Our current stripe len should be fixed to 64k thus stripe_nsectors
|
|
* (at most 16) should be no larger than BITS_PER_LONG.
|
|
*/
|
|
ASSERT(stripe_nsectors <= BITS_PER_LONG);
|
|
|
|
rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
|
|
if (!rbio)
|
|
return ERR_PTR(-ENOMEM);
|
|
rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
|
|
GFP_NOFS);
|
|
rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
|
|
GFP_NOFS);
|
|
rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
|
|
GFP_NOFS);
|
|
rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
|
|
rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
|
|
|
|
if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
|
|
!rbio->finish_pointers || !rbio->error_bitmap) {
|
|
free_raid_bio_pointers(rbio);
|
|
kfree(rbio);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
bio_list_init(&rbio->bio_list);
|
|
init_waitqueue_head(&rbio->io_wait);
|
|
INIT_LIST_HEAD(&rbio->plug_list);
|
|
spin_lock_init(&rbio->bio_list_lock);
|
|
INIT_LIST_HEAD(&rbio->stripe_cache);
|
|
INIT_LIST_HEAD(&rbio->hash_list);
|
|
btrfs_get_bioc(bioc);
|
|
rbio->bioc = bioc;
|
|
rbio->nr_pages = num_pages;
|
|
rbio->nr_sectors = num_sectors;
|
|
rbio->real_stripes = real_stripes;
|
|
rbio->stripe_npages = stripe_npages;
|
|
rbio->stripe_nsectors = stripe_nsectors;
|
|
refcount_set(&rbio->refs, 1);
|
|
atomic_set(&rbio->stripes_pending, 0);
|
|
|
|
ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
|
|
rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
|
|
|
|
return rbio;
|
|
}
|
|
|
|
/* allocate pages for all the stripes in the bio, including parity */
|
|
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
|
|
if (ret < 0)
|
|
return ret;
|
|
/* Mapping all sectors */
|
|
index_stripe_sectors(rbio);
|
|
return 0;
|
|
}
|
|
|
|
/* only allocate pages for p/q stripes */
|
|
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
const int data_pages = rbio->nr_data * rbio->stripe_npages;
|
|
int ret;
|
|
|
|
ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
|
|
rbio->stripe_pages + data_pages);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index_stripe_sectors(rbio);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the total number of errors found in the vertical stripe of @sector_nr.
|
|
*
|
|
* @faila and @failb will also be updated to the first and second stripe
|
|
* number of the errors.
|
|
*/
|
|
static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
|
|
int *faila, int *failb)
|
|
{
|
|
int stripe_nr;
|
|
int found_errors = 0;
|
|
|
|
if (faila || failb) {
|
|
/*
|
|
* Both @faila and @failb should be valid pointers if any of
|
|
* them is specified.
|
|
*/
|
|
ASSERT(faila && failb);
|
|
*faila = -1;
|
|
*failb = -1;
|
|
}
|
|
|
|
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
|
|
int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
|
|
|
|
if (test_bit(total_sector_nr, rbio->error_bitmap)) {
|
|
found_errors++;
|
|
if (faila) {
|
|
/* Update faila and failb. */
|
|
if (*faila < 0)
|
|
*faila = stripe_nr;
|
|
else if (*failb < 0)
|
|
*failb = stripe_nr;
|
|
}
|
|
}
|
|
}
|
|
return found_errors;
|
|
}
|
|
|
|
/*
|
|
* Add a single sector @sector into our list of bios for IO.
|
|
*
|
|
* Return 0 if everything went well.
|
|
* Return <0 for error.
|
|
*/
|
|
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
|
|
struct bio_list *bio_list,
|
|
struct sector_ptr *sector,
|
|
unsigned int stripe_nr,
|
|
unsigned int sector_nr,
|
|
enum req_op op)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
struct bio *last = bio_list->tail;
|
|
int ret;
|
|
struct bio *bio;
|
|
struct btrfs_io_stripe *stripe;
|
|
u64 disk_start;
|
|
|
|
/*
|
|
* Note: here stripe_nr has taken device replace into consideration,
|
|
* thus it can be larger than rbio->real_stripe.
|
|
* So here we check against bioc->num_stripes, not rbio->real_stripes.
|
|
*/
|
|
ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
|
|
ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
|
|
ASSERT(sector->page);
|
|
|
|
stripe = &rbio->bioc->stripes[stripe_nr];
|
|
disk_start = stripe->physical + sector_nr * sectorsize;
|
|
|
|
/* if the device is missing, just fail this stripe */
|
|
if (!stripe->dev->bdev) {
|
|
int found_errors;
|
|
|
|
set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
|
|
rbio->error_bitmap);
|
|
|
|
/* Check if we have reached tolerance early. */
|
|
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
|
|
NULL, NULL);
|
|
if (found_errors > rbio->bioc->max_errors)
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/* see if we can add this page onto our existing bio */
|
|
if (last) {
|
|
u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
last_end += last->bi_iter.bi_size;
|
|
|
|
/*
|
|
* we can't merge these if they are from different
|
|
* devices or if they are not contiguous
|
|
*/
|
|
if (last_end == disk_start && !last->bi_status &&
|
|
last->bi_bdev == stripe->dev->bdev) {
|
|
ret = bio_add_page(last, sector->page, sectorsize,
|
|
sector->pgoff);
|
|
if (ret == sectorsize)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* put a new bio on the list */
|
|
bio = bio_alloc(stripe->dev->bdev,
|
|
max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
|
|
op, GFP_NOFS);
|
|
bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
|
|
bio->bi_private = rbio;
|
|
|
|
__bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
|
|
bio_list_add(bio_list, bio);
|
|
return 0;
|
|
}
|
|
|
|
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
|
|
rbio->bioc->full_stripe_logical;
|
|
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
u32 bvec_offset;
|
|
|
|
for (bvec_offset = 0; bvec_offset < bvec.bv_len;
|
|
bvec_offset += sectorsize, offset += sectorsize) {
|
|
int index = offset / sectorsize;
|
|
struct sector_ptr *sector = &rbio->bio_sectors[index];
|
|
|
|
sector->page = bvec.bv_page;
|
|
sector->pgoff = bvec.bv_offset + bvec_offset;
|
|
ASSERT(sector->pgoff < PAGE_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* helper function to walk our bio list and populate the bio_pages array with
|
|
* the result. This seems expensive, but it is faster than constantly
|
|
* searching through the bio list as we setup the IO in finish_rmw or stripe
|
|
* reconstruction.
|
|
*
|
|
* This must be called before you trust the answers from page_in_rbio
|
|
*/
|
|
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct bio *bio;
|
|
|
|
spin_lock(&rbio->bio_list_lock);
|
|
bio_list_for_each(bio, &rbio->bio_list)
|
|
index_one_bio(rbio, bio);
|
|
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
}
|
|
|
|
static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
|
|
struct raid56_bio_trace_info *trace_info)
|
|
{
|
|
const struct btrfs_io_context *bioc = rbio->bioc;
|
|
int i;
|
|
|
|
ASSERT(bioc);
|
|
|
|
/* We rely on bio->bi_bdev to find the stripe number. */
|
|
if (!bio->bi_bdev)
|
|
goto not_found;
|
|
|
|
for (i = 0; i < bioc->num_stripes; i++) {
|
|
if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
|
|
continue;
|
|
trace_info->stripe_nr = i;
|
|
trace_info->devid = bioc->stripes[i].dev->devid;
|
|
trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
|
|
bioc->stripes[i].physical;
|
|
return;
|
|
}
|
|
|
|
not_found:
|
|
trace_info->devid = -1;
|
|
trace_info->offset = -1;
|
|
trace_info->stripe_nr = -1;
|
|
}
|
|
|
|
static inline void bio_list_put(struct bio_list *bio_list)
|
|
{
|
|
struct bio *bio;
|
|
|
|
while ((bio = bio_list_pop(bio_list)))
|
|
bio_put(bio);
|
|
}
|
|
|
|
/* Generate PQ for one vertical stripe. */
|
|
static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
|
|
{
|
|
void **pointers = rbio->finish_pointers;
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
struct sector_ptr *sector;
|
|
int stripe;
|
|
const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
|
|
|
|
/* First collect one sector from each data stripe */
|
|
for (stripe = 0; stripe < rbio->nr_data; stripe++) {
|
|
sector = sector_in_rbio(rbio, stripe, sectornr, 0);
|
|
pointers[stripe] = kmap_local_page(sector->page) +
|
|
sector->pgoff;
|
|
}
|
|
|
|
/* Then add the parity stripe */
|
|
sector = rbio_pstripe_sector(rbio, sectornr);
|
|
sector->uptodate = 1;
|
|
pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
|
|
|
|
if (has_qstripe) {
|
|
/*
|
|
* RAID6, add the qstripe and call the library function
|
|
* to fill in our p/q
|
|
*/
|
|
sector = rbio_qstripe_sector(rbio, sectornr);
|
|
sector->uptodate = 1;
|
|
pointers[stripe++] = kmap_local_page(sector->page) +
|
|
sector->pgoff;
|
|
|
|
raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
|
|
pointers);
|
|
} else {
|
|
/* raid5 */
|
|
memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
|
|
run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
|
|
}
|
|
for (stripe = stripe - 1; stripe >= 0; stripe--)
|
|
kunmap_local(pointers[stripe]);
|
|
}
|
|
|
|
static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
|
|
struct bio_list *bio_list)
|
|
{
|
|
/* The total sector number inside the full stripe. */
|
|
int total_sector_nr;
|
|
int sectornr;
|
|
int stripe;
|
|
int ret;
|
|
|
|
ASSERT(bio_list_size(bio_list) == 0);
|
|
|
|
/* We should have at least one data sector. */
|
|
ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
|
|
|
|
/*
|
|
* Reset errors, as we may have errors inherited from from degraded
|
|
* write.
|
|
*/
|
|
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
|
|
|
|
/*
|
|
* Start assembly. Make bios for everything from the higher layers (the
|
|
* bio_list in our rbio) and our P/Q. Ignore everything else.
|
|
*/
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
struct sector_ptr *sector;
|
|
|
|
stripe = total_sector_nr / rbio->stripe_nsectors;
|
|
sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
|
|
/* This vertical stripe has no data, skip it. */
|
|
if (!test_bit(sectornr, &rbio->dbitmap))
|
|
continue;
|
|
|
|
if (stripe < rbio->nr_data) {
|
|
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
|
|
if (!sector)
|
|
continue;
|
|
} else {
|
|
sector = rbio_stripe_sector(rbio, stripe, sectornr);
|
|
}
|
|
|
|
ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
|
|
sectornr, REQ_OP_WRITE);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
if (likely(!rbio->bioc->replace_nr_stripes))
|
|
return 0;
|
|
|
|
/*
|
|
* Make a copy for the replace target device.
|
|
*
|
|
* Thus the source stripe number (in replace_stripe_src) should be valid.
|
|
*/
|
|
ASSERT(rbio->bioc->replace_stripe_src >= 0);
|
|
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
struct sector_ptr *sector;
|
|
|
|
stripe = total_sector_nr / rbio->stripe_nsectors;
|
|
sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
|
|
/*
|
|
* For RAID56, there is only one device that can be replaced,
|
|
* and replace_stripe_src[0] indicates the stripe number we
|
|
* need to copy from.
|
|
*/
|
|
if (stripe != rbio->bioc->replace_stripe_src) {
|
|
/*
|
|
* We can skip the whole stripe completely, note
|
|
* total_sector_nr will be increased by one anyway.
|
|
*/
|
|
ASSERT(sectornr == 0);
|
|
total_sector_nr += rbio->stripe_nsectors - 1;
|
|
continue;
|
|
}
|
|
|
|
/* This vertical stripe has no data, skip it. */
|
|
if (!test_bit(sectornr, &rbio->dbitmap))
|
|
continue;
|
|
|
|
if (stripe < rbio->nr_data) {
|
|
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
|
|
if (!sector)
|
|
continue;
|
|
} else {
|
|
sector = rbio_stripe_sector(rbio, stripe, sectornr);
|
|
}
|
|
|
|
ret = rbio_add_io_sector(rbio, bio_list, sector,
|
|
rbio->real_stripes,
|
|
sectornr, REQ_OP_WRITE);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
bio_list_put(bio_list);
|
|
return -EIO;
|
|
}
|
|
|
|
static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
|
|
rbio->bioc->full_stripe_logical;
|
|
int total_nr_sector = offset >> fs_info->sectorsize_bits;
|
|
|
|
ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
|
|
|
|
bitmap_set(rbio->error_bitmap, total_nr_sector,
|
|
bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
|
|
|
|
/*
|
|
* Special handling for raid56_alloc_missing_rbio() used by
|
|
* scrub/replace. Unlike call path in raid56_parity_recover(), they
|
|
* pass an empty bio here. Thus we have to find out the missing device
|
|
* and mark the stripe error instead.
|
|
*/
|
|
if (bio->bi_iter.bi_size == 0) {
|
|
bool found_missing = false;
|
|
int stripe_nr;
|
|
|
|
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
|
|
if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
|
|
found_missing = true;
|
|
bitmap_set(rbio->error_bitmap,
|
|
stripe_nr * rbio->stripe_nsectors,
|
|
rbio->stripe_nsectors);
|
|
}
|
|
}
|
|
ASSERT(found_missing);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For subpage case, we can no longer set page Up-to-date directly for
|
|
* stripe_pages[], thus we need to locate the sector.
|
|
*/
|
|
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
|
|
struct page *page,
|
|
unsigned int pgoff)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rbio->nr_sectors; i++) {
|
|
struct sector_ptr *sector = &rbio->stripe_sectors[i];
|
|
|
|
if (sector->page == page && sector->pgoff == pgoff)
|
|
return sector;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* this sets each page in the bio uptodate. It should only be used on private
|
|
* rbio pages, nothing that comes in from the higher layers
|
|
*/
|
|
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
ASSERT(!bio_flagged(bio, BIO_CLONED));
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
struct sector_ptr *sector;
|
|
int pgoff;
|
|
|
|
for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
|
|
pgoff += sectorsize) {
|
|
sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
|
|
ASSERT(sector);
|
|
if (sector)
|
|
sector->uptodate = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
|
|
{
|
|
struct bio_vec *bv = bio_first_bvec_all(bio);
|
|
int i;
|
|
|
|
for (i = 0; i < rbio->nr_sectors; i++) {
|
|
struct sector_ptr *sector;
|
|
|
|
sector = &rbio->stripe_sectors[i];
|
|
if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
|
|
break;
|
|
sector = &rbio->bio_sectors[i];
|
|
if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
|
|
break;
|
|
}
|
|
ASSERT(i < rbio->nr_sectors);
|
|
return i;
|
|
}
|
|
|
|
static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
|
|
{
|
|
int total_sector_nr = get_bio_sector_nr(rbio, bio);
|
|
u32 bio_size = 0;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio_for_each_bvec_all(bvec, bio, i)
|
|
bio_size += bvec->bv_len;
|
|
|
|
/*
|
|
* Since we can have multiple bios touching the error_bitmap, we cannot
|
|
* call bitmap_set() without protection.
|
|
*
|
|
* Instead use set_bit() for each bit, as set_bit() itself is atomic.
|
|
*/
|
|
for (i = total_sector_nr; i < total_sector_nr +
|
|
(bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
|
|
set_bit(i, rbio->error_bitmap);
|
|
}
|
|
|
|
/* Verify the data sectors at read time. */
|
|
static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
|
|
struct bio *bio)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
int total_sector_nr = get_bio_sector_nr(rbio, bio);
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
/* No data csum for the whole stripe, no need to verify. */
|
|
if (!rbio->csum_bitmap || !rbio->csum_buf)
|
|
return;
|
|
|
|
/* P/Q stripes, they have no data csum to verify against. */
|
|
if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
|
|
return;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
int bv_offset;
|
|
|
|
for (bv_offset = bvec->bv_offset;
|
|
bv_offset < bvec->bv_offset + bvec->bv_len;
|
|
bv_offset += fs_info->sectorsize, total_sector_nr++) {
|
|
u8 csum_buf[BTRFS_CSUM_SIZE];
|
|
u8 *expected_csum = rbio->csum_buf +
|
|
total_sector_nr * fs_info->csum_size;
|
|
int ret;
|
|
|
|
/* No csum for this sector, skip to the next sector. */
|
|
if (!test_bit(total_sector_nr, rbio->csum_bitmap))
|
|
continue;
|
|
|
|
ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
|
|
bv_offset, csum_buf, expected_csum);
|
|
if (ret < 0)
|
|
set_bit(total_sector_nr, rbio->error_bitmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void raid_wait_read_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_raid_bio *rbio = bio->bi_private;
|
|
|
|
if (bio->bi_status) {
|
|
rbio_update_error_bitmap(rbio, bio);
|
|
} else {
|
|
set_bio_pages_uptodate(rbio, bio);
|
|
verify_bio_data_sectors(rbio, bio);
|
|
}
|
|
|
|
bio_put(bio);
|
|
if (atomic_dec_and_test(&rbio->stripes_pending))
|
|
wake_up(&rbio->io_wait);
|
|
}
|
|
|
|
static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
|
|
struct bio_list *bio_list)
|
|
{
|
|
struct bio *bio;
|
|
|
|
atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
|
|
while ((bio = bio_list_pop(bio_list))) {
|
|
bio->bi_end_io = raid_wait_read_end_io;
|
|
|
|
if (trace_raid56_read_enabled()) {
|
|
struct raid56_bio_trace_info trace_info = { 0 };
|
|
|
|
bio_get_trace_info(rbio, bio, &trace_info);
|
|
trace_raid56_read(rbio, bio, &trace_info);
|
|
}
|
|
submit_bio(bio);
|
|
}
|
|
|
|
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
|
|
}
|
|
|
|
static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
const int data_pages = rbio->nr_data * rbio->stripe_npages;
|
|
int ret;
|
|
|
|
ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index_stripe_sectors(rbio);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We use plugging call backs to collect full stripes.
|
|
* Any time we get a partial stripe write while plugged
|
|
* we collect it into a list. When the unplug comes down,
|
|
* we sort the list by logical block number and merge
|
|
* everything we can into the same rbios
|
|
*/
|
|
struct btrfs_plug_cb {
|
|
struct blk_plug_cb cb;
|
|
struct btrfs_fs_info *info;
|
|
struct list_head rbio_list;
|
|
};
|
|
|
|
/*
|
|
* rbios on the plug list are sorted for easier merging.
|
|
*/
|
|
static int plug_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
|
|
plug_list);
|
|
const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
|
|
plug_list);
|
|
u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
|
|
u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
|
|
|
|
if (a_sector < b_sector)
|
|
return -1;
|
|
if (a_sector > b_sector)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
|
|
{
|
|
struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
|
|
struct btrfs_raid_bio *cur;
|
|
struct btrfs_raid_bio *last = NULL;
|
|
|
|
list_sort(NULL, &plug->rbio_list, plug_cmp);
|
|
|
|
while (!list_empty(&plug->rbio_list)) {
|
|
cur = list_entry(plug->rbio_list.next,
|
|
struct btrfs_raid_bio, plug_list);
|
|
list_del_init(&cur->plug_list);
|
|
|
|
if (rbio_is_full(cur)) {
|
|
/* We have a full stripe, queue it down. */
|
|
start_async_work(cur, rmw_rbio_work);
|
|
continue;
|
|
}
|
|
if (last) {
|
|
if (rbio_can_merge(last, cur)) {
|
|
merge_rbio(last, cur);
|
|
free_raid_bio(cur);
|
|
continue;
|
|
}
|
|
start_async_work(last, rmw_rbio_work);
|
|
}
|
|
last = cur;
|
|
}
|
|
if (last)
|
|
start_async_work(last, rmw_rbio_work);
|
|
kfree(plug);
|
|
}
|
|
|
|
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
|
|
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
|
|
{
|
|
const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
|
|
const u32 orig_len = orig_bio->bi_iter.bi_size;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
u64 cur_logical;
|
|
|
|
ASSERT(orig_logical >= full_stripe_start &&
|
|
orig_logical + orig_len <= full_stripe_start +
|
|
rbio->nr_data * BTRFS_STRIPE_LEN);
|
|
|
|
bio_list_add(&rbio->bio_list, orig_bio);
|
|
rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
|
|
|
|
/* Update the dbitmap. */
|
|
for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
|
|
cur_logical += sectorsize) {
|
|
int bit = ((u32)(cur_logical - full_stripe_start) >>
|
|
fs_info->sectorsize_bits) % rbio->stripe_nsectors;
|
|
|
|
set_bit(bit, &rbio->dbitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* our main entry point for writes from the rest of the FS.
|
|
*/
|
|
void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bioc->fs_info;
|
|
struct btrfs_raid_bio *rbio;
|
|
struct btrfs_plug_cb *plug = NULL;
|
|
struct blk_plug_cb *cb;
|
|
|
|
rbio = alloc_rbio(fs_info, bioc);
|
|
if (IS_ERR(rbio)) {
|
|
bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
rbio->operation = BTRFS_RBIO_WRITE;
|
|
rbio_add_bio(rbio, bio);
|
|
|
|
/*
|
|
* Don't plug on full rbios, just get them out the door
|
|
* as quickly as we can
|
|
*/
|
|
if (!rbio_is_full(rbio)) {
|
|
cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
|
|
if (cb) {
|
|
plug = container_of(cb, struct btrfs_plug_cb, cb);
|
|
if (!plug->info) {
|
|
plug->info = fs_info;
|
|
INIT_LIST_HEAD(&plug->rbio_list);
|
|
}
|
|
list_add_tail(&rbio->plug_list, &plug->rbio_list);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either we don't have any existing plug, or we're doing a full stripe,
|
|
* queue the rmw work now.
|
|
*/
|
|
start_async_work(rbio, rmw_rbio_work);
|
|
}
|
|
|
|
static int verify_one_sector(struct btrfs_raid_bio *rbio,
|
|
int stripe_nr, int sector_nr)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
struct sector_ptr *sector;
|
|
u8 csum_buf[BTRFS_CSUM_SIZE];
|
|
u8 *csum_expected;
|
|
int ret;
|
|
|
|
if (!rbio->csum_bitmap || !rbio->csum_buf)
|
|
return 0;
|
|
|
|
/* No way to verify P/Q as they are not covered by data csum. */
|
|
if (stripe_nr >= rbio->nr_data)
|
|
return 0;
|
|
/*
|
|
* If we're rebuilding a read, we have to use pages from the
|
|
* bio list if possible.
|
|
*/
|
|
if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
|
|
sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
|
|
} else {
|
|
sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
|
|
}
|
|
|
|
ASSERT(sector->page);
|
|
|
|
csum_expected = rbio->csum_buf +
|
|
(stripe_nr * rbio->stripe_nsectors + sector_nr) *
|
|
fs_info->csum_size;
|
|
ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
|
|
csum_buf, csum_expected);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Recover a vertical stripe specified by @sector_nr.
|
|
* @*pointers are the pre-allocated pointers by the caller, so we don't
|
|
* need to allocate/free the pointers again and again.
|
|
*/
|
|
static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
|
|
void **pointers, void **unmap_array)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
struct sector_ptr *sector;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
int found_errors;
|
|
int faila;
|
|
int failb;
|
|
int stripe_nr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Now we just use bitmap to mark the horizontal stripes in
|
|
* which we have data when doing parity scrub.
|
|
*/
|
|
if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
|
|
!test_bit(sector_nr, &rbio->dbitmap))
|
|
return 0;
|
|
|
|
found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
|
|
&failb);
|
|
/*
|
|
* No errors in the vertical stripe, skip it. Can happen for recovery
|
|
* which only part of a stripe failed csum check.
|
|
*/
|
|
if (!found_errors)
|
|
return 0;
|
|
|
|
if (found_errors > rbio->bioc->max_errors)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Setup our array of pointers with sectors from each stripe
|
|
*
|
|
* NOTE: store a duplicate array of pointers to preserve the
|
|
* pointer order.
|
|
*/
|
|
for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
|
|
/*
|
|
* If we're rebuilding a read, we have to use pages from the
|
|
* bio list if possible.
|
|
*/
|
|
if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
|
|
sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
|
|
} else {
|
|
sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
|
|
}
|
|
ASSERT(sector->page);
|
|
pointers[stripe_nr] = kmap_local_page(sector->page) +
|
|
sector->pgoff;
|
|
unmap_array[stripe_nr] = pointers[stripe_nr];
|
|
}
|
|
|
|
/* All raid6 handling here */
|
|
if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
|
|
/* Single failure, rebuild from parity raid5 style */
|
|
if (failb < 0) {
|
|
if (faila == rbio->nr_data)
|
|
/*
|
|
* Just the P stripe has failed, without
|
|
* a bad data or Q stripe.
|
|
* We have nothing to do, just skip the
|
|
* recovery for this stripe.
|
|
*/
|
|
goto cleanup;
|
|
/*
|
|
* a single failure in raid6 is rebuilt
|
|
* in the pstripe code below
|
|
*/
|
|
goto pstripe;
|
|
}
|
|
|
|
/*
|
|
* If the q stripe is failed, do a pstripe reconstruction from
|
|
* the xors.
|
|
* If both the q stripe and the P stripe are failed, we're
|
|
* here due to a crc mismatch and we can't give them the
|
|
* data they want.
|
|
*/
|
|
if (failb == rbio->real_stripes - 1) {
|
|
if (faila == rbio->real_stripes - 2)
|
|
/*
|
|
* Only P and Q are corrupted.
|
|
* We only care about data stripes recovery,
|
|
* can skip this vertical stripe.
|
|
*/
|
|
goto cleanup;
|
|
/*
|
|
* Otherwise we have one bad data stripe and
|
|
* a good P stripe. raid5!
|
|
*/
|
|
goto pstripe;
|
|
}
|
|
|
|
if (failb == rbio->real_stripes - 2) {
|
|
raid6_datap_recov(rbio->real_stripes, sectorsize,
|
|
faila, pointers);
|
|
} else {
|
|
raid6_2data_recov(rbio->real_stripes, sectorsize,
|
|
faila, failb, pointers);
|
|
}
|
|
} else {
|
|
void *p;
|
|
|
|
/* Rebuild from P stripe here (raid5 or raid6). */
|
|
ASSERT(failb == -1);
|
|
pstripe:
|
|
/* Copy parity block into failed block to start with */
|
|
memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
|
|
|
|
/* Rearrange the pointer array */
|
|
p = pointers[faila];
|
|
for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
|
|
stripe_nr++)
|
|
pointers[stripe_nr] = pointers[stripe_nr + 1];
|
|
pointers[rbio->nr_data - 1] = p;
|
|
|
|
/* Xor in the rest */
|
|
run_xor(pointers, rbio->nr_data - 1, sectorsize);
|
|
|
|
}
|
|
|
|
/*
|
|
* No matter if this is a RMW or recovery, we should have all
|
|
* failed sectors repaired in the vertical stripe, thus they are now
|
|
* uptodate.
|
|
* Especially if we determine to cache the rbio, we need to
|
|
* have at least all data sectors uptodate.
|
|
*
|
|
* If possible, also check if the repaired sector matches its data
|
|
* checksum.
|
|
*/
|
|
if (faila >= 0) {
|
|
ret = verify_one_sector(rbio, faila, sector_nr);
|
|
if (ret < 0)
|
|
goto cleanup;
|
|
|
|
sector = rbio_stripe_sector(rbio, faila, sector_nr);
|
|
sector->uptodate = 1;
|
|
}
|
|
if (failb >= 0) {
|
|
ret = verify_one_sector(rbio, failb, sector_nr);
|
|
if (ret < 0)
|
|
goto cleanup;
|
|
|
|
sector = rbio_stripe_sector(rbio, failb, sector_nr);
|
|
sector->uptodate = 1;
|
|
}
|
|
|
|
cleanup:
|
|
for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
|
|
kunmap_local(unmap_array[stripe_nr]);
|
|
return ret;
|
|
}
|
|
|
|
static int recover_sectors(struct btrfs_raid_bio *rbio)
|
|
{
|
|
void **pointers = NULL;
|
|
void **unmap_array = NULL;
|
|
int sectornr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* @pointers array stores the pointer for each sector.
|
|
*
|
|
* @unmap_array stores copy of pointers that does not get reordered
|
|
* during reconstruction so that kunmap_local works.
|
|
*/
|
|
pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
|
|
unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
|
|
if (!pointers || !unmap_array) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
|
|
spin_lock(&rbio->bio_list_lock);
|
|
set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
}
|
|
|
|
index_rbio_pages(rbio);
|
|
|
|
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
|
|
ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
out:
|
|
kfree(pointers);
|
|
kfree(unmap_array);
|
|
return ret;
|
|
}
|
|
|
|
static void recover_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct bio_list bio_list = BIO_EMPTY_LIST;
|
|
int total_sector_nr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Either we're doing recover for a read failure or degraded write,
|
|
* caller should have set error bitmap correctly.
|
|
*/
|
|
ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
|
|
|
|
/* For recovery, we need to read all sectors including P/Q. */
|
|
ret = alloc_rbio_pages(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
index_rbio_pages(rbio);
|
|
|
|
/*
|
|
* Read everything that hasn't failed. However this time we will
|
|
* not trust any cached sector.
|
|
* As we may read out some stale data but higher layer is not reading
|
|
* that stale part.
|
|
*
|
|
* So here we always re-read everything in recovery path.
|
|
*/
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
int stripe = total_sector_nr / rbio->stripe_nsectors;
|
|
int sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
struct sector_ptr *sector;
|
|
|
|
/*
|
|
* Skip the range which has error. It can be a range which is
|
|
* marked error (for csum mismatch), or it can be a missing
|
|
* device.
|
|
*/
|
|
if (!rbio->bioc->stripes[stripe].dev->bdev ||
|
|
test_bit(total_sector_nr, rbio->error_bitmap)) {
|
|
/*
|
|
* Also set the error bit for missing device, which
|
|
* may not yet have its error bit set.
|
|
*/
|
|
set_bit(total_sector_nr, rbio->error_bitmap);
|
|
continue;
|
|
}
|
|
|
|
sector = rbio_stripe_sector(rbio, stripe, sectornr);
|
|
ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
|
|
sectornr, REQ_OP_READ);
|
|
if (ret < 0) {
|
|
bio_list_put(&bio_list);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
submit_read_wait_bio_list(rbio, &bio_list);
|
|
ret = recover_sectors(rbio);
|
|
out:
|
|
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
static void recover_rbio_work(struct work_struct *work)
|
|
{
|
|
struct btrfs_raid_bio *rbio;
|
|
|
|
rbio = container_of(work, struct btrfs_raid_bio, work);
|
|
if (!lock_stripe_add(rbio))
|
|
recover_rbio(rbio);
|
|
}
|
|
|
|
static void recover_rbio_work_locked(struct work_struct *work)
|
|
{
|
|
recover_rbio(container_of(work, struct btrfs_raid_bio, work));
|
|
}
|
|
|
|
static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
|
|
{
|
|
bool found = false;
|
|
int sector_nr;
|
|
|
|
/*
|
|
* This is for RAID6 extra recovery tries, thus mirror number should
|
|
* be large than 2.
|
|
* Mirror 1 means read from data stripes. Mirror 2 means rebuild using
|
|
* RAID5 methods.
|
|
*/
|
|
ASSERT(mirror_num > 2);
|
|
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
|
|
int found_errors;
|
|
int faila;
|
|
int failb;
|
|
|
|
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
|
|
&faila, &failb);
|
|
/* This vertical stripe doesn't have errors. */
|
|
if (!found_errors)
|
|
continue;
|
|
|
|
/*
|
|
* If we found errors, there should be only one error marked
|
|
* by previous set_rbio_range_error().
|
|
*/
|
|
ASSERT(found_errors == 1);
|
|
found = true;
|
|
|
|
/* Now select another stripe to mark as error. */
|
|
failb = rbio->real_stripes - (mirror_num - 1);
|
|
if (failb <= faila)
|
|
failb--;
|
|
|
|
/* Set the extra bit in error bitmap. */
|
|
if (failb >= 0)
|
|
set_bit(failb * rbio->stripe_nsectors + sector_nr,
|
|
rbio->error_bitmap);
|
|
}
|
|
|
|
/* We should found at least one vertical stripe with error.*/
|
|
ASSERT(found);
|
|
}
|
|
|
|
/*
|
|
* the main entry point for reads from the higher layers. This
|
|
* is really only called when the normal read path had a failure,
|
|
* so we assume the bio they send down corresponds to a failed part
|
|
* of the drive.
|
|
*/
|
|
void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
|
|
int mirror_num)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bioc->fs_info;
|
|
struct btrfs_raid_bio *rbio;
|
|
|
|
rbio = alloc_rbio(fs_info, bioc);
|
|
if (IS_ERR(rbio)) {
|
|
bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
rbio->operation = BTRFS_RBIO_READ_REBUILD;
|
|
rbio_add_bio(rbio, bio);
|
|
|
|
set_rbio_range_error(rbio, bio);
|
|
|
|
/*
|
|
* Loop retry:
|
|
* for 'mirror == 2', reconstruct from all other stripes.
|
|
* for 'mirror_num > 2', select a stripe to fail on every retry.
|
|
*/
|
|
if (mirror_num > 2)
|
|
set_rbio_raid6_extra_error(rbio, mirror_num);
|
|
|
|
start_async_work(rbio, recover_rbio_work);
|
|
}
|
|
|
|
static void fill_data_csums(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
|
|
struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
|
|
rbio->bioc->full_stripe_logical);
|
|
const u64 start = rbio->bioc->full_stripe_logical;
|
|
const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
|
|
fs_info->sectorsize_bits;
|
|
int ret;
|
|
|
|
/* The rbio should not have its csum buffer initialized. */
|
|
ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
|
|
|
|
/*
|
|
* Skip the csum search if:
|
|
*
|
|
* - The rbio doesn't belong to data block groups
|
|
* Then we are doing IO for tree blocks, no need to search csums.
|
|
*
|
|
* - The rbio belongs to mixed block groups
|
|
* This is to avoid deadlock, as we're already holding the full
|
|
* stripe lock, if we trigger a metadata read, and it needs to do
|
|
* raid56 recovery, we will deadlock.
|
|
*/
|
|
if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
|
|
rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
|
|
return;
|
|
|
|
rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
|
|
fs_info->csum_size, GFP_NOFS);
|
|
rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
|
|
GFP_NOFS);
|
|
if (!rbio->csum_buf || !rbio->csum_bitmap) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
|
|
rbio->csum_buf, rbio->csum_bitmap);
|
|
if (ret < 0)
|
|
goto error;
|
|
if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
|
|
goto no_csum;
|
|
return;
|
|
|
|
error:
|
|
/*
|
|
* We failed to allocate memory or grab the csum, but it's not fatal,
|
|
* we can still continue. But better to warn users that RMW is no
|
|
* longer safe for this particular sub-stripe write.
|
|
*/
|
|
btrfs_warn_rl(fs_info,
|
|
"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
|
|
rbio->bioc->full_stripe_logical, ret);
|
|
no_csum:
|
|
kfree(rbio->csum_buf);
|
|
bitmap_free(rbio->csum_bitmap);
|
|
rbio->csum_buf = NULL;
|
|
rbio->csum_bitmap = NULL;
|
|
}
|
|
|
|
static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct bio_list bio_list = BIO_EMPTY_LIST;
|
|
int total_sector_nr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Fill the data csums we need for data verification. We need to fill
|
|
* the csum_bitmap/csum_buf first, as our endio function will try to
|
|
* verify the data sectors.
|
|
*/
|
|
fill_data_csums(rbio);
|
|
|
|
/*
|
|
* Build a list of bios to read all sectors (including data and P/Q).
|
|
*
|
|
* This behavior is to compensate the later csum verification and recovery.
|
|
*/
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
struct sector_ptr *sector;
|
|
int stripe = total_sector_nr / rbio->stripe_nsectors;
|
|
int sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
|
|
sector = rbio_stripe_sector(rbio, stripe, sectornr);
|
|
ret = rbio_add_io_sector(rbio, &bio_list, sector,
|
|
stripe, sectornr, REQ_OP_READ);
|
|
if (ret) {
|
|
bio_list_put(&bio_list);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We may or may not have any corrupted sectors (including missing dev
|
|
* and csum mismatch), just let recover_sectors() to handle them all.
|
|
*/
|
|
submit_read_wait_bio_list(rbio, &bio_list);
|
|
return recover_sectors(rbio);
|
|
}
|
|
|
|
static void raid_wait_write_end_io(struct bio *bio)
|
|
{
|
|
struct btrfs_raid_bio *rbio = bio->bi_private;
|
|
blk_status_t err = bio->bi_status;
|
|
|
|
if (err)
|
|
rbio_update_error_bitmap(rbio, bio);
|
|
bio_put(bio);
|
|
if (atomic_dec_and_test(&rbio->stripes_pending))
|
|
wake_up(&rbio->io_wait);
|
|
}
|
|
|
|
static void submit_write_bios(struct btrfs_raid_bio *rbio,
|
|
struct bio_list *bio_list)
|
|
{
|
|
struct bio *bio;
|
|
|
|
atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
|
|
while ((bio = bio_list_pop(bio_list))) {
|
|
bio->bi_end_io = raid_wait_write_end_io;
|
|
|
|
if (trace_raid56_write_enabled()) {
|
|
struct raid56_bio_trace_info trace_info = { 0 };
|
|
|
|
bio_get_trace_info(rbio, bio, &trace_info);
|
|
trace_raid56_write(rbio, bio, &trace_info);
|
|
}
|
|
submit_bio(bio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* To determine if we need to read any sector from the disk.
|
|
* Should only be utilized in RMW path, to skip cached rbio.
|
|
*/
|
|
static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
|
|
struct sector_ptr *sector = &rbio->stripe_sectors[i];
|
|
|
|
/*
|
|
* We have a sector which doesn't have page nor uptodate,
|
|
* thus this rbio can not be cached one, as cached one must
|
|
* have all its data sectors present and uptodate.
|
|
*/
|
|
if (!sector->page || !sector->uptodate)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void rmw_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct bio_list bio_list;
|
|
int sectornr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Allocate the pages for parity first, as P/Q pages will always be
|
|
* needed for both full-stripe and sub-stripe writes.
|
|
*/
|
|
ret = alloc_rbio_parity_pages(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Either full stripe write, or we have every data sector already
|
|
* cached, can go to write path immediately.
|
|
*/
|
|
if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
|
|
/*
|
|
* Now we're doing sub-stripe write, also need all data stripes
|
|
* to do the full RMW.
|
|
*/
|
|
ret = alloc_rbio_data_pages(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
index_rbio_pages(rbio);
|
|
|
|
ret = rmw_read_wait_recover(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* At this stage we're not allowed to add any new bios to the
|
|
* bio list any more, anyone else that wants to change this stripe
|
|
* needs to do their own rmw.
|
|
*/
|
|
spin_lock(&rbio->bio_list_lock);
|
|
set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
|
|
spin_unlock(&rbio->bio_list_lock);
|
|
|
|
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
|
|
|
|
index_rbio_pages(rbio);
|
|
|
|
/*
|
|
* We don't cache full rbios because we're assuming
|
|
* the higher layers are unlikely to use this area of
|
|
* the disk again soon. If they do use it again,
|
|
* hopefully they will send another full bio.
|
|
*/
|
|
if (!rbio_is_full(rbio))
|
|
cache_rbio_pages(rbio);
|
|
else
|
|
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
|
|
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
|
|
generate_pq_vertical(rbio, sectornr);
|
|
|
|
bio_list_init(&bio_list);
|
|
ret = rmw_assemble_write_bios(rbio, &bio_list);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* We should have at least one bio assembled. */
|
|
ASSERT(bio_list_size(&bio_list));
|
|
submit_write_bios(rbio, &bio_list);
|
|
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
|
|
|
|
/* We may have more errors than our tolerance during the read. */
|
|
for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
|
|
int found_errors;
|
|
|
|
found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
|
|
if (found_errors > rbio->bioc->max_errors) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
static void rmw_rbio_work(struct work_struct *work)
|
|
{
|
|
struct btrfs_raid_bio *rbio;
|
|
|
|
rbio = container_of(work, struct btrfs_raid_bio, work);
|
|
if (lock_stripe_add(rbio) == 0)
|
|
rmw_rbio(rbio);
|
|
}
|
|
|
|
static void rmw_rbio_work_locked(struct work_struct *work)
|
|
{
|
|
rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
|
|
}
|
|
|
|
/*
|
|
* The following code is used to scrub/replace the parity stripe
|
|
*
|
|
* Caller must have already increased bio_counter for getting @bioc.
|
|
*
|
|
* Note: We need make sure all the pages that add into the scrub/replace
|
|
* raid bio are correct and not be changed during the scrub/replace. That
|
|
* is those pages just hold metadata or file data with checksum.
|
|
*/
|
|
|
|
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
|
|
struct btrfs_io_context *bioc,
|
|
struct btrfs_device *scrub_dev,
|
|
unsigned long *dbitmap, int stripe_nsectors)
|
|
{
|
|
struct btrfs_fs_info *fs_info = bioc->fs_info;
|
|
struct btrfs_raid_bio *rbio;
|
|
int i;
|
|
|
|
rbio = alloc_rbio(fs_info, bioc);
|
|
if (IS_ERR(rbio))
|
|
return NULL;
|
|
bio_list_add(&rbio->bio_list, bio);
|
|
/*
|
|
* This is a special bio which is used to hold the completion handler
|
|
* and make the scrub rbio is similar to the other types
|
|
*/
|
|
ASSERT(!bio->bi_iter.bi_size);
|
|
rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
|
|
|
|
/*
|
|
* After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
|
|
* to the end position, so this search can start from the first parity
|
|
* stripe.
|
|
*/
|
|
for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
|
|
if (bioc->stripes[i].dev == scrub_dev) {
|
|
rbio->scrubp = i;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(i < rbio->real_stripes);
|
|
|
|
bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
|
|
return rbio;
|
|
}
|
|
|
|
/*
|
|
* We just scrub the parity that we have correct data on the same horizontal,
|
|
* so we needn't allocate all pages for all the stripes.
|
|
*/
|
|
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
|
|
{
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
int total_sector_nr;
|
|
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
struct page *page;
|
|
int sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
|
|
|
|
if (!test_bit(sectornr, &rbio->dbitmap))
|
|
continue;
|
|
if (rbio->stripe_pages[index])
|
|
continue;
|
|
page = alloc_page(GFP_NOFS);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
rbio->stripe_pages[index] = page;
|
|
}
|
|
index_stripe_sectors(rbio);
|
|
return 0;
|
|
}
|
|
|
|
static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct btrfs_io_context *bioc = rbio->bioc;
|
|
const u32 sectorsize = bioc->fs_info->sectorsize;
|
|
void **pointers = rbio->finish_pointers;
|
|
unsigned long *pbitmap = &rbio->finish_pbitmap;
|
|
int nr_data = rbio->nr_data;
|
|
int stripe;
|
|
int sectornr;
|
|
bool has_qstripe;
|
|
struct sector_ptr p_sector = { 0 };
|
|
struct sector_ptr q_sector = { 0 };
|
|
struct bio_list bio_list;
|
|
int is_replace = 0;
|
|
int ret;
|
|
|
|
bio_list_init(&bio_list);
|
|
|
|
if (rbio->real_stripes - rbio->nr_data == 1)
|
|
has_qstripe = false;
|
|
else if (rbio->real_stripes - rbio->nr_data == 2)
|
|
has_qstripe = true;
|
|
else
|
|
BUG();
|
|
|
|
/*
|
|
* Replace is running and our P/Q stripe is being replaced, then we
|
|
* need to duplicate the final write to replace target.
|
|
*/
|
|
if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
|
|
is_replace = 1;
|
|
bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
|
|
}
|
|
|
|
/*
|
|
* Because the higher layers(scrubber) are unlikely to
|
|
* use this area of the disk again soon, so don't cache
|
|
* it.
|
|
*/
|
|
clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
|
|
|
|
p_sector.page = alloc_page(GFP_NOFS);
|
|
if (!p_sector.page)
|
|
return -ENOMEM;
|
|
p_sector.pgoff = 0;
|
|
p_sector.uptodate = 1;
|
|
|
|
if (has_qstripe) {
|
|
/* RAID6, allocate and map temp space for the Q stripe */
|
|
q_sector.page = alloc_page(GFP_NOFS);
|
|
if (!q_sector.page) {
|
|
__free_page(p_sector.page);
|
|
p_sector.page = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
q_sector.pgoff = 0;
|
|
q_sector.uptodate = 1;
|
|
pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
|
|
}
|
|
|
|
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
|
|
|
|
/* Map the parity stripe just once */
|
|
pointers[nr_data] = kmap_local_page(p_sector.page);
|
|
|
|
for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
|
|
struct sector_ptr *sector;
|
|
void *parity;
|
|
|
|
/* first collect one page from each data stripe */
|
|
for (stripe = 0; stripe < nr_data; stripe++) {
|
|
sector = sector_in_rbio(rbio, stripe, sectornr, 0);
|
|
pointers[stripe] = kmap_local_page(sector->page) +
|
|
sector->pgoff;
|
|
}
|
|
|
|
if (has_qstripe) {
|
|
/* RAID6, call the library function to fill in our P/Q */
|
|
raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
|
|
pointers);
|
|
} else {
|
|
/* raid5 */
|
|
memcpy(pointers[nr_data], pointers[0], sectorsize);
|
|
run_xor(pointers + 1, nr_data - 1, sectorsize);
|
|
}
|
|
|
|
/* Check scrubbing parity and repair it */
|
|
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
|
|
parity = kmap_local_page(sector->page) + sector->pgoff;
|
|
if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
|
|
memcpy(parity, pointers[rbio->scrubp], sectorsize);
|
|
else
|
|
/* Parity is right, needn't writeback */
|
|
bitmap_clear(&rbio->dbitmap, sectornr, 1);
|
|
kunmap_local(parity);
|
|
|
|
for (stripe = nr_data - 1; stripe >= 0; stripe--)
|
|
kunmap_local(pointers[stripe]);
|
|
}
|
|
|
|
kunmap_local(pointers[nr_data]);
|
|
__free_page(p_sector.page);
|
|
p_sector.page = NULL;
|
|
if (q_sector.page) {
|
|
kunmap_local(pointers[rbio->real_stripes - 1]);
|
|
__free_page(q_sector.page);
|
|
q_sector.page = NULL;
|
|
}
|
|
|
|
/*
|
|
* time to start writing. Make bios for everything from the
|
|
* higher layers (the bio_list in our rbio) and our p/q. Ignore
|
|
* everything else.
|
|
*/
|
|
for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
|
|
struct sector_ptr *sector;
|
|
|
|
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
|
|
ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
|
|
sectornr, REQ_OP_WRITE);
|
|
if (ret)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!is_replace)
|
|
goto submit_write;
|
|
|
|
/*
|
|
* Replace is running and our parity stripe needs to be duplicated to
|
|
* the target device. Check we have a valid source stripe number.
|
|
*/
|
|
ASSERT(rbio->bioc->replace_stripe_src >= 0);
|
|
for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
|
|
struct sector_ptr *sector;
|
|
|
|
sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
|
|
ret = rbio_add_io_sector(rbio, &bio_list, sector,
|
|
rbio->real_stripes,
|
|
sectornr, REQ_OP_WRITE);
|
|
if (ret)
|
|
goto cleanup;
|
|
}
|
|
|
|
submit_write:
|
|
submit_write_bios(rbio, &bio_list);
|
|
return 0;
|
|
|
|
cleanup:
|
|
bio_list_put(&bio_list);
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
|
|
{
|
|
if (stripe >= 0 && stripe < rbio->nr_data)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
void **pointers = NULL;
|
|
void **unmap_array = NULL;
|
|
int sector_nr;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* @pointers array stores the pointer for each sector.
|
|
*
|
|
* @unmap_array stores copy of pointers that does not get reordered
|
|
* during reconstruction so that kunmap_local works.
|
|
*/
|
|
pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
|
|
unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
|
|
if (!pointers || !unmap_array) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
|
|
int dfail = 0, failp = -1;
|
|
int faila;
|
|
int failb;
|
|
int found_errors;
|
|
|
|
found_errors = get_rbio_veritical_errors(rbio, sector_nr,
|
|
&faila, &failb);
|
|
if (found_errors > rbio->bioc->max_errors) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
if (found_errors == 0)
|
|
continue;
|
|
|
|
/* We should have at least one error here. */
|
|
ASSERT(faila >= 0 || failb >= 0);
|
|
|
|
if (is_data_stripe(rbio, faila))
|
|
dfail++;
|
|
else if (is_parity_stripe(faila))
|
|
failp = faila;
|
|
|
|
if (is_data_stripe(rbio, failb))
|
|
dfail++;
|
|
else if (is_parity_stripe(failb))
|
|
failp = failb;
|
|
/*
|
|
* Because we can not use a scrubbing parity to repair the
|
|
* data, so the capability of the repair is declined. (In the
|
|
* case of RAID5, we can not repair anything.)
|
|
*/
|
|
if (dfail > rbio->bioc->max_errors - 1) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
/*
|
|
* If all data is good, only parity is correctly, just repair
|
|
* the parity, no need to recover data stripes.
|
|
*/
|
|
if (dfail == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Here means we got one corrupted data stripe and one
|
|
* corrupted parity on RAID6, if the corrupted parity is
|
|
* scrubbing parity, luckily, use the other one to repair the
|
|
* data, or we can not repair the data stripe.
|
|
*/
|
|
if (failp != rbio->scrubp) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
out:
|
|
kfree(pointers);
|
|
kfree(unmap_array);
|
|
return ret;
|
|
}
|
|
|
|
static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
|
|
{
|
|
struct bio_list bio_list = BIO_EMPTY_LIST;
|
|
int total_sector_nr;
|
|
int ret = 0;
|
|
|
|
/* Build a list of bios to read all the missing parts. */
|
|
for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
|
|
total_sector_nr++) {
|
|
int sectornr = total_sector_nr % rbio->stripe_nsectors;
|
|
int stripe = total_sector_nr / rbio->stripe_nsectors;
|
|
struct sector_ptr *sector;
|
|
|
|
/* No data in the vertical stripe, no need to read. */
|
|
if (!test_bit(sectornr, &rbio->dbitmap))
|
|
continue;
|
|
|
|
/*
|
|
* We want to find all the sectors missing from the rbio and
|
|
* read them from the disk. If sector_in_rbio() finds a sector
|
|
* in the bio list we don't need to read it off the stripe.
|
|
*/
|
|
sector = sector_in_rbio(rbio, stripe, sectornr, 1);
|
|
if (sector)
|
|
continue;
|
|
|
|
sector = rbio_stripe_sector(rbio, stripe, sectornr);
|
|
/*
|
|
* The bio cache may have handed us an uptodate sector. If so,
|
|
* use it.
|
|
*/
|
|
if (sector->uptodate)
|
|
continue;
|
|
|
|
ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
|
|
sectornr, REQ_OP_READ);
|
|
if (ret) {
|
|
bio_list_put(&bio_list);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
submit_read_wait_bio_list(rbio, &bio_list);
|
|
return 0;
|
|
}
|
|
|
|
static void scrub_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
int sector_nr;
|
|
int ret;
|
|
|
|
ret = alloc_rbio_essential_pages(rbio);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
|
|
|
|
ret = scrub_assemble_read_bios(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* We may have some failures, recover the failed sectors first. */
|
|
ret = recover_scrub_rbio(rbio);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* We have every sector properly prepared. Can finish the scrub
|
|
* and writeback the good content.
|
|
*/
|
|
ret = finish_parity_scrub(rbio);
|
|
wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
|
|
for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
|
|
int found_errors;
|
|
|
|
found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
|
|
if (found_errors > rbio->bioc->max_errors) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
rbio_orig_end_io(rbio, errno_to_blk_status(ret));
|
|
}
|
|
|
|
static void scrub_rbio_work_locked(struct work_struct *work)
|
|
{
|
|
scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
|
|
}
|
|
|
|
void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
|
|
{
|
|
if (!lock_stripe_add(rbio))
|
|
start_async_work(rbio, scrub_rbio_work_locked);
|
|
}
|
|
|
|
/*
|
|
* This is for scrub call sites where we already have correct data contents.
|
|
* This allows us to avoid reading data stripes again.
|
|
*
|
|
* Unfortunately here we have to do page copy, other than reusing the pages.
|
|
* This is due to the fact rbio has its own page management for its cache.
|
|
*/
|
|
void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
|
|
struct page **data_pages, u64 data_logical)
|
|
{
|
|
const u64 offset_in_full_stripe = data_logical -
|
|
rbio->bioc->full_stripe_logical;
|
|
const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
|
|
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
|
|
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
|
|
int ret;
|
|
|
|
/*
|
|
* If we hit ENOMEM temporarily, but later at
|
|
* raid56_parity_submit_scrub_rbio() time it succeeded, we just do
|
|
* the extra read, not a big deal.
|
|
*
|
|
* If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
|
|
* the bio would got proper error number set.
|
|
*/
|
|
ret = alloc_rbio_data_pages(rbio);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
/* data_logical must be at stripe boundary and inside the full stripe. */
|
|
ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
|
|
ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
|
|
|
|
for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
|
|
struct page *dst = rbio->stripe_pages[page_nr + page_index];
|
|
struct page *src = data_pages[page_nr];
|
|
|
|
memcpy_page(dst, 0, src, 0, PAGE_SIZE);
|
|
for (int sector_nr = sectors_per_page * page_index;
|
|
sector_nr < sectors_per_page * (page_index + 1);
|
|
sector_nr++)
|
|
rbio->stripe_sectors[sector_nr].uptodate = true;
|
|
}
|
|
}
|