linux/net/core/page_pool.c
Jakub Kicinski ef04d290c0 net: page_pool: do not count normal frag allocation in stats
Commit 0f6deac3a0 ("net: page_pool: add page allocation stats for
two fast page allocate path") added increments for "fast path"
allocation to page frag alloc. It mentions performance degradation
analysis but the details are unclear. Could be that the author
was simply surprised by the alloc stats not matching packet count.

In my experience the key metric for page pool is the recycling rate.
Page return stats, however, count returned _pages_ not frags.
This makes it impossible to calculate recycling rate for drivers
using the frag API. Here is example output of the page-pool
YNL sample for a driver allocating 1200B frags (4k pages)
with nearly perfect recycling:

  $ ./page-pool
    eth0[2]	page pools: 32 (zombies: 0)
		refs: 291648 bytes: 1194590208 (refs: 0 bytes: 0)
		recycling: 33.3% (alloc: 4557:2256365862 recycle: 200476245:551541893)

The recycling rate is reported as 33.3% because we give out
4096 // 1200 = 3 frags for every recycled page.

Effectively revert the aforementioned commit. This also aligns
with the stats we would see for drivers which do the fragmentation
themselves, although that's not a strong reason in itself.

On the (very unlikely) path where we can reuse the current page
let's bump the "cached" stat. The fact that we don't put the page
in the cache is just an optimization.

Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Reviewed-by: Xuan Zhuo <xuanzhuo@linux.alibaba.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Link: https://patch.msgid.link/20241109023303.3366500-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-11-12 18:26:58 -08:00

1153 lines
31 KiB
C

/* SPDX-License-Identifier: GPL-2.0
*
* page_pool.c
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
* Copyright (C) 2016 Red Hat, Inc.
*/
#include <linux/error-injection.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <net/netdev_rx_queue.h>
#include <net/page_pool/helpers.h>
#include <net/xdp.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/page-flags.h>
#include <linux/mm.h> /* for put_page() */
#include <linux/poison.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <trace/events/page_pool.h>
#include "mp_dmabuf_devmem.h"
#include "netmem_priv.h"
#include "page_pool_priv.h"
DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers);
#define DEFER_TIME (msecs_to_jiffies(1000))
#define DEFER_WARN_INTERVAL (60 * HZ)
#define BIAS_MAX (LONG_MAX >> 1)
#ifdef CONFIG_PAGE_POOL_STATS
static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
/* alloc_stat_inc is intended to be used in softirq context */
#define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++)
/* recycle_stat_inc is safe to use when preemption is possible. */
#define recycle_stat_inc(pool, __stat) \
do { \
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
this_cpu_inc(s->__stat); \
} while (0)
#define recycle_stat_add(pool, __stat, val) \
do { \
struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \
this_cpu_add(s->__stat, val); \
} while (0)
static const char pp_stats[][ETH_GSTRING_LEN] = {
"rx_pp_alloc_fast",
"rx_pp_alloc_slow",
"rx_pp_alloc_slow_ho",
"rx_pp_alloc_empty",
"rx_pp_alloc_refill",
"rx_pp_alloc_waive",
"rx_pp_recycle_cached",
"rx_pp_recycle_cache_full",
"rx_pp_recycle_ring",
"rx_pp_recycle_ring_full",
"rx_pp_recycle_released_ref",
};
/**
* page_pool_get_stats() - fetch page pool stats
* @pool: pool from which page was allocated
* @stats: struct page_pool_stats to fill in
*
* Retrieve statistics about the page_pool. This API is only available
* if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
* A pointer to a caller allocated struct page_pool_stats structure
* is passed to this API which is filled in. The caller can then report
* those stats to the user (perhaps via ethtool, debugfs, etc.).
*/
bool page_pool_get_stats(const struct page_pool *pool,
struct page_pool_stats *stats)
{
int cpu = 0;
if (!stats)
return false;
/* The caller is responsible to initialize stats. */
stats->alloc_stats.fast += pool->alloc_stats.fast;
stats->alloc_stats.slow += pool->alloc_stats.slow;
stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
stats->alloc_stats.empty += pool->alloc_stats.empty;
stats->alloc_stats.refill += pool->alloc_stats.refill;
stats->alloc_stats.waive += pool->alloc_stats.waive;
for_each_possible_cpu(cpu) {
const struct page_pool_recycle_stats *pcpu =
per_cpu_ptr(pool->recycle_stats, cpu);
stats->recycle_stats.cached += pcpu->cached;
stats->recycle_stats.cache_full += pcpu->cache_full;
stats->recycle_stats.ring += pcpu->ring;
stats->recycle_stats.ring_full += pcpu->ring_full;
stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
}
return true;
}
EXPORT_SYMBOL(page_pool_get_stats);
u8 *page_pool_ethtool_stats_get_strings(u8 *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
return data;
}
EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
int page_pool_ethtool_stats_get_count(void)
{
return ARRAY_SIZE(pp_stats);
}
EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
{
const struct page_pool_stats *pool_stats = stats;
*data++ = pool_stats->alloc_stats.fast;
*data++ = pool_stats->alloc_stats.slow;
*data++ = pool_stats->alloc_stats.slow_high_order;
*data++ = pool_stats->alloc_stats.empty;
*data++ = pool_stats->alloc_stats.refill;
*data++ = pool_stats->alloc_stats.waive;
*data++ = pool_stats->recycle_stats.cached;
*data++ = pool_stats->recycle_stats.cache_full;
*data++ = pool_stats->recycle_stats.ring;
*data++ = pool_stats->recycle_stats.ring_full;
*data++ = pool_stats->recycle_stats.released_refcnt;
return data;
}
EXPORT_SYMBOL(page_pool_ethtool_stats_get);
#else
#define alloc_stat_inc(pool, __stat)
#define recycle_stat_inc(pool, __stat)
#define recycle_stat_add(pool, __stat, val)
#endif
static bool page_pool_producer_lock(struct page_pool *pool)
__acquires(&pool->ring.producer_lock)
{
bool in_softirq = in_softirq();
if (in_softirq)
spin_lock(&pool->ring.producer_lock);
else
spin_lock_bh(&pool->ring.producer_lock);
return in_softirq;
}
static void page_pool_producer_unlock(struct page_pool *pool,
bool in_softirq)
__releases(&pool->ring.producer_lock)
{
if (in_softirq)
spin_unlock(&pool->ring.producer_lock);
else
spin_unlock_bh(&pool->ring.producer_lock);
}
static void page_pool_struct_check(void)
{
CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
PAGE_POOL_FRAG_GROUP_ALIGN);
}
static int page_pool_init(struct page_pool *pool,
const struct page_pool_params *params,
int cpuid)
{
unsigned int ring_qsize = 1024; /* Default */
struct netdev_rx_queue *rxq;
int err;
page_pool_struct_check();
memcpy(&pool->p, &params->fast, sizeof(pool->p));
memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
pool->cpuid = cpuid;
/* Validate only known flags were used */
if (pool->slow.flags & ~PP_FLAG_ALL)
return -EINVAL;
if (pool->p.pool_size)
ring_qsize = pool->p.pool_size;
/* Sanity limit mem that can be pinned down */
if (ring_qsize > 32768)
return -E2BIG;
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
* which is the XDP_TX use-case.
*/
if (pool->slow.flags & PP_FLAG_DMA_MAP) {
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
return -EINVAL;
pool->dma_map = true;
}
if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
/* In order to request DMA-sync-for-device the page
* needs to be mapped
*/
if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
return -EINVAL;
if (!pool->p.max_len)
return -EINVAL;
pool->dma_sync = true;
/* pool->p.offset has to be set according to the address
* offset used by the DMA engine to start copying rx data
*/
}
pool->has_init_callback = !!pool->slow.init_callback;
#ifdef CONFIG_PAGE_POOL_STATS
if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
if (!pool->recycle_stats)
return -ENOMEM;
} else {
/* For system page pool instance we use a singular stats object
* instead of allocating a separate percpu variable for each
* (also percpu) page pool instance.
*/
pool->recycle_stats = &pp_system_recycle_stats;
pool->system = true;
}
#endif
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
#ifdef CONFIG_PAGE_POOL_STATS
if (!pool->system)
free_percpu(pool->recycle_stats);
#endif
return -ENOMEM;
}
atomic_set(&pool->pages_state_release_cnt, 0);
/* Driver calling page_pool_create() also call page_pool_destroy() */
refcount_set(&pool->user_cnt, 1);
if (pool->dma_map)
get_device(pool->p.dev);
if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) {
/* We rely on rtnl_lock()ing to make sure netdev_rx_queue
* configuration doesn't change while we're initializing
* the page_pool.
*/
ASSERT_RTNL();
rxq = __netif_get_rx_queue(pool->slow.netdev,
pool->slow.queue_idx);
pool->mp_priv = rxq->mp_params.mp_priv;
}
if (pool->mp_priv) {
err = mp_dmabuf_devmem_init(pool);
if (err) {
pr_warn("%s() mem-provider init failed %d\n", __func__,
err);
goto free_ptr_ring;
}
static_branch_inc(&page_pool_mem_providers);
}
return 0;
free_ptr_ring:
ptr_ring_cleanup(&pool->ring, NULL);
#ifdef CONFIG_PAGE_POOL_STATS
if (!pool->system)
free_percpu(pool->recycle_stats);
#endif
return err;
}
static void page_pool_uninit(struct page_pool *pool)
{
ptr_ring_cleanup(&pool->ring, NULL);
if (pool->dma_map)
put_device(pool->p.dev);
#ifdef CONFIG_PAGE_POOL_STATS
if (!pool->system)
free_percpu(pool->recycle_stats);
#endif
}
/**
* page_pool_create_percpu() - create a page pool for a given cpu.
* @params: parameters, see struct page_pool_params
* @cpuid: cpu identifier
*/
struct page_pool *
page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
{
struct page_pool *pool;
int err;
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
if (!pool)
return ERR_PTR(-ENOMEM);
err = page_pool_init(pool, params, cpuid);
if (err < 0)
goto err_free;
err = page_pool_list(pool);
if (err)
goto err_uninit;
return pool;
err_uninit:
page_pool_uninit(pool);
err_free:
pr_warn("%s() gave up with errno %d\n", __func__, err);
kfree(pool);
return ERR_PTR(err);
}
EXPORT_SYMBOL(page_pool_create_percpu);
/**
* page_pool_create() - create a page pool
* @params: parameters, see struct page_pool_params
*/
struct page_pool *page_pool_create(const struct page_pool_params *params)
{
return page_pool_create_percpu(params, -1);
}
EXPORT_SYMBOL(page_pool_create);
static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem);
static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
{
struct ptr_ring *r = &pool->ring;
netmem_ref netmem;
int pref_nid; /* preferred NUMA node */
/* Quicker fallback, avoid locks when ring is empty */
if (__ptr_ring_empty(r)) {
alloc_stat_inc(pool, empty);
return 0;
}
/* Softirq guarantee CPU and thus NUMA node is stable. This,
* assumes CPU refilling driver RX-ring will also run RX-NAPI.
*/
#ifdef CONFIG_NUMA
pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
#else
/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
#endif
/* Refill alloc array, but only if NUMA match */
do {
netmem = (__force netmem_ref)__ptr_ring_consume(r);
if (unlikely(!netmem))
break;
if (likely(netmem_is_pref_nid(netmem, pref_nid))) {
pool->alloc.cache[pool->alloc.count++] = netmem;
} else {
/* NUMA mismatch;
* (1) release 1 page to page-allocator and
* (2) break out to fallthrough to alloc_pages_node.
* This limit stress on page buddy alloactor.
*/
page_pool_return_page(pool, netmem);
alloc_stat_inc(pool, waive);
netmem = 0;
break;
}
} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
/* Return last page */
if (likely(pool->alloc.count > 0)) {
netmem = pool->alloc.cache[--pool->alloc.count];
alloc_stat_inc(pool, refill);
}
return netmem;
}
/* fast path */
static netmem_ref __page_pool_get_cached(struct page_pool *pool)
{
netmem_ref netmem;
/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
if (likely(pool->alloc.count)) {
/* Fast-path */
netmem = pool->alloc.cache[--pool->alloc.count];
alloc_stat_inc(pool, fast);
} else {
netmem = page_pool_refill_alloc_cache(pool);
}
return netmem;
}
static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
netmem_ref netmem,
u32 dma_sync_size)
{
#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
dma_sync_size = min(dma_sync_size, pool->p.max_len);
__dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
dma_sync_size, pool->p.dma_dir);
#endif
}
static __always_inline void
page_pool_dma_sync_for_device(const struct page_pool *pool,
netmem_ref netmem,
u32 dma_sync_size)
{
if (pool->dma_sync && dma_dev_need_sync(pool->p.dev))
__page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
}
static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem)
{
dma_addr_t dma;
/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
* since dma_addr_t can be either 32 or 64 bits and does not always fit
* into page private data (i.e 32bit cpu with 64bit DMA caps)
* This mapping is kept for lifetime of page, until leaving pool.
*/
dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
(PAGE_SIZE << pool->p.order), pool->p.dma_dir,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_WEAK_ORDERING);
if (dma_mapping_error(pool->p.dev, dma))
return false;
if (page_pool_set_dma_addr_netmem(netmem, dma))
goto unmap_failed;
page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
return true;
unmap_failed:
WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
dma_unmap_page_attrs(pool->p.dev, dma,
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
return false;
}
static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
gfp_t gfp)
{
struct page *page;
gfp |= __GFP_COMP;
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
if (unlikely(!page))
return NULL;
if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) {
put_page(page);
return NULL;
}
alloc_stat_inc(pool, slow_high_order);
page_pool_set_pp_info(pool, page_to_netmem(page));
/* Track how many pages are held 'in-flight' */
pool->pages_state_hold_cnt++;
trace_page_pool_state_hold(pool, page_to_netmem(page),
pool->pages_state_hold_cnt);
return page;
}
/* slow path */
static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool,
gfp_t gfp)
{
const int bulk = PP_ALLOC_CACHE_REFILL;
unsigned int pp_order = pool->p.order;
bool dma_map = pool->dma_map;
netmem_ref netmem;
int i, nr_pages;
/* Don't support bulk alloc for high-order pages */
if (unlikely(pp_order))
return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
/* Unnecessary as alloc cache is empty, but guarantees zero count */
if (unlikely(pool->alloc.count > 0))
return pool->alloc.cache[--pool->alloc.count];
/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
nr_pages = alloc_pages_bulk_array_node(gfp,
pool->p.nid, bulk,
(struct page **)pool->alloc.cache);
if (unlikely(!nr_pages))
return 0;
/* Pages have been filled into alloc.cache array, but count is zero and
* page element have not been (possibly) DMA mapped.
*/
for (i = 0; i < nr_pages; i++) {
netmem = pool->alloc.cache[i];
if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) {
put_page(netmem_to_page(netmem));
continue;
}
page_pool_set_pp_info(pool, netmem);
pool->alloc.cache[pool->alloc.count++] = netmem;
/* Track how many pages are held 'in-flight' */
pool->pages_state_hold_cnt++;
trace_page_pool_state_hold(pool, netmem,
pool->pages_state_hold_cnt);
}
/* Return last page */
if (likely(pool->alloc.count > 0)) {
netmem = pool->alloc.cache[--pool->alloc.count];
alloc_stat_inc(pool, slow);
} else {
netmem = 0;
}
/* When page just alloc'ed is should/must have refcnt 1. */
return netmem;
}
/* For using page_pool replace: alloc_pages() API calls, but provide
* synchronization guarantee for allocation side.
*/
netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp)
{
netmem_ref netmem;
/* Fast-path: Get a page from cache */
netmem = __page_pool_get_cached(pool);
if (netmem)
return netmem;
/* Slow-path: cache empty, do real allocation */
if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv)
netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp);
else
netmem = __page_pool_alloc_pages_slow(pool, gfp);
return netmem;
}
EXPORT_SYMBOL(page_pool_alloc_netmem);
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
{
return netmem_to_page(page_pool_alloc_netmem(pool, gfp));
}
EXPORT_SYMBOL(page_pool_alloc_pages);
ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL);
/* Calculate distance between two u32 values, valid if distance is below 2^(31)
* https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
*/
#define _distance(a, b) (s32)((a) - (b))
s32 page_pool_inflight(const struct page_pool *pool, bool strict)
{
u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
s32 inflight;
inflight = _distance(hold_cnt, release_cnt);
if (strict) {
trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
WARN(inflight < 0, "Negative(%d) inflight packet-pages",
inflight);
} else {
inflight = max(0, inflight);
}
return inflight;
}
void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
{
netmem_set_pp(netmem, pool);
netmem_or_pp_magic(netmem, PP_SIGNATURE);
/* Ensuring all pages have been split into one fragment initially:
* page_pool_set_pp_info() is only called once for every page when it
* is allocated from the page allocator and page_pool_fragment_page()
* is dirtying the same cache line as the page->pp_magic above, so
* the overhead is negligible.
*/
page_pool_fragment_netmem(netmem, 1);
if (pool->has_init_callback)
pool->slow.init_callback(netmem, pool->slow.init_arg);
}
void page_pool_clear_pp_info(netmem_ref netmem)
{
netmem_clear_pp_magic(netmem);
netmem_set_pp(netmem, NULL);
}
static __always_inline void __page_pool_release_page_dma(struct page_pool *pool,
netmem_ref netmem)
{
dma_addr_t dma;
if (!pool->dma_map)
/* Always account for inflight pages, even if we didn't
* map them
*/
return;
dma = page_pool_get_dma_addr_netmem(netmem);
/* When page is unmapped, it cannot be returned to our pool */
dma_unmap_page_attrs(pool->p.dev, dma,
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
page_pool_set_dma_addr_netmem(netmem, 0);
}
/* Disconnects a page (from a page_pool). API users can have a need
* to disconnect a page (from a page_pool), to allow it to be used as
* a regular page (that will eventually be returned to the normal
* page-allocator via put_page).
*/
void page_pool_return_page(struct page_pool *pool, netmem_ref netmem)
{
int count;
bool put;
put = true;
if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv)
put = mp_dmabuf_devmem_release_page(pool, netmem);
else
__page_pool_release_page_dma(pool, netmem);
/* This may be the last page returned, releasing the pool, so
* it is not safe to reference pool afterwards.
*/
count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
trace_page_pool_state_release(pool, netmem, count);
if (put) {
page_pool_clear_pp_info(netmem);
put_page(netmem_to_page(netmem));
}
/* An optimization would be to call __free_pages(page, pool->p.order)
* knowing page is not part of page-cache (thus avoiding a
* __page_cache_release() call).
*/
}
static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
{
int ret;
/* BH protection not needed if current is softirq */
if (in_softirq())
ret = ptr_ring_produce(&pool->ring, (__force void *)netmem);
else
ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem);
if (!ret) {
recycle_stat_inc(pool, ring);
return true;
}
return false;
}
/* Only allow direct recycling in special circumstances, into the
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
*
* Caller must provide appropriate safe context.
*/
static bool page_pool_recycle_in_cache(netmem_ref netmem,
struct page_pool *pool)
{
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
recycle_stat_inc(pool, cache_full);
return false;
}
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
pool->alloc.cache[pool->alloc.count++] = netmem;
recycle_stat_inc(pool, cached);
return true;
}
static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
{
return netmem_is_net_iov(netmem) ||
(page_ref_count(netmem_to_page(netmem)) == 1 &&
!page_is_pfmemalloc(netmem_to_page(netmem)));
}
/* If the page refcnt == 1, this will try to recycle the page.
* If pool->dma_sync is set, we'll try to sync the DMA area for
* the configured size min(dma_sync_size, pool->max_len).
* If the page refcnt != 1, then the page will be returned to memory
* subsystem.
*/
static __always_inline netmem_ref
__page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
unsigned int dma_sync_size, bool allow_direct)
{
lockdep_assert_no_hardirq();
/* This allocator is optimized for the XDP mode that uses
* one-frame-per-page, but have fallbacks that act like the
* regular page allocator APIs.
*
* refcnt == 1 means page_pool owns page, and can recycle it.
*
* page is NOT reusable when allocated when system is under
* some pressure. (page_is_pfmemalloc)
*/
if (likely(__page_pool_page_can_be_recycled(netmem))) {
/* Read barrier done in page_ref_count / READ_ONCE */
page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
return 0;
/* Page found as candidate for recycling */
return netmem;
}
/* Fallback/non-XDP mode: API user have elevated refcnt.
*
* Many drivers split up the page into fragments, and some
* want to keep doing this to save memory and do refcnt based
* recycling. Support this use case too, to ease drivers
* switching between XDP/non-XDP.
*
* In-case page_pool maintains the DMA mapping, API user must
* call page_pool_put_page once. In this elevated refcnt
* case, the DMA is unmapped/released, as driver is likely
* doing refcnt based recycle tricks, meaning another process
* will be invoking put_page.
*/
recycle_stat_inc(pool, released_refcnt);
page_pool_return_page(pool, netmem);
return 0;
}
static bool page_pool_napi_local(const struct page_pool *pool)
{
const struct napi_struct *napi;
u32 cpuid;
if (unlikely(!in_softirq()))
return false;
/* Allow direct recycle if we have reasons to believe that we are
* in the same context as the consumer would run, so there's
* no possible race.
* __page_pool_put_page() makes sure we're not in hardirq context
* and interrupts are enabled prior to accessing the cache.
*/
cpuid = smp_processor_id();
if (READ_ONCE(pool->cpuid) == cpuid)
return true;
napi = READ_ONCE(pool->p.napi);
return napi && READ_ONCE(napi->list_owner) == cpuid;
}
void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
unsigned int dma_sync_size, bool allow_direct)
{
if (!allow_direct)
allow_direct = page_pool_napi_local(pool);
netmem =
__page_pool_put_page(pool, netmem, dma_sync_size, allow_direct);
if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
/* Cache full, fallback to free pages */
recycle_stat_inc(pool, ring_full);
page_pool_return_page(pool, netmem);
}
}
EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
unsigned int dma_sync_size, bool allow_direct)
{
page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
allow_direct);
}
EXPORT_SYMBOL(page_pool_put_unrefed_page);
/**
* page_pool_put_page_bulk() - release references on multiple pages
* @pool: pool from which pages were allocated
* @data: array holding page pointers
* @count: number of pages in @data
*
* Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
* producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
* will release leftover pages to the page allocator.
* page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
* completion loop for the XDP_REDIRECT use case.
*
* Please note the caller must not use data area after running
* page_pool_put_page_bulk(), as this function overwrites it.
*/
void page_pool_put_page_bulk(struct page_pool *pool, void **data,
int count)
{
int i, bulk_len = 0;
bool allow_direct;
bool in_softirq;
allow_direct = page_pool_napi_local(pool);
for (i = 0; i < count; i++) {
netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i]));
/* It is not the last user for the page frag case */
if (!page_pool_is_last_ref(netmem))
continue;
netmem = __page_pool_put_page(pool, netmem, -1, allow_direct);
/* Approved for bulk recycling in ptr_ring cache */
if (netmem)
data[bulk_len++] = (__force void *)netmem;
}
if (!bulk_len)
return;
/* Bulk producer into ptr_ring page_pool cache */
in_softirq = page_pool_producer_lock(pool);
for (i = 0; i < bulk_len; i++) {
if (__ptr_ring_produce(&pool->ring, data[i])) {
/* ring full */
recycle_stat_inc(pool, ring_full);
break;
}
}
recycle_stat_add(pool, ring, i);
page_pool_producer_unlock(pool, in_softirq);
/* Hopefully all pages was return into ptr_ring */
if (likely(i == bulk_len))
return;
/* ptr_ring cache full, free remaining pages outside producer lock
* since put_page() with refcnt == 1 can be an expensive operation
*/
for (; i < bulk_len; i++)
page_pool_return_page(pool, (__force netmem_ref)data[i]);
}
EXPORT_SYMBOL(page_pool_put_page_bulk);
static netmem_ref page_pool_drain_frag(struct page_pool *pool,
netmem_ref netmem)
{
long drain_count = BIAS_MAX - pool->frag_users;
/* Some user is still using the page frag */
if (likely(page_pool_unref_netmem(netmem, drain_count)))
return 0;
if (__page_pool_page_can_be_recycled(netmem)) {
page_pool_dma_sync_for_device(pool, netmem, -1);
return netmem;
}
page_pool_return_page(pool, netmem);
return 0;
}
static void page_pool_free_frag(struct page_pool *pool)
{
long drain_count = BIAS_MAX - pool->frag_users;
netmem_ref netmem = pool->frag_page;
pool->frag_page = 0;
if (!netmem || page_pool_unref_netmem(netmem, drain_count))
return;
page_pool_return_page(pool, netmem);
}
netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
unsigned int *offset, unsigned int size,
gfp_t gfp)
{
unsigned int max_size = PAGE_SIZE << pool->p.order;
netmem_ref netmem = pool->frag_page;
if (WARN_ON(size > max_size))
return 0;
size = ALIGN(size, dma_get_cache_alignment());
*offset = pool->frag_offset;
if (netmem && *offset + size > max_size) {
netmem = page_pool_drain_frag(pool, netmem);
if (netmem) {
recycle_stat_inc(pool, cached);
alloc_stat_inc(pool, fast);
goto frag_reset;
}
}
if (!netmem) {
netmem = page_pool_alloc_netmem(pool, gfp);
if (unlikely(!netmem)) {
pool->frag_page = 0;
return 0;
}
pool->frag_page = netmem;
frag_reset:
pool->frag_users = 1;
*offset = 0;
pool->frag_offset = size;
page_pool_fragment_netmem(netmem, BIAS_MAX);
return netmem;
}
pool->frag_users++;
pool->frag_offset = *offset + size;
return netmem;
}
EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
unsigned int size, gfp_t gfp)
{
return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
gfp));
}
EXPORT_SYMBOL(page_pool_alloc_frag);
static void page_pool_empty_ring(struct page_pool *pool)
{
netmem_ref netmem;
/* Empty recycle ring */
while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
/* Verify the refcnt invariant of cached pages */
if (!(netmem_ref_count(netmem) == 1))
pr_crit("%s() page_pool refcnt %d violation\n",
__func__, netmem_ref_count(netmem));
page_pool_return_page(pool, netmem);
}
}
static void __page_pool_destroy(struct page_pool *pool)
{
if (pool->disconnect)
pool->disconnect(pool);
page_pool_unlist(pool);
page_pool_uninit(pool);
if (pool->mp_priv) {
mp_dmabuf_devmem_destroy(pool);
static_branch_dec(&page_pool_mem_providers);
}
kfree(pool);
}
static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
{
netmem_ref netmem;
if (pool->destroy_cnt)
return;
/* Empty alloc cache, assume caller made sure this is
* no-longer in use, and page_pool_alloc_pages() cannot be
* call concurrently.
*/
while (pool->alloc.count) {
netmem = pool->alloc.cache[--pool->alloc.count];
page_pool_return_page(pool, netmem);
}
}
static void page_pool_scrub(struct page_pool *pool)
{
page_pool_empty_alloc_cache_once(pool);
pool->destroy_cnt++;
/* No more consumers should exist, but producers could still
* be in-flight.
*/
page_pool_empty_ring(pool);
}
static int page_pool_release(struct page_pool *pool)
{
int inflight;
page_pool_scrub(pool);
inflight = page_pool_inflight(pool, true);
if (!inflight)
__page_pool_destroy(pool);
return inflight;
}
static void page_pool_release_retry(struct work_struct *wq)
{
struct delayed_work *dwq = to_delayed_work(wq);
struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
void *netdev;
int inflight;
inflight = page_pool_release(pool);
if (!inflight)
return;
/* Periodic warning for page pools the user can't see */
netdev = READ_ONCE(pool->slow.netdev);
if (time_after_eq(jiffies, pool->defer_warn) &&
(!netdev || netdev == NET_PTR_POISON)) {
int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
__func__, pool->user.id, inflight, sec);
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
}
/* Still not ready to be disconnected, retry later */
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
}
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
const struct xdp_mem_info *mem)
{
refcount_inc(&pool->user_cnt);
pool->disconnect = disconnect;
pool->xdp_mem_id = mem->id;
}
void page_pool_disable_direct_recycling(struct page_pool *pool)
{
/* Disable direct recycling based on pool->cpuid.
* Paired with READ_ONCE() in page_pool_napi_local().
*/
WRITE_ONCE(pool->cpuid, -1);
if (!pool->p.napi)
return;
/* To avoid races with recycling and additional barriers make sure
* pool and NAPI are unlinked when NAPI is disabled.
*/
WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state));
WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1);
WRITE_ONCE(pool->p.napi, NULL);
}
EXPORT_SYMBOL(page_pool_disable_direct_recycling);
void page_pool_destroy(struct page_pool *pool)
{
if (!pool)
return;
if (!page_pool_put(pool))
return;
page_pool_disable_direct_recycling(pool);
page_pool_free_frag(pool);
if (!page_pool_release(pool))
return;
page_pool_detached(pool);
pool->defer_start = jiffies;
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
}
EXPORT_SYMBOL(page_pool_destroy);
/* Caller must provide appropriate safe context, e.g. NAPI. */
void page_pool_update_nid(struct page_pool *pool, int new_nid)
{
netmem_ref netmem;
trace_page_pool_update_nid(pool, new_nid);
pool->p.nid = new_nid;
/* Flush pool alloc cache, as refill will check NUMA node */
while (pool->alloc.count) {
netmem = pool->alloc.cache[--pool->alloc.count];
page_pool_return_page(pool, netmem);
}
}
EXPORT_SYMBOL(page_pool_update_nid);