mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 18:24:14 +08:00
731bd6a93a
For non-eager fpu mode, thread's fpu state is allocated during the first fpu usage (in the context of device not available exception). This (math_state_restore()) can be a blocking call and hence we enable interrupts (which were originally disabled when the exception happened), allocate memory and disable interrupts etc. But the eager-fpu mode, call's the same math_state_restore() from kernel_fpu_end(). The assumption being that tsk_used_math() is always set for the eager-fpu mode and thus avoid the code path of enabling interrupts, allocating fpu state using blocking call and disable interrupts etc. But the below issue was noticed by Maarten Baert, Nate Eldredge and few others: If a user process dumps core on an ecrypt fs while aesni-intel is loaded, we get a BUG() in __find_get_block() complaining that it was called with interrupts disabled; then all further accesses to our ecrypt fs hang and we have to reboot. The aesni-intel code (encrypting the core file that we are writing) needs the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(), the latter of which calls math_state_restore(). So after kernel_fpu_end(), interrupts may be disabled, which nobody seems to expect, and they stay that way until we eventually get to __find_get_block() which barfs. For eager fpu, most the time, tsk_used_math() is true. At few instances during thread exit, signal return handling etc, tsk_used_math() might be false. In kernel_fpu_end(), for eager-fpu, call math_state_restore() only if tsk_used_math() is set. Otherwise, don't bother. Kernel code path which cleared tsk_used_math() knows what needs to be done with the fpu state. Reported-by: Maarten Baert <maarten-baert@hotmail.com> Reported-by: Nate Eldredge <nate@thatsmathematics.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa Cc: George Spelvin <linux@horizon.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
641 lines
15 KiB
C
641 lines
15 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/math_emu.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/fpu-internal.h>
|
|
#include <asm/user.h>
|
|
|
|
/*
|
|
* Were we in an interrupt that interrupted kernel mode?
|
|
*
|
|
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
|
* pair does nothing at all: the thread must not have fpu (so
|
|
* that we don't try to save the FPU state), and TS must
|
|
* be set (so that the clts/stts pair does nothing that is
|
|
* visible in the interrupted kernel thread).
|
|
*
|
|
* Except for the eagerfpu case when we return 1 unless we've already
|
|
* been eager and saved the state in kernel_fpu_begin().
|
|
*/
|
|
static inline bool interrupted_kernel_fpu_idle(void)
|
|
{
|
|
if (use_eager_fpu())
|
|
return __thread_has_fpu(current);
|
|
|
|
return !__thread_has_fpu(current) &&
|
|
(read_cr0() & X86_CR0_TS);
|
|
}
|
|
|
|
/*
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
* interrupted?
|
|
*
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
* in an interrupt context from user mode - we'll just
|
|
* save the FPU state as required.
|
|
*/
|
|
static inline bool interrupted_user_mode(void)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
return regs && user_mode_vm(regs);
|
|
}
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*
|
|
* It's always ok in process context (ie "not interrupt")
|
|
* but it is sometimes ok even from an irq.
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
return !in_interrupt() ||
|
|
interrupted_user_mode() ||
|
|
interrupted_kernel_fpu_idle();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
void __kernel_fpu_begin(void)
|
|
{
|
|
struct task_struct *me = current;
|
|
|
|
if (__thread_has_fpu(me)) {
|
|
__thread_clear_has_fpu(me);
|
|
__save_init_fpu(me);
|
|
/* We do 'stts()' in __kernel_fpu_end() */
|
|
} else if (!use_eager_fpu()) {
|
|
this_cpu_write(fpu_owner_task, NULL);
|
|
clts();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
|
|
|
void __kernel_fpu_end(void)
|
|
{
|
|
if (use_eager_fpu()) {
|
|
/*
|
|
* For eager fpu, most the time, tsk_used_math() is true.
|
|
* Restore the user math as we are done with the kernel usage.
|
|
* At few instances during thread exit, signal handling etc,
|
|
* tsk_used_math() is false. Those few places will take proper
|
|
* actions, so we don't need to restore the math here.
|
|
*/
|
|
if (likely(tsk_used_math(current)))
|
|
math_state_restore();
|
|
} else {
|
|
stts();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
|
|
|
void unlazy_fpu(struct task_struct *tsk)
|
|
{
|
|
preempt_disable();
|
|
if (__thread_has_fpu(tsk)) {
|
|
__save_init_fpu(tsk);
|
|
__thread_fpu_end(tsk);
|
|
} else
|
|
tsk->thread.fpu_counter = 0;
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(unlazy_fpu);
|
|
|
|
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
|
|
unsigned int xstate_size;
|
|
EXPORT_SYMBOL_GPL(xstate_size);
|
|
static struct i387_fxsave_struct fx_scratch;
|
|
|
|
static void mxcsr_feature_mask_init(void)
|
|
{
|
|
unsigned long mask = 0;
|
|
|
|
if (cpu_has_fxsr) {
|
|
memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
|
|
asm volatile("fxsave %0" : "+m" (fx_scratch));
|
|
mask = fx_scratch.mxcsr_mask;
|
|
if (mask == 0)
|
|
mask = 0x0000ffbf;
|
|
}
|
|
mxcsr_feature_mask &= mask;
|
|
}
|
|
|
|
static void init_thread_xstate(void)
|
|
{
|
|
/*
|
|
* Note that xstate_size might be overwriten later during
|
|
* xsave_init().
|
|
*/
|
|
|
|
if (!cpu_has_fpu) {
|
|
/*
|
|
* Disable xsave as we do not support it if i387
|
|
* emulation is enabled.
|
|
*/
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
|
|
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
|
|
xstate_size = sizeof(struct i387_soft_struct);
|
|
return;
|
|
}
|
|
|
|
if (cpu_has_fxsr)
|
|
xstate_size = sizeof(struct i387_fxsave_struct);
|
|
else
|
|
xstate_size = sizeof(struct i387_fsave_struct);
|
|
}
|
|
|
|
/*
|
|
* Called at bootup to set up the initial FPU state that is later cloned
|
|
* into all processes.
|
|
*/
|
|
|
|
void fpu_init(void)
|
|
{
|
|
unsigned long cr0;
|
|
unsigned long cr4_mask = 0;
|
|
|
|
#ifndef CONFIG_MATH_EMULATION
|
|
if (!cpu_has_fpu) {
|
|
pr_emerg("No FPU found and no math emulation present\n");
|
|
pr_emerg("Giving up\n");
|
|
for (;;)
|
|
asm volatile("hlt");
|
|
}
|
|
#endif
|
|
if (cpu_has_fxsr)
|
|
cr4_mask |= X86_CR4_OSFXSR;
|
|
if (cpu_has_xmm)
|
|
cr4_mask |= X86_CR4_OSXMMEXCPT;
|
|
if (cr4_mask)
|
|
set_in_cr4(cr4_mask);
|
|
|
|
cr0 = read_cr0();
|
|
cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
|
|
if (!cpu_has_fpu)
|
|
cr0 |= X86_CR0_EM;
|
|
write_cr0(cr0);
|
|
|
|
/*
|
|
* init_thread_xstate is only called once to avoid overriding
|
|
* xstate_size during boot time or during CPU hotplug.
|
|
*/
|
|
if (xstate_size == 0)
|
|
init_thread_xstate();
|
|
|
|
mxcsr_feature_mask_init();
|
|
xsave_init();
|
|
eager_fpu_init();
|
|
}
|
|
|
|
void fpu_finit(struct fpu *fpu)
|
|
{
|
|
if (!cpu_has_fpu) {
|
|
finit_soft_fpu(&fpu->state->soft);
|
|
return;
|
|
}
|
|
|
|
if (cpu_has_fxsr) {
|
|
fx_finit(&fpu->state->fxsave);
|
|
} else {
|
|
struct i387_fsave_struct *fp = &fpu->state->fsave;
|
|
memset(fp, 0, xstate_size);
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu_finit);
|
|
|
|
/*
|
|
* The _current_ task is using the FPU for the first time
|
|
* so initialize it and set the mxcsr to its default
|
|
* value at reset if we support XMM instructions and then
|
|
* remember the current task has used the FPU.
|
|
*/
|
|
int init_fpu(struct task_struct *tsk)
|
|
{
|
|
int ret;
|
|
|
|
if (tsk_used_math(tsk)) {
|
|
if (cpu_has_fpu && tsk == current)
|
|
unlazy_fpu(tsk);
|
|
tsk->thread.fpu.last_cpu = ~0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Memory allocation at the first usage of the FPU and other state.
|
|
*/
|
|
ret = fpu_alloc(&tsk->thread.fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fpu_finit(&tsk->thread.fpu);
|
|
|
|
set_stopped_child_used_math(tsk);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_fpu);
|
|
|
|
/*
|
|
* The xstateregs_active() routine is the same as the fpregs_active() routine,
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
* capabilites supported by the xsave.
|
|
*/
|
|
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return tsk_used_math(target) ? regset->n : 0;
|
|
}
|
|
|
|
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
|
|
}
|
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
|
}
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fxsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
/*
|
|
* update the header bits in the xsave header, indicating the
|
|
* presence of FP and SSE state.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Copy the 48bytes defined by the software first into the xstate
|
|
* memory layout in the thread struct, so that we can copy the entire
|
|
* xstateregs to the user using one user_regset_copyout().
|
|
*/
|
|
memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
|
|
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
|
|
|
/*
|
|
* Copy the xstate memory layout.
|
|
*/
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->xsave, 0, -1);
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
int ret;
|
|
struct xsave_hdr_struct *xsave_hdr;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->xsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
|
|
|
|
xsave_hdr->xstate_bv &= pcntxt_mask;
|
|
/*
|
|
* These bits must be zero.
|
|
*/
|
|
xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
|
|
/*
|
|
* FPU tag word conversions.
|
|
*/
|
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
|
{
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
|
tmp = ~twd;
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
|
/* and move the valid bits to the lower byte. */
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
|
|
|
return tmp;
|
|
}
|
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
|
#define FP_EXP_TAG_VALID 0
|
|
#define FP_EXP_TAG_ZERO 1
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
|
|
{
|
|
struct _fpxreg *st;
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
u32 tag;
|
|
u32 ret = 0xffff0000u;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
|
if (twd & 0x1) {
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
|
|
|
switch (st->exponent & 0x7fff) {
|
|
case 0x7fff:
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
case 0x0000:
|
|
if (!st->significand[0] &&
|
|
!st->significand[1] &&
|
|
!st->significand[2] &&
|
|
!st->significand[3])
|
|
tag = FP_EXP_TAG_ZERO;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
default:
|
|
if (st->significand[3] & 0x8000)
|
|
tag = FP_EXP_TAG_VALID;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
}
|
|
} else {
|
|
tag = FP_EXP_TAG_EMPTY;
|
|
}
|
|
ret |= tag << (2 * i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FXSR floating point environment conversions.
|
|
*/
|
|
|
|
void
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
env->fip = fxsave->rip;
|
|
env->foo = fxsave->rdp;
|
|
/*
|
|
* should be actually ds/cs at fpu exception time, but
|
|
* that information is not available in 64bit mode.
|
|
*/
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
|
if (tsk == current) {
|
|
savesegment(ds, env->fos);
|
|
} else {
|
|
env->fos = tsk->thread.ds;
|
|
}
|
|
env->fos |= 0xffff0000;
|
|
#else
|
|
env->fip = fxsave->fip;
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
|
env->foo = fxsave->foo;
|
|
env->fos = fxsave->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
|
}
|
|
|
|
void convert_to_fxsr(struct task_struct *tsk,
|
|
const struct user_i387_ia32_struct *env)
|
|
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
fxsave->cwd = env->cwd;
|
|
fxsave->swd = env->swd;
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
#ifdef CONFIG_X86_64
|
|
fxsave->rip = env->fip;
|
|
fxsave->rdp = env->foo;
|
|
/* cs and ds ignored */
|
|
#else
|
|
fxsave->fip = env->fip;
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
fxsave->foo = env->foo;
|
|
fxsave->fos = env->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
|
}
|
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fsave, 0,
|
|
-1);
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (kbuf && pos == 0 && count == sizeof(env)) {
|
|
convert_from_fxsr(kbuf, target);
|
|
return 0;
|
|
}
|
|
|
|
convert_from_fxsr(&env, target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
}
|
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = init_fpu(target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&target->thread.fpu.state->fsave, 0,
|
|
-1);
|
|
|
|
if (pos > 0 || count < sizeof(env))
|
|
convert_from_fxsr(&env, target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
if (!ret)
|
|
convert_to_fxsr(target, &env);
|
|
|
|
/*
|
|
* update the header bit in the xsave header, indicating the
|
|
* presence of FP.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FPU state for core dumps.
|
|
* This is only used for a.out dumps now.
|
|
* It is declared generically using elf_fpregset_t (which is
|
|
* struct user_i387_struct) but is in fact only used for 32-bit
|
|
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
|
|
*/
|
|
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int fpvalid;
|
|
|
|
fpvalid = !!used_math();
|
|
if (fpvalid)
|
|
fpvalid = !fpregs_get(tsk, NULL,
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
fpu, NULL);
|
|
|
|
return fpvalid;
|
|
}
|
|
EXPORT_SYMBOL(dump_fpu);
|
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|
|
|
|
static int __init no_387(char *s)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_FPU);
|
|
return 1;
|
|
}
|
|
|
|
__setup("no387", no_387);
|
|
|
|
void fpu_detect(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long cr0;
|
|
u16 fsw, fcw;
|
|
|
|
fsw = fcw = 0xffff;
|
|
|
|
cr0 = read_cr0();
|
|
cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
|
|
write_cr0(cr0);
|
|
|
|
asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
|
|
: "+m" (fsw), "+m" (fcw));
|
|
|
|
if (fsw == 0 && (fcw & 0x103f) == 0x003f)
|
|
set_cpu_cap(c, X86_FEATURE_FPU);
|
|
else
|
|
clear_cpu_cap(c, X86_FEATURE_FPU);
|
|
|
|
/* The final cr0 value is set in fpu_init() */
|
|
}
|