linux/drivers/mtd/spi-nor/core.c
Michael Walle 773bbe1044 mtd: spi-nor: add generic flash driver
Our SFDP parsing is everything we need to support all basic operations
of a flash device. If the flash isn't found in our in-kernel flash
database, gracefully fall back to a driver described solely by its SFDP
tables.

Signed-off-by: Michael Walle <michael@walle.cc>
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Tested-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Takahiro Kuwano <Takahiro.Kuwano@infineon.com>
Link: https://lore.kernel.org/r/20220810220654.1297699-7-michael@walle.cc
2022-11-21 15:37:16 +02:00

3334 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/sched/task_stack.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
/*
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
* for larger flash
*/
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
#define SPI_NOR_MAX_ADDR_NBYTES 4
#define SPI_NOR_SRST_SLEEP_MIN 200
#define SPI_NOR_SRST_SLEEP_MAX 400
/**
* spi_nor_get_cmd_ext() - Get the command opcode extension based on the
* extension type.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
*
* Right now, only "repeat" and "invert" are supported.
*
* Return: The opcode extension.
*/
static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
const struct spi_mem_op *op)
{
switch (nor->cmd_ext_type) {
case SPI_NOR_EXT_INVERT:
return ~op->cmd.opcode;
case SPI_NOR_EXT_REPEAT:
return op->cmd.opcode;
default:
dev_err(nor->dev, "Unknown command extension type\n");
return 0;
}
}
/**
* spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
* @nor: pointer to a 'struct spi_nor'
* @op: pointer to the 'struct spi_mem_op' whose properties
* need to be initialized.
* @proto: the protocol from which the properties need to be set.
*/
void spi_nor_spimem_setup_op(const struct spi_nor *nor,
struct spi_mem_op *op,
const enum spi_nor_protocol proto)
{
u8 ext;
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
if (op->addr.nbytes)
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->dummy.nbytes)
op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
if (op->data.nbytes)
op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
if (spi_nor_protocol_is_dtr(proto)) {
/*
* SPIMEM supports mixed DTR modes, but right now we can only
* have all phases either DTR or STR. IOW, SPIMEM can have
* something like 4S-4D-4D, but SPI NOR can't. So, set all 4
* phases to either DTR or STR.
*/
op->cmd.dtr = true;
op->addr.dtr = true;
op->dummy.dtr = true;
op->data.dtr = true;
/* 2 bytes per clock cycle in DTR mode. */
op->dummy.nbytes *= 2;
ext = spi_nor_get_cmd_ext(nor, op);
op->cmd.opcode = (op->cmd.opcode << 8) | ext;
op->cmd.nbytes = 2;
}
}
/**
* spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
* transfer
* @nor: pointer to 'struct spi_nor'
* @op: pointer to 'struct spi_mem_op' template for transfer
*
* If we have to use the bounce buffer, the data field in @op will be updated.
*
* Return: true if the bounce buffer is needed, false if not
*/
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
{
/* op->data.buf.in occupies the same memory as op->data.buf.out */
if (object_is_on_stack(op->data.buf.in) ||
!virt_addr_valid(op->data.buf.in)) {
if (op->data.nbytes > nor->bouncebuf_size)
op->data.nbytes = nor->bouncebuf_size;
op->data.buf.in = nor->bouncebuf;
return true;
}
return false;
}
/**
* spi_nor_spimem_exec_op() - execute a memory operation
* @nor: pointer to 'struct spi_nor'
* @op: pointer to 'struct spi_mem_op' template for transfer
*
* Return: 0 on success, -error otherwise.
*/
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
{
int error;
error = spi_mem_adjust_op_size(nor->spimem, op);
if (error)
return error;
return spi_mem_exec_op(nor->spimem, op);
}
int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
u8 *buf, size_t len)
{
if (spi_nor_protocol_is_dtr(nor->reg_proto))
return -EOPNOTSUPP;
return nor->controller_ops->read_reg(nor, opcode, buf, len);
}
int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
const u8 *buf, size_t len)
{
if (spi_nor_protocol_is_dtr(nor->reg_proto))
return -EOPNOTSUPP;
return nor->controller_ops->write_reg(nor, opcode, buf, len);
}
static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
{
if (spi_nor_protocol_is_dtr(nor->reg_proto))
return -EOPNOTSUPP;
return nor->controller_ops->erase(nor, offs);
}
/**
* spi_nor_spimem_read_data() - read data from flash's memory region via
* spi-mem
* @nor: pointer to 'struct spi_nor'
* @from: offset to read from
* @len: number of bytes to read
* @buf: pointer to dst buffer
*
* Return: number of bytes read successfully, -errno otherwise
*/
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
size_t len, u8 *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
SPI_MEM_OP_DATA_IN(len, buf, 0));
bool usebouncebuf;
ssize_t nbytes;
int error;
spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
usebouncebuf = spi_nor_spimem_bounce(nor, &op);
if (nor->dirmap.rdesc) {
nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
op.data.nbytes, op.data.buf.in);
} else {
error = spi_nor_spimem_exec_op(nor, &op);
if (error)
return error;
nbytes = op.data.nbytes;
}
if (usebouncebuf && nbytes > 0)
memcpy(buf, op.data.buf.in, nbytes);
return nbytes;
}
/**
* spi_nor_read_data() - read data from flash memory
* @nor: pointer to 'struct spi_nor'
* @from: offset to read from
* @len: number of bytes to read
* @buf: pointer to dst buffer
*
* Return: number of bytes read successfully, -errno otherwise
*/
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
{
if (nor->spimem)
return spi_nor_spimem_read_data(nor, from, len, buf);
return nor->controller_ops->read(nor, from, len, buf);
}
/**
* spi_nor_spimem_write_data() - write data to flash memory via
* spi-mem
* @nor: pointer to 'struct spi_nor'
* @to: offset to write to
* @len: number of bytes to write
* @buf: pointer to src buffer
*
* Return: number of bytes written successfully, -errno otherwise
*/
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
size_t len, const u8 *buf)
{
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(len, buf, 0));
ssize_t nbytes;
int error;
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op.addr.nbytes = 0;
spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
if (spi_nor_spimem_bounce(nor, &op))
memcpy(nor->bouncebuf, buf, op.data.nbytes);
if (nor->dirmap.wdesc) {
nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
op.data.nbytes, op.data.buf.out);
} else {
error = spi_nor_spimem_exec_op(nor, &op);
if (error)
return error;
nbytes = op.data.nbytes;
}
return nbytes;
}
/**
* spi_nor_write_data() - write data to flash memory
* @nor: pointer to 'struct spi_nor'
* @to: offset to write to
* @len: number of bytes to write
* @buf: pointer to src buffer
*
* Return: number of bytes written successfully, -errno otherwise
*/
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
const u8 *buf)
{
if (nor->spimem)
return spi_nor_spimem_write_data(nor, to, len, buf);
return nor->controller_ops->write(nor, to, len, buf);
}
/**
* spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
* volatile.
* @nor: pointer to 'struct spi_nor'.
* @op: SPI memory operation. op->data.buf must be DMA-able.
* @proto: SPI protocol to use for the register operation.
*
* Return: zero on success, -errno otherwise
*/
int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
enum spi_nor_protocol proto)
{
if (!nor->spimem)
return -EOPNOTSUPP;
spi_nor_spimem_setup_op(nor, op, proto);
return spi_nor_spimem_exec_op(nor, op);
}
/**
* spi_nor_write_any_volatile_reg() - write any volatile register to flash
* memory.
* @nor: pointer to 'struct spi_nor'
* @op: SPI memory operation. op->data.buf must be DMA-able.
* @proto: SPI protocol to use for the register operation.
*
* Writing volatile registers are instant according to some manufacturers
* (Cypress, Micron) and do not need any status polling.
*
* Return: zero on success, -errno otherwise
*/
int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
enum spi_nor_protocol proto)
{
int ret;
if (!nor->spimem)
return -EOPNOTSUPP;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
spi_nor_spimem_setup_op(nor, op, proto);
return spi_nor_spimem_exec_op(nor, op);
}
/**
* spi_nor_write_enable() - Set write enable latch with Write Enable command.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_enable(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_WREN_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
return ret;
}
/**
* spi_nor_write_disable() - Send Write Disable instruction to the chip.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_disable(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_WRDI_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
return ret;
}
/**
* spi_nor_read_id() - Read the JEDEC ID.
* @nor: pointer to 'struct spi_nor'.
* @naddr: number of address bytes to send. Can be zero if the operation
* does not need to send an address.
* @ndummy: number of dummy bytes to send after an opcode or address. Can
* be zero if the operation does not require dummy bytes.
* @id: pointer to a DMA-able buffer where the value of the JEDEC ID
* will be written.
* @proto: the SPI protocol for register operation.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
enum spi_nor_protocol proto)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
spi_nor_spimem_setup_op(nor, &op, proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
SPI_NOR_MAX_ID_LEN);
}
return ret;
}
/**
* spi_nor_read_sr() - Read the Status Register.
* @nor: pointer to 'struct spi_nor'.
* @sr: pointer to a DMA-able buffer where the value of the
* Status Register will be written. Should be at least 2 bytes.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
op.addr.nbytes = nor->params->rdsr_addr_nbytes;
op.dummy.nbytes = nor->params->rdsr_dummy;
/*
* We don't want to read only one byte in DTR mode. So,
* read 2 and then discard the second byte.
*/
op.data.nbytes = 2;
}
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading SR\n", ret);
return ret;
}
/**
* spi_nor_read_cr() - Read the Configuration Register using the
* SPINOR_OP_RDCR (35h) command.
* @nor: pointer to 'struct spi_nor'
* @cr: pointer to a DMA-able buffer where the value of the
* Configuration Register will be written.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
}
/**
* spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor,
enable ? SPINOR_OP_EN4B :
SPINOR_OP_EX4B,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
return ret;
}
/**
* spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
* flashes.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
nor->bouncebuf[0] = enable << 7;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
nor->bouncebuf, 1);
}
if (ret)
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
return ret;
}
/**
* spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
* for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
int spi_nor_sr_ready(struct spi_nor *nor)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
return !(nor->bouncebuf[0] & SR_WIP);
}
/**
* spi_nor_ready() - Query the flash to see if it is ready for new commands.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int spi_nor_ready(struct spi_nor *nor)
{
/* Flashes might override the standard routine. */
if (nor->params->ready)
return nor->params->ready(nor);
return spi_nor_sr_ready(nor);
}
/**
* spi_nor_wait_till_ready_with_timeout() - Service routine to read the
* Status Register until ready, or timeout occurs.
* @nor: pointer to "struct spi_nor".
* @timeout_jiffies: jiffies to wait until timeout.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout_jiffies)
{
unsigned long deadline;
int timeout = 0, ret;
deadline = jiffies + timeout_jiffies;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
cond_resched();
}
dev_dbg(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
/**
* spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
* flash to be ready, or timeout occurs.
* @nor: pointer to "struct spi_nor".
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
/**
* spi_nor_global_block_unlock() - Unlock Global Block Protection.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_global_block_unlock(struct spi_nor *nor)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_GBULK_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
NULL, 0);
}
if (ret) {
dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
return ret;
}
return spi_nor_wait_till_ready(nor);
}
/**
* spi_nor_write_sr() - Write the Status Register.
* @nor: pointer to 'struct spi_nor'.
* @sr: pointer to DMA-able buffer to write to the Status Register.
* @len: number of bytes to write to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
len);
}
if (ret) {
dev_dbg(nor->dev, "error %d writing SR\n", ret);
return ret;
}
return spi_nor_wait_till_ready(nor);
}
/**
* spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
* ensure that the byte written match the received value.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
{
int ret;
nor->bouncebuf[0] = sr1;
ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
if (ret)
return ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] != sr1) {
dev_dbg(nor->dev, "SR1: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
* Status Register 2 in one shot. Ensure that the byte written in the Status
* Register 1 match the received value, and that the 16-bit Write did not
* affect what was already in the Status Register 2.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register 1.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
{
int ret;
u8 *sr_cr = nor->bouncebuf;
u8 cr_written;
/* Make sure we don't overwrite the contents of Status Register 2. */
if (!(nor->flags & SNOR_F_NO_READ_CR)) {
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
} else if (nor->params->quad_enable) {
/*
* If the Status Register 2 Read command (35h) is not
* supported, we should at least be sure we don't
* change the value of the SR2 Quad Enable bit.
*
* We can safely assume that when the Quad Enable method is
* set, the value of the QE bit is one, as a consequence of the
* nor->params->quad_enable() call.
*
* We can safely assume that the Quad Enable bit is present in
* the Status Register 2 at BIT(1). According to the JESD216
* revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
* Write Status (01h) command is available just for the cases
* in which the QE bit is described in SR2 at BIT(1).
*/
sr_cr[1] = SR2_QUAD_EN_BIT1;
} else {
sr_cr[1] = 0;
}
sr_cr[0] = sr1;
ret = spi_nor_write_sr(nor, sr_cr, 2);
if (ret)
return ret;
ret = spi_nor_read_sr(nor, sr_cr);
if (ret)
return ret;
if (sr1 != sr_cr[0]) {
dev_dbg(nor->dev, "SR: Read back test failed\n");
return -EIO;
}
if (nor->flags & SNOR_F_NO_READ_CR)
return 0;
cr_written = sr_cr[1];
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
if (cr_written != sr_cr[1]) {
dev_dbg(nor->dev, "CR: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
* Configuration Register in one shot. Ensure that the byte written in the
* Configuration Register match the received value, and that the 16-bit Write
* did not affect what was already in the Status Register 1.
* @nor: pointer to a 'struct spi_nor'.
* @cr: byte value to be written to the Configuration Register.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
int ret;
u8 *sr_cr = nor->bouncebuf;
u8 sr_written;
/* Keep the current value of the Status Register 1. */
ret = spi_nor_read_sr(nor, sr_cr);
if (ret)
return ret;
sr_cr[1] = cr;
ret = spi_nor_write_sr(nor, sr_cr, 2);
if (ret)
return ret;
sr_written = sr_cr[0];
ret = spi_nor_read_sr(nor, sr_cr);
if (ret)
return ret;
if (sr_written != sr_cr[0]) {
dev_dbg(nor->dev, "SR: Read back test failed\n");
return -EIO;
}
if (nor->flags & SNOR_F_NO_READ_CR)
return 0;
ret = spi_nor_read_cr(nor, &sr_cr[1]);
if (ret)
return ret;
if (cr != sr_cr[1]) {
dev_dbg(nor->dev, "CR: read back test failed\n");
return -EIO;
}
return 0;
}
/**
* spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
* the byte written match the received value without affecting other bits in the
* Status Register 1 and 2.
* @nor: pointer to a 'struct spi_nor'.
* @sr1: byte value to be written to the Status Register.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
{
if (nor->flags & SNOR_F_HAS_16BIT_SR)
return spi_nor_write_16bit_sr_and_check(nor, sr1);
return spi_nor_write_sr1_and_check(nor, sr1);
}
/**
* spi_nor_write_sr2() - Write the Status Register 2 using the
* SPINOR_OP_WRSR2 (3eh) command.
* @nor: pointer to 'struct spi_nor'.
* @sr2: pointer to DMA-able buffer to write to the Status Register 2.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
sr2, 1);
}
if (ret) {
dev_dbg(nor->dev, "error %d writing SR2\n", ret);
return ret;
}
return spi_nor_wait_till_ready(nor);
}
/**
* spi_nor_read_sr2() - Read the Status Register 2 using the
* SPINOR_OP_RDSR2 (3fh) command.
* @nor: pointer to 'struct spi_nor'.
* @sr2: pointer to DMA-able buffer where the value of the
* Status Register 2 will be written.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading SR2\n", ret);
return ret;
}
/**
* spi_nor_erase_chip() - Erase the entire flash memory.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_erase_chip(struct spi_nor *nor)
{
int ret;
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
if (nor->spimem) {
struct spi_mem_op op = SPI_NOR_CHIP_ERASE_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor,
SPINOR_OP_CHIP_ERASE,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d erasing chip\n", ret);
return ret;
}
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
/* No conversion found, keep input op code. */
return opcode;
}
u8 spi_nor_convert_3to4_read(u8 opcode)
{
static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
}
static u8 spi_nor_convert_3to4_program(u8 opcode)
{
static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
}
static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
}
static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
{
return !!nor->params->erase_map.uniform_erase_type;
}
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
if (!spi_nor_has_uniform_erase(nor)) {
struct spi_nor_erase_map *map = &nor->params->erase_map;
struct spi_nor_erase_type *erase;
int i;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
erase = &map->erase_type[i];
erase->opcode =
spi_nor_convert_3to4_erase(erase->opcode);
}
}
}
int spi_nor_lock_and_prep(struct spi_nor *nor)
{
int ret = 0;
mutex_lock(&nor->lock);
if (nor->controller_ops && nor->controller_ops->prepare) {
ret = nor->controller_ops->prepare(nor);
if (ret) {
mutex_unlock(&nor->lock);
return ret;
}
}
return ret;
}
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
{
if (nor->controller_ops && nor->controller_ops->unprepare)
nor->controller_ops->unprepare(nor);
mutex_unlock(&nor->lock);
}
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
{
if (!nor->params->convert_addr)
return addr;
return nor->params->convert_addr(nor, addr);
}
/*
* Initiate the erasure of a single sector
*/
int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
int i;
addr = spi_nor_convert_addr(nor, addr);
if (nor->spimem) {
struct spi_mem_op op =
SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
nor->addr_nbytes, addr);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
return spi_mem_exec_op(nor->spimem, &op);
} else if (nor->controller_ops->erase) {
return spi_nor_controller_ops_erase(nor, addr);
}
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
for (i = nor->addr_nbytes - 1; i >= 0; i--) {
nor->bouncebuf[i] = addr & 0xff;
addr >>= 8;
}
return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
nor->bouncebuf, nor->addr_nbytes);
}
/**
* spi_nor_div_by_erase_size() - calculate remainder and update new dividend
* @erase: pointer to a structure that describes a SPI NOR erase type
* @dividend: dividend value
* @remainder: pointer to u32 remainder (will be updated)
*
* Return: the result of the division
*/
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
u64 dividend, u32 *remainder)
{
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
*remainder = (u32)dividend & erase->size_mask;
return dividend >> erase->size_shift;
}
/**
* spi_nor_find_best_erase_type() - find the best erase type for the given
* offset in the serial flash memory and the
* number of bytes to erase. The region in
* which the address fits is expected to be
* provided.
* @map: the erase map of the SPI NOR
* @region: pointer to a structure that describes a SPI NOR erase region
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Return: a pointer to the best fitted erase type, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
const struct spi_nor_erase_region *region,
u64 addr, u32 len)
{
const struct spi_nor_erase_type *erase;
u32 rem;
int i;
u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
/*
* Erase types are ordered by size, with the smallest erase type at
* index 0.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
/* Does the erase region support the tested erase type? */
if (!(erase_mask & BIT(i)))
continue;
erase = &map->erase_type[i];
if (!erase->size)
continue;
/* Alignment is not mandatory for overlaid regions */
if (region->offset & SNOR_OVERLAID_REGION &&
region->size <= len)
return erase;
/* Don't erase more than what the user has asked for. */
if (erase->size > len)
continue;
spi_nor_div_by_erase_size(erase, addr, &rem);
if (!rem)
return erase;
}
return NULL;
}
static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
{
return region->offset & SNOR_LAST_REGION;
}
static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
{
return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
}
/**
* spi_nor_region_next() - get the next spi nor region
* @region: pointer to a structure that describes a SPI NOR erase region
*
* Return: the next spi nor region or NULL if last region.
*/
struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
if (spi_nor_region_is_last(region))
return NULL;
region++;
return region;
}
/**
* spi_nor_find_erase_region() - find the region of the serial flash memory in
* which the offset fits
* @map: the erase map of the SPI NOR
* @addr: offset in the serial flash memory
*
* Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
struct spi_nor_erase_region *region = map->regions;
u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
u64 region_end = region_start + region->size;
while (addr < region_start || addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
return ERR_PTR(-EINVAL);
region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
region_end = region_start + region->size;
}
return region;
}
/**
* spi_nor_init_erase_cmd() - initialize an erase command
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
*
* Return: the pointer to the allocated erase command, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
const struct spi_nor_erase_type *erase)
{
struct spi_nor_erase_command *cmd;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&cmd->list);
cmd->opcode = erase->opcode;
cmd->count = 1;
if (region->offset & SNOR_OVERLAID_REGION)
cmd->size = region->size;
else
cmd->size = erase->size;
return cmd;
}
/**
* spi_nor_destroy_erase_cmd_list() - destroy erase command list
* @erase_list: list of erase commands
*/
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
struct spi_nor_erase_command *cmd, *next;
list_for_each_entry_safe(cmd, next, erase_list, list) {
list_del(&cmd->list);
kfree(cmd);
}
}
/**
* spi_nor_init_erase_cmd_list() - initialize erase command list
* @nor: pointer to a 'struct spi_nor'
* @erase_list: list of erase commands to be executed once we validate that the
* erase can be performed
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Builds the list of best fitted erase commands and verifies if the erase can
* be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
struct list_head *erase_list,
u64 addr, u32 len)
{
const struct spi_nor_erase_map *map = &nor->params->erase_map;
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
struct spi_nor_erase_region *region;
struct spi_nor_erase_command *cmd = NULL;
u64 region_end;
int ret = -EINVAL;
region = spi_nor_find_erase_region(map, addr);
if (IS_ERR(region))
return PTR_ERR(region);
region_end = spi_nor_region_end(region);
while (len) {
erase = spi_nor_find_best_erase_type(map, region, addr, len);
if (!erase)
goto destroy_erase_cmd_list;
if (prev_erase != erase ||
erase->size != cmd->size ||
region->offset & SNOR_OVERLAID_REGION) {
cmd = spi_nor_init_erase_cmd(region, erase);
if (IS_ERR(cmd)) {
ret = PTR_ERR(cmd);
goto destroy_erase_cmd_list;
}
list_add_tail(&cmd->list, erase_list);
} else {
cmd->count++;
}
addr += cmd->size;
len -= cmd->size;
if (len && addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
goto destroy_erase_cmd_list;
region_end = spi_nor_region_end(region);
}
prev_erase = erase;
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(erase_list);
return ret;
}
/**
* spi_nor_erase_multi_sectors() - perform a non-uniform erase
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Build a list of best fitted erase commands and execute it once we validate
* that the erase can be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
LIST_HEAD(erase_list);
struct spi_nor_erase_command *cmd, *next;
int ret;
ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
if (ret)
return ret;
list_for_each_entry_safe(cmd, next, &erase_list, list) {
nor->erase_opcode = cmd->opcode;
while (cmd->count) {
dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
cmd->size, cmd->opcode, cmd->count);
ret = spi_nor_write_enable(nor);
if (ret)
goto destroy_erase_cmd_list;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto destroy_erase_cmd_list;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto destroy_erase_cmd_list;
addr += cmd->size;
cmd->count--;
}
list_del(&cmd->list);
kfree(cmd);
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(&erase_list);
return ret;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error if there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
if (spi_nor_has_uniform_erase(nor)) {
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
}
addr = instr->addr;
len = instr->len;
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
/* whole-chip erase? */
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
unsigned long timeout;
ret = spi_nor_write_enable(nor);
if (ret)
goto erase_err;
ret = spi_nor_erase_chip(nor);
if (ret)
goto erase_err;
/*
* Scale the timeout linearly with the size of the flash, with
* a minimum calibrated to an old 2MB flash. We could try to
* pull these from CFI/SFDP, but these values should be good
* enough for now.
*/
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
(unsigned long)(mtd->size / SZ_2M));
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
if (ret)
goto erase_err;
/* REVISIT in some cases we could speed up erasing large regions
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else if (spi_nor_has_uniform_erase(nor)) {
while (len) {
ret = spi_nor_write_enable(nor);
if (ret)
goto erase_err;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
}
/* erase multiple sectors */
} else {
ret = spi_nor_erase_multi_sectors(nor, addr, len);
if (ret)
goto erase_err;
}
ret = spi_nor_write_disable(nor);
erase_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
/**
* spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
* Register 1.
* @nor: pointer to a 'struct spi_nor'
*
* Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
{
int ret;
ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
return 0;
nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
}
/**
* spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
* Register 2.
* @nor: pointer to a 'struct spi_nor'.
*
* Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
{
int ret;
if (nor->flags & SNOR_F_NO_READ_CR)
return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
ret = spi_nor_read_cr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
return 0;
nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
}
/**
* spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register 2.
*
* This is one of the procedures to set the QE bit described in the SFDP
* (JESD216 rev B) specification but no manufacturer using this procedure has
* been identified yet, hence the name of the function.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
{
u8 *sr2 = nor->bouncebuf;
int ret;
u8 sr2_written;
/* Check current Quad Enable bit value. */
ret = spi_nor_read_sr2(nor, sr2);
if (ret)
return ret;
if (*sr2 & SR2_QUAD_EN_BIT7)
return 0;
/* Update the Quad Enable bit. */
*sr2 |= SR2_QUAD_EN_BIT7;
ret = spi_nor_write_sr2(nor, sr2);
if (ret)
return ret;
sr2_written = *sr2;
/* Read back and check it. */
ret = spi_nor_read_sr2(nor, sr2);
if (ret)
return ret;
if (*sr2 != sr2_written) {
dev_dbg(nor->dev, "SR2: Read back test failed\n");
return -EIO;
}
return 0;
}
static const struct spi_nor_manufacturer *manufacturers[] = {
&spi_nor_atmel,
&spi_nor_catalyst,
&spi_nor_eon,
&spi_nor_esmt,
&spi_nor_everspin,
&spi_nor_fujitsu,
&spi_nor_gigadevice,
&spi_nor_intel,
&spi_nor_issi,
&spi_nor_macronix,
&spi_nor_micron,
&spi_nor_st,
&spi_nor_spansion,
&spi_nor_sst,
&spi_nor_winbond,
&spi_nor_xilinx,
&spi_nor_xmc,
};
static const struct flash_info spi_nor_generic_flash = {
.name = "spi-nor-generic",
/*
* JESD216 rev A doesn't specify the page size, therefore we need a
* sane default.
*/
.page_size = 256,
.parse_sfdp = true,
};
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
const u8 *id)
{
const struct flash_info *part;
unsigned int i, j;
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
for (j = 0; j < manufacturers[i]->nparts; j++) {
part = &manufacturers[i]->parts[j];
if (part->id_len &&
!memcmp(part->id, id, part->id_len)) {
nor->manufacturer = manufacturers[i];
return part;
}
}
}
return NULL;
}
static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
{
const struct flash_info *info;
u8 *id = nor->bouncebuf;
int ret;
ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
if (ret) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
return ERR_PTR(ret);
}
/* Cache the complete flash ID. */
nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
if (!nor->id)
return ERR_PTR(-ENOMEM);
info = spi_nor_match_id(nor, id);
/* Fallback to a generic flash described only by its SFDP data. */
if (!info) {
ret = spi_nor_check_sfdp_signature(nor);
if (!ret)
info = &spi_nor_generic_flash;
}
if (!info) {
dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
SPI_NOR_MAX_ID_LEN, id);
return ERR_PTR(-ENODEV);
}
return info;
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
ssize_t ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
while (len) {
loff_t addr = from;
addr = spi_nor_convert_addr(nor, addr);
ret = spi_nor_read_data(nor, addr, len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
WARN_ON(ret > len);
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
}
ret = 0;
read_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain, i;
ssize_t ret;
u32 page_size = nor->params->page_size;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor);
if (ret)
return ret;
for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
*/
if (is_power_of_2(page_size)) {
page_offset = addr & (page_size - 1);
} else {
uint64_t aux = addr;
page_offset = do_div(aux, page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t, page_size - page_offset, len - i);
addr = spi_nor_convert_addr(nor, addr);
ret = spi_nor_write_enable(nor);
if (ret)
goto write_err;
ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
}
write_err:
spi_nor_unlock_and_unprep(nor);
return ret;
}
static int spi_nor_check(struct spi_nor *nor)
{
if (!nor->dev ||
(!nor->spimem && !nor->controller_ops) ||
(!nor->spimem && nor->controller_ops &&
(!nor->controller_ops->read ||
!nor->controller_ops->write ||
!nor->controller_ops->read_reg ||
!nor->controller_ops->write_reg))) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
if (nor->spimem && nor->controller_ops) {
dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
return -EINVAL;
}
return 0;
}
void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = num_mode_clocks;
read->num_wait_states = num_wait_states;
read->opcode = opcode;
read->proto = proto;
}
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
enum spi_nor_protocol proto)
{
pp->opcode = opcode;
pp->proto = proto;
}
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == (int)hwcaps)
return table[i][1];
return -EINVAL;
}
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
static const int hwcaps_read2cmd[][2] = {
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
{ SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
ARRAY_SIZE(hwcaps_read2cmd));
}
int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
static const int hwcaps_pp2cmd[][2] = {
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
{ SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
ARRAY_SIZE(hwcaps_pp2cmd));
}
/**
* spi_nor_spimem_check_op - check if the operation is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@op: pointer to op template to be checked
*
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
*/
static int spi_nor_spimem_check_op(struct spi_nor *nor,
struct spi_mem_op *op)
{
/*
* First test with 4 address bytes. The opcode itself might
* be a 3B addressing opcode but we don't care, because
* SPI controller implementation should not check the opcode,
* but just the sequence.
*/
op->addr.nbytes = 4;
if (!spi_mem_supports_op(nor->spimem, op)) {
if (nor->params->size > SZ_16M)
return -EOPNOTSUPP;
/* If flash size <= 16MB, 3 address bytes are sufficient */
op->addr.nbytes = 3;
if (!spi_mem_supports_op(nor->spimem, op))
return -EOPNOTSUPP;
}
return 0;
}
/**
* spi_nor_spimem_check_readop - check if the read op is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@read: pointer to op template to be checked
*
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
*/
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
const struct spi_nor_read_command *read)
{
struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
spi_nor_spimem_setup_op(nor, &op, read->proto);
/* convert the dummy cycles to the number of bytes */
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op.dummy.nbytes *= 2;
return spi_nor_spimem_check_op(nor, &op);
}
/**
* spi_nor_spimem_check_pp - check if the page program op is supported
* by controller
*@nor: pointer to a 'struct spi_nor'
*@pp: pointer to op template to be checked
*
* Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
*/
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
const struct spi_nor_pp_command *pp)
{
struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
spi_nor_spimem_setup_op(nor, &op, pp->proto);
return spi_nor_spimem_check_op(nor, &op);
}
/**
* spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
* based on SPI controller capabilities
* @nor: pointer to a 'struct spi_nor'
* @hwcaps: pointer to resulting capabilities after adjusting
* according to controller and flash's capability
*/
static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
{
struct spi_nor_flash_parameter *params = nor->params;
unsigned int cap;
/* X-X-X modes are not supported yet, mask them all. */
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
/*
* If the reset line is broken, we do not want to enter a stateful
* mode.
*/
if (nor->flags & SNOR_F_BROKEN_RESET)
*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
int rdidx, ppidx;
if (!(*hwcaps & BIT(cap)))
continue;
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
if (rdidx >= 0 &&
spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
*hwcaps &= ~BIT(cap);
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
if (ppidx < 0)
continue;
if (spi_nor_spimem_check_pp(nor,
&params->page_programs[ppidx]))
*hwcaps &= ~BIT(cap);
}
}
/**
* spi_nor_set_erase_type() - set a SPI NOR erase type
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
*/
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
u8 opcode)
{
erase->size = size;
erase->opcode = opcode;
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
erase->size_shift = ffs(erase->size) - 1;
erase->size_mask = (1 << erase->size_shift) - 1;
}
/**
* spi_nor_init_uniform_erase_map() - Initialize uniform erase map
* @map: the erase map of the SPI NOR
* @erase_mask: bitmask encoding erase types that can erase the entire
* flash memory
* @flash_size: the spi nor flash memory size
*/
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
u8 erase_mask, u64 flash_size)
{
/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
SNOR_LAST_REGION;
map->uniform_region.size = flash_size;
map->regions = &map->uniform_region;
map->uniform_erase_type = erase_mask;
}
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt)
{
int ret;
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->post_bfpt) {
ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
bfpt);
if (ret)
return ret;
}
if (nor->info->fixups && nor->info->fixups->post_bfpt)
return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
return 0;
}
static int spi_nor_select_read(struct spi_nor *nor,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
const struct spi_nor_read_command *read;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
read = &nor->params->reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
/*
* In the SPI NOR framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
return 0;
}
static int spi_nor_select_pp(struct spi_nor *nor,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
const struct spi_nor_pp_command *pp;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
pp = &nor->params->page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
}
/**
* spi_nor_select_uniform_erase() - select optimum uniform erase type
* @map: the erase map of the SPI NOR
* @wanted_size: the erase type size to search for. Contains the value of
* info->sector_size, the "small sector" size in case
* CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined or 0 if
* there is no information about the sector size. The
* latter is the case if the flash parameters are parsed
* solely by SFDP, then the largest supported erase type
* is selected.
*
* Once the optimum uniform sector erase command is found, disable all the
* other.
*
* Return: pointer to erase type on success, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
const u32 wanted_size)
{
const struct spi_nor_erase_type *tested_erase, *erase = NULL;
int i;
u8 uniform_erase_type = map->uniform_erase_type;
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (!(uniform_erase_type & BIT(i)))
continue;
tested_erase = &map->erase_type[i];
/* Skip masked erase types. */
if (!tested_erase->size)
continue;
/*
* If the current erase size is the one, stop here:
* we have found the right uniform Sector Erase command.
*/
if (tested_erase->size == wanted_size) {
erase = tested_erase;
break;
}
/*
* Otherwise, the current erase size is still a valid candidate.
* Select the biggest valid candidate.
*/
if (!erase && tested_erase->size)
erase = tested_erase;
/* keep iterating to find the wanted_size */
}
if (!erase)
return NULL;
/* Disable all other Sector Erase commands. */
map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
map->uniform_erase_type |= BIT(erase - map->erase_type);
return erase;
}
static int spi_nor_select_erase(struct spi_nor *nor)
{
struct spi_nor_erase_map *map = &nor->params->erase_map;
const struct spi_nor_erase_type *erase = NULL;
struct mtd_info *mtd = &nor->mtd;
u32 wanted_size = nor->info->sector_size;
int i;
/*
* The previous implementation handling Sector Erase commands assumed
* that the SPI flash memory has an uniform layout then used only one
* of the supported erase sizes for all Sector Erase commands.
* So to be backward compatible, the new implementation also tries to
* manage the SPI flash memory as uniform with a single erase sector
* size, when possible.
*/
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
wanted_size = 4096u;
#endif
if (spi_nor_has_uniform_erase(nor)) {
erase = spi_nor_select_uniform_erase(map, wanted_size);
if (!erase)
return -EINVAL;
nor->erase_opcode = erase->opcode;
mtd->erasesize = erase->size;
return 0;
}
/*
* For non-uniform SPI flash memory, set mtd->erasesize to the
* maximum erase sector size. No need to set nor->erase_opcode.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (map->erase_type[i].size) {
erase = &map->erase_type[i];
break;
}
}
if (!erase)
return -EINVAL;
mtd->erasesize = erase->size;
return 0;
}
static int spi_nor_default_setup(struct spi_nor *nor,
const struct spi_nor_hwcaps *hwcaps)
{
struct spi_nor_flash_parameter *params = nor->params;
u32 ignored_mask, shared_mask;
int err;
/*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
shared_mask = hwcaps->mask & params->hwcaps.mask;
if (nor->spimem) {
/*
* When called from spi_nor_probe(), all caps are set and we
* need to discard some of them based on what the SPI
* controller actually supports (using spi_mem_supports_op()).
*/
spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
} else {
/*
* SPI n-n-n protocols are not supported when the SPI
* controller directly implements the spi_nor interface.
* Yet another reason to switch to spi-mem.
*/
ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
if (shared_mask & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported.\n");
shared_mask &= ~ignored_mask;
}
}
/* Select the (Fast) Read command. */
err = spi_nor_select_read(nor, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
err = spi_nor_select_pp(nor, shared_mask);
if (err) {
dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
err = spi_nor_select_erase(nor);
if (err) {
dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
return 0;
}
static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
{
if (nor->params->addr_nbytes) {
nor->addr_nbytes = nor->params->addr_nbytes;
} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
/*
* In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
* in this protocol an odd addr_nbytes cannot be used because
* then the address phase would only span a cycle and a half.
* Half a cycle would be left over. We would then have to start
* the dummy phase in the middle of a cycle and so too the data
* phase, and we will end the transaction with half a cycle left
* over.
*
* Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
* avoid this situation.
*/
nor->addr_nbytes = 4;
} else if (nor->info->addr_nbytes) {
nor->addr_nbytes = nor->info->addr_nbytes;
} else {
nor->addr_nbytes = 3;
}
if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_nbytes = 4;
}
if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
nor->addr_nbytes);
return -EINVAL;
}
/* Set 4byte opcodes when possible. */
if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
!(nor->flags & SNOR_F_HAS_4BAIT))
spi_nor_set_4byte_opcodes(nor);
return 0;
}
static int spi_nor_setup(struct spi_nor *nor,
const struct spi_nor_hwcaps *hwcaps)
{
int ret;
if (nor->params->setup)
ret = nor->params->setup(nor, hwcaps);
else
ret = spi_nor_default_setup(nor, hwcaps);
if (ret)
return ret;
return spi_nor_set_addr_nbytes(nor);
}
/**
* spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
* settings based on MFR register and ->default_init() hook.
* @nor: pointer to a 'struct spi_nor'.
*/
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
{
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->default_init)
nor->manufacturer->fixups->default_init(nor);
if (nor->info->fixups && nor->info->fixups->default_init)
nor->info->fixups->default_init(nor);
}
/**
* spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
* settings based on nor->info->sfdp_flags. This method should be called only by
* flashes that do not define SFDP tables. If the flash supports SFDP but the
* information is wrong and the settings from this function can not be retrieved
* by parsing SFDP, one should instead use the fixup hooks and update the wrong
* bits.
* @nor: pointer to a 'struct spi_nor'.
*/
static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
struct spi_nor_erase_map *map = &params->erase_map;
const u8 no_sfdp_flags = nor->info->no_sfdp_flags;
u8 i, erase_mask;
if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
}
if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
}
if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_READ_FAST,
SNOR_PROTO_8_8_8_DTR);
}
if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
/*
* Since xSPI Page Program opcode is backward compatible with
* Legacy SPI, use Legacy SPI opcode there as well.
*/
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
}
/*
* Sector Erase settings. Sort Erase Types in ascending order, with the
* smallest erase size starting at BIT(0).
*/
erase_mask = 0;
i = 0;
if (no_sfdp_flags & SECT_4K) {
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
SPINOR_OP_BE_4K);
i++;
}
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size,
SPINOR_OP_SE);
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
}
/**
* spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
* in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
* @nor: pointer to a 'struct spi_nor'
*/
static void spi_nor_init_flags(struct spi_nor *nor)
{
struct device_node *np = spi_nor_get_flash_node(nor);
const u16 flags = nor->info->flags;
if (of_property_read_bool(np, "broken-flash-reset"))
nor->flags |= SNOR_F_BROKEN_RESET;
if (flags & SPI_NOR_SWP_IS_VOLATILE)
nor->flags |= SNOR_F_SWP_IS_VOLATILE;
if (flags & SPI_NOR_HAS_LOCK)
nor->flags |= SNOR_F_HAS_LOCK;
if (flags & SPI_NOR_HAS_TB) {
nor->flags |= SNOR_F_HAS_SR_TB;
if (flags & SPI_NOR_TB_SR_BIT6)
nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
}
if (flags & SPI_NOR_4BIT_BP) {
nor->flags |= SNOR_F_HAS_4BIT_BP;
if (flags & SPI_NOR_BP3_SR_BIT6)
nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
}
if (flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
}
/**
* spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
* be discovered by SFDP for this particular flash because the SFDP table that
* indicates this support is not defined in the flash. In case the table for
* this support is defined but has wrong values, one should instead use a
* post_sfdp() hook to set the SNOR_F equivalent flag.
* @nor: pointer to a 'struct spi_nor'
*/
static void spi_nor_init_fixup_flags(struct spi_nor *nor)
{
const u8 fixup_flags = nor->info->fixup_flags;
if (fixup_flags & SPI_NOR_4B_OPCODES)
nor->flags |= SNOR_F_4B_OPCODES;
if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
}
/**
* spi_nor_late_init_params() - Late initialization of default flash parameters.
* @nor: pointer to a 'struct spi_nor'
*
* Used to initialize flash parameters that are not declared in the JESD216
* SFDP standard, or where SFDP tables are not defined at all.
* Will replace the spi_nor_manufacturer_init_params() method.
*/
static void spi_nor_late_init_params(struct spi_nor *nor)
{
if (nor->manufacturer && nor->manufacturer->fixups &&
nor->manufacturer->fixups->late_init)
nor->manufacturer->fixups->late_init(nor);
if (nor->info->fixups && nor->info->fixups->late_init)
nor->info->fixups->late_init(nor);
spi_nor_init_flags(nor);
spi_nor_init_fixup_flags(nor);
/*
* NOR protection support. When locking_ops are not provided, we pick
* the default ones.
*/
if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
spi_nor_init_default_locking_ops(nor);
}
/**
* spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
* parameters and settings based on JESD216 SFDP standard.
* @nor: pointer to a 'struct spi_nor'.
*
* The method has a roll-back mechanism: in case the SFDP parsing fails, the
* legacy flash parameters and settings will be restored.
*/
static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
{
struct spi_nor_flash_parameter sfdp_params;
memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
if (spi_nor_parse_sfdp(nor)) {
memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
nor->flags &= ~SNOR_F_4B_OPCODES;
}
}
/**
* spi_nor_init_params_deprecated() - Deprecated way of initializing flash
* parameters and settings.
* @nor: pointer to a 'struct spi_nor'.
*
* The method assumes that flash doesn't support SFDP so it initializes flash
* parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
* when parsing SFDP, if supported.
*/
static void spi_nor_init_params_deprecated(struct spi_nor *nor)
{
spi_nor_no_sfdp_init_params(nor);
spi_nor_manufacturer_init_params(nor);
if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ |
SPI_NOR_OCTAL_READ |
SPI_NOR_OCTAL_DTR_READ))
spi_nor_sfdp_init_params_deprecated(nor);
}
/**
* spi_nor_init_default_params() - Default initialization of flash parameters
* and settings. Done for all flashes, regardless is they define SFDP tables
* or not.
* @nor: pointer to a 'struct spi_nor'.
*/
static void spi_nor_init_default_params(struct spi_nor *nor)
{
struct spi_nor_flash_parameter *params = nor->params;
const struct flash_info *info = nor->info;
struct device_node *np = spi_nor_get_flash_node(nor);
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
params->otp.org = &info->otp_org;
/* Default to 16-bit Write Status (01h) Command */
nor->flags |= SNOR_F_HAS_16BIT_SR;
/* Set SPI NOR sizes. */
params->writesize = 1;
params->size = (u64)info->sector_size * info->n_sectors;
params->page_size = info->page_size;
if (!(info->flags & SPI_NOR_NO_FR)) {
/* Default to Fast Read for DT and non-DT platform devices. */
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
/* Mask out Fast Read if not requested at DT instantiation. */
if (np && !of_property_read_bool(np, "m25p,fast-read"))
params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
}
/* (Fast) Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
/* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
}
/**
* spi_nor_init_params() - Initialize the flash's parameters and settings.
* @nor: pointer to a 'struct spi_nor'.
*
* The flash parameters and settings are initialized based on a sequence of
* calls that are ordered by priority:
*
* 1/ Default flash parameters initialization. The initializations are done
* based on nor->info data:
* spi_nor_info_init_params()
*
* which can be overwritten by:
* 2/ Manufacturer flash parameters initialization. The initializations are
* done based on MFR register, or when the decisions can not be done solely
* based on MFR, by using specific flash_info tweeks, ->default_init():
* spi_nor_manufacturer_init_params()
*
* which can be overwritten by:
* 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
* should be more accurate that the above.
* spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
*
* Please note that there is a ->post_bfpt() fixup hook that can overwrite
* the flash parameters and settings immediately after parsing the Basic
* Flash Parameter Table.
* spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
* It is used to tweak various flash parameters when information provided
* by the SFDP tables are wrong.
*
* which can be overwritten by:
* 4/ Late flash parameters initialization, used to initialize flash
* parameters that are not declared in the JESD216 SFDP standard, or where SFDP
* tables are not defined at all.
* spi_nor_late_init_params()
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_params(struct spi_nor *nor)
{
int ret;
nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
if (!nor->params)
return -ENOMEM;
spi_nor_init_default_params(nor);
if (nor->info->parse_sfdp) {
ret = spi_nor_parse_sfdp(nor);
if (ret) {
dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
return ret;
}
} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
spi_nor_no_sfdp_init_params(nor);
} else {
spi_nor_init_params_deprecated(nor);
}
spi_nor_late_init_params(nor);
return 0;
}
/** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
* @nor: pointer to a 'struct spi_nor'
* @enable: whether to enable or disable Octal DTR
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
{
int ret;
if (!nor->params->octal_dtr_enable)
return 0;
if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
nor->write_proto == SNOR_PROTO_8_8_8_DTR))
return 0;
if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
return 0;
ret = nor->params->octal_dtr_enable(nor, enable);
if (ret)
return ret;
if (enable)
nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
else
nor->reg_proto = SNOR_PROTO_1_1_1;
return 0;
}
/**
* spi_nor_quad_enable() - enable Quad I/O if needed.
* @nor: pointer to a 'struct spi_nor'
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_quad_enable(struct spi_nor *nor)
{
if (!nor->params->quad_enable)
return 0;
if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4))
return 0;
return nor->params->quad_enable(nor);
}
static int spi_nor_init(struct spi_nor *nor)
{
int err;
err = spi_nor_octal_dtr_enable(nor, true);
if (err) {
dev_dbg(nor->dev, "octal mode not supported\n");
return err;
}
err = spi_nor_quad_enable(nor);
if (err) {
dev_dbg(nor->dev, "quad mode not supported\n");
return err;
}
/*
* Some SPI NOR flashes are write protected by default after a power-on
* reset cycle, in order to avoid inadvertent writes during power-up.
* Backward compatibility imposes to unlock the entire flash memory
* array at power-up by default. Depending on the kernel configuration
* (1) do nothing, (2) always unlock the entire flash array or (3)
* unlock the entire flash array only when the software write
* protection bits are volatile. The latter is indicated by
* SNOR_F_SWP_IS_VOLATILE.
*/
if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
(IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
nor->flags & SNOR_F_SWP_IS_VOLATILE))
spi_nor_try_unlock_all(nor);
if (nor->addr_nbytes == 4 &&
nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
!(nor->flags & SNOR_F_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
"enabling reset hack; may not recover from unexpected reboots\n");
return nor->params->set_4byte_addr_mode(nor, true);
}
return 0;
}
/**
* spi_nor_soft_reset() - Perform a software reset
* @nor: pointer to 'struct spi_nor'
*
* Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
* the device to its power-on-reset state. This is useful when the software has
* made some changes to device (volatile) registers and needs to reset it before
* shutting down, for example.
*
* Not every flash supports this sequence. The same set of opcodes might be used
* for some other operation on a flash that does not support this. Support for
* this sequence can be discovered via SFDP in the BFPT table.
*
* Return: 0 on success, -errno otherwise.
*/
static void spi_nor_soft_reset(struct spi_nor *nor)
{
struct spi_mem_op op;
int ret;
op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret) {
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
return;
}
op = (struct spi_mem_op)SPINOR_SRST_OP;
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret) {
dev_warn(nor->dev, "Software reset failed: %d\n", ret);
return;
}
/*
* Software Reset is not instant, and the delay varies from flash to
* flash. Looking at a few flashes, most range somewhere below 100
* microseconds. So, sleep for a range of 200-400 us.
*/
usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
}
/* mtd suspend handler */
static int spi_nor_suspend(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
/* Disable octal DTR mode if we enabled it. */
ret = spi_nor_octal_dtr_enable(nor, false);
if (ret)
dev_err(nor->dev, "suspend() failed\n");
return ret;
}
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
struct device *dev = nor->dev;
int ret;
/* re-initialize the nor chip */
ret = spi_nor_init(nor);
if (ret)
dev_err(dev, "resume() failed\n");
}
static int spi_nor_get_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
struct spi_nor *nor = mtd_to_spi_nor(master);
struct device *dev;
if (nor->spimem)
dev = nor->spimem->spi->controller->dev.parent;
else
dev = nor->dev;
if (!try_module_get(dev->driver->owner))
return -ENODEV;
return 0;
}
static void spi_nor_put_device(struct mtd_info *mtd)
{
struct mtd_info *master = mtd_get_master(mtd);
struct spi_nor *nor = mtd_to_spi_nor(master);
struct device *dev;
if (nor->spimem)
dev = nor->spimem->spi->controller->dev.parent;
else
dev = nor->dev;
module_put(dev->driver->owner);
}
void spi_nor_restore(struct spi_nor *nor)
{
int ret;
/* restore the addressing mode */
if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
nor->flags & SNOR_F_BROKEN_RESET) {
ret = nor->params->set_4byte_addr_mode(nor, false);
if (ret)
/*
* Do not stop the execution in the hope that the flash
* will default to the 3-byte address mode after the
* software reset.
*/
dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
}
if (nor->flags & SNOR_F_SOFT_RESET)
spi_nor_soft_reset(nor);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);
static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
const char *name)
{
unsigned int i, j;
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
for (j = 0; j < manufacturers[i]->nparts; j++) {
if (!strcmp(name, manufacturers[i]->parts[j].name)) {
nor->manufacturer = manufacturers[i];
return &manufacturers[i]->parts[j];
}
}
}
return NULL;
}
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
const char *name)
{
const struct flash_info *info = NULL;
if (name)
info = spi_nor_match_name(nor, name);
/* Try to auto-detect if chip name wasn't specified or not found */
if (!info)
return spi_nor_detect(nor);
/*
* If caller has specified name of flash model that can normally be
* detected using JEDEC, let's verify it.
*/
if (name && info->id_len) {
const struct flash_info *jinfo;
jinfo = spi_nor_detect(nor);
if (IS_ERR(jinfo)) {
return jinfo;
} else if (jinfo != info) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(nor->dev, "found %s, expected %s\n",
jinfo->name, info->name);
info = jinfo;
}
}
return info;
}
static void spi_nor_set_mtd_info(struct spi_nor *nor)
{
struct mtd_info *mtd = &nor->mtd;
struct device *dev = nor->dev;
spi_nor_set_mtd_locking_ops(nor);
spi_nor_set_mtd_otp_ops(nor);
mtd->dev.parent = dev;
if (!mtd->name)
mtd->name = dev_name(dev);
mtd->type = MTD_NORFLASH;
mtd->flags = MTD_CAP_NORFLASH;
if (nor->info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
else
mtd->_erase = spi_nor_erase;
mtd->writesize = nor->params->writesize;
mtd->writebufsize = nor->params->page_size;
mtd->size = nor->params->size;
mtd->_read = spi_nor_read;
/* Might be already set by some SST flashes. */
if (!mtd->_write)
mtd->_write = spi_nor_write;
mtd->_suspend = spi_nor_suspend;
mtd->_resume = spi_nor_resume;
mtd->_get_device = spi_nor_get_device;
mtd->_put_device = spi_nor_put_device;
}
static int spi_nor_hw_reset(struct spi_nor *nor)
{
struct gpio_desc *reset;
reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR_OR_NULL(reset))
return PTR_ERR_OR_ZERO(reset);
/*
* Experimental delay values by looking at different flash device
* vendors datasheets.
*/
usleep_range(1, 5);
gpiod_set_value_cansleep(reset, 1);
usleep_range(100, 150);
gpiod_set_value_cansleep(reset, 0);
usleep_range(1000, 1200);
return 0;
}
int spi_nor_scan(struct spi_nor *nor, const char *name,
const struct spi_nor_hwcaps *hwcaps)
{
const struct flash_info *info;
struct device *dev = nor->dev;
struct mtd_info *mtd = &nor->mtd;
int ret;
int i;
ret = spi_nor_check(nor);
if (ret)
return ret;
/* Reset SPI protocol for all commands. */
nor->reg_proto = SNOR_PROTO_1_1_1;
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
/*
* We need the bounce buffer early to read/write registers when going
* through the spi-mem layer (buffers have to be DMA-able).
* For spi-mem drivers, we'll reallocate a new buffer if
* nor->params->page_size turns out to be greater than PAGE_SIZE (which
* shouldn't happen before long since NOR pages are usually less
* than 1KB) after spi_nor_scan() returns.
*/
nor->bouncebuf_size = PAGE_SIZE;
nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
GFP_KERNEL);
if (!nor->bouncebuf)
return -ENOMEM;
ret = spi_nor_hw_reset(nor);
if (ret)
return ret;
info = spi_nor_get_flash_info(nor, name);
if (IS_ERR(info))
return PTR_ERR(info);
nor->info = info;
mutex_init(&nor->lock);
/* Init flash parameters based on flash_info struct and SFDP */
ret = spi_nor_init_params(nor);
if (ret)
return ret;
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
* - set the number of address bytes.
*/
ret = spi_nor_setup(nor, hwcaps);
if (ret)
return ret;
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
if (ret)
return ret;
/* No mtd_info fields should be used up to this point. */
spi_nor_set_mtd_info(nor);
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
(long long)mtd->size >> 10);
dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
return 0;
}
EXPORT_SYMBOL_GPL(spi_nor_scan);
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
{
struct spi_mem_dirmap_info info = {
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
SPI_MEM_OP_DATA_IN(0, NULL, 0)),
.offset = 0,
.length = nor->params->size,
};
struct spi_mem_op *op = &info.op_tmpl;
spi_nor_spimem_setup_op(nor, op, nor->read_proto);
/* convert the dummy cycles to the number of bytes */
op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
if (spi_nor_protocol_is_dtr(nor->read_proto))
op->dummy.nbytes *= 2;
/*
* Since spi_nor_spimem_setup_op() only sets buswidth when the number
* of data bytes is non-zero, the data buswidth won't be set here. So,
* do it explicitly.
*/
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
&info);
return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
}
static int spi_nor_create_write_dirmap(struct spi_nor *nor)
{
struct spi_mem_dirmap_info info = {
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
.offset = 0,
.length = nor->params->size,
};
struct spi_mem_op *op = &info.op_tmpl;
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
op->addr.nbytes = 0;
spi_nor_spimem_setup_op(nor, op, nor->write_proto);
/*
* Since spi_nor_spimem_setup_op() only sets buswidth when the number
* of data bytes is non-zero, the data buswidth won't be set here. So,
* do it explicitly.
*/
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
&info);
return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
}
static int spi_nor_probe(struct spi_mem *spimem)
{
struct spi_device *spi = spimem->spi;
struct flash_platform_data *data = dev_get_platdata(&spi->dev);
struct spi_nor *nor;
/*
* Enable all caps by default. The core will mask them after
* checking what's really supported using spi_mem_supports_op().
*/
const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
char *flash_name;
int ret;
nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
if (!nor)
return -ENOMEM;
nor->spimem = spimem;
nor->dev = &spi->dev;
spi_nor_set_flash_node(nor, spi->dev.of_node);
spi_mem_set_drvdata(spimem, nor);
if (data && data->name)
nor->mtd.name = data->name;
if (!nor->mtd.name)
nor->mtd.name = spi_mem_get_name(spimem);
/*
* For some (historical?) reason many platforms provide two different
* names in flash_platform_data: "name" and "type". Quite often name is
* set to "m25p80" and then "type" provides a real chip name.
* If that's the case, respect "type" and ignore a "name".
*/
if (data && data->type)
flash_name = data->type;
else if (!strcmp(spi->modalias, "spi-nor"))
flash_name = NULL; /* auto-detect */
else
flash_name = spi->modalias;
ret = spi_nor_scan(nor, flash_name, &hwcaps);
if (ret)
return ret;
spi_nor_debugfs_register(nor);
/*
* None of the existing parts have > 512B pages, but let's play safe
* and add this logic so that if anyone ever adds support for such
* a NOR we don't end up with buffer overflows.
*/
if (nor->params->page_size > PAGE_SIZE) {
nor->bouncebuf_size = nor->params->page_size;
devm_kfree(nor->dev, nor->bouncebuf);
nor->bouncebuf = devm_kmalloc(nor->dev,
nor->bouncebuf_size,
GFP_KERNEL);
if (!nor->bouncebuf)
return -ENOMEM;
}
ret = spi_nor_create_read_dirmap(nor);
if (ret)
return ret;
ret = spi_nor_create_write_dirmap(nor);
if (ret)
return ret;
return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
data ? data->nr_parts : 0);
}
static int spi_nor_remove(struct spi_mem *spimem)
{
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
spi_nor_restore(nor);
/* Clean up MTD stuff. */
return mtd_device_unregister(&nor->mtd);
}
static void spi_nor_shutdown(struct spi_mem *spimem)
{
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
spi_nor_restore(nor);
}
/*
* Do NOT add to this array without reading the following:
*
* Historically, many flash devices are bound to this driver by their name. But
* since most of these flash are compatible to some extent, and their
* differences can often be differentiated by the JEDEC read-ID command, we
* encourage new users to add support to the spi-nor library, and simply bind
* against a generic string here (e.g., "jedec,spi-nor").
*
* Many flash names are kept here in this list to keep them available
* as module aliases for existing platforms.
*/
static const struct spi_device_id spi_nor_dev_ids[] = {
/*
* Allow non-DT platform devices to bind to the "spi-nor" modalias, and
* hack around the fact that the SPI core does not provide uevent
* matching for .of_match_table
*/
{"spi-nor"},
/*
* Entries not used in DTs that should be safe to drop after replacing
* them with "spi-nor" in platform data.
*/
{"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
/*
* Entries that were used in DTs without "jedec,spi-nor" fallback and
* should be kept for backward compatibility.
*/
{"at25df321a"}, {"at25df641"}, {"at26df081a"},
{"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
{"mx25l25635e"},{"mx66l51235l"},
{"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
{"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
{"s25fl064k"},
{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
{"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
{"m25p64"}, {"m25p128"},
{"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
{"w25q80bl"}, {"w25q128"}, {"w25q256"},
/* Flashes that can't be detected using JEDEC */
{"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
{"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
{"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
/* Everspin MRAMs (non-JEDEC) */
{ "mr25h128" }, /* 128 Kib, 40 MHz */
{ "mr25h256" }, /* 256 Kib, 40 MHz */
{ "mr25h10" }, /* 1 Mib, 40 MHz */
{ "mr25h40" }, /* 4 Mib, 40 MHz */
{ },
};
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
static const struct of_device_id spi_nor_of_table[] = {
/*
* Generic compatibility for SPI NOR that can be identified by the
* JEDEC READ ID opcode (0x9F). Use this, if possible.
*/
{ .compatible = "jedec,spi-nor" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, spi_nor_of_table);
/*
* REVISIT: many of these chips have deep power-down modes, which
* should clearly be entered on suspend() to minimize power use.
* And also when they're otherwise idle...
*/
static struct spi_mem_driver spi_nor_driver = {
.spidrv = {
.driver = {
.name = "spi-nor",
.of_match_table = spi_nor_of_table,
.dev_groups = spi_nor_sysfs_groups,
},
.id_table = spi_nor_dev_ids,
},
.probe = spi_nor_probe,
.remove = spi_nor_remove,
.shutdown = spi_nor_shutdown,
};
module_spi_mem_driver(spi_nor_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");