mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-27 14:14:24 +08:00
fbc90c042c
walkers") is known to cause a performance regression (https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff). Yu has a fix which I'll send along later via the hotfixes branch. - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Is anyone reading this stuff? If so, email me! - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3 xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8= =z0Lf -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - In the series "mm: Avoid possible overflows in dirty throttling" Jan Kara addresses a couple of issues in the writeback throttling code. These fixes are also targetted at -stable kernels. - Ryusuke Konishi's series "nilfs2: fix potential issues related to reserved inodes" does that. This should actually be in the mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad. - More folio conversions from Kefeng Wang in the series "mm: convert to folio_alloc_mpol()" - Kemeng Shi has sent some cleanups to the writeback code in the series "Add helper functions to remove repeated code and improve readability of cgroup writeback" - Kairui Song has made the swap code a little smaller and a little faster in the series "mm/swap: clean up and optimize swap cache index". - In the series "mm/memory: cleanly support zeropage in vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David Hildenbrand has reworked the rather sketchy handling of the use of the zeropage in MAP_SHARED mappings. I don't see any runtime effects here - more a cleanup/understandability/maintainablity thing. - Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of higher addresses, for aarch64. The (poorly named) series is "Restructure va_high_addr_switch". - The core TLB handling code gets some cleanups and possible slight optimizations in Bang Li's series "Add update_mmu_tlb_range() to simplify code". - Jane Chu has improved the handling of our fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the series "Enhance soft hwpoison handling and injection". - Jeff Johnson has sent a billion patches everywhere to add MODULE_DESCRIPTION() to everything. Some landed in this pull. - In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has simplified migration's use of hardware-offload memory copying. - Yosry Ahmed performs more folio API conversions in his series "mm: zswap: trivial folio conversions". - In the series "large folios swap-in: handle refault cases first", Chuanhua Han inches us forward in the handling of large pages in the swap code. This is a cleanup and optimization, working toward the end objective of full support of large folio swapin/out. - In the series "mm,swap: cleanup VMA based swap readahead window calculation", Huang Ying has contributed some cleanups and a possible fixlet to his VMA based swap readahead code. - In the series "add mTHP support for anonymous shmem" Baolin Wang has taught anonymous shmem mappings to use multisize THP. By default this is a no-op - users must opt in vis sysfs controls. Dramatic improvements in pagefault latency are realized. - David Hildenbrand has some cleanups to our remaining use of page_mapcount() in the series "fs/proc: move page_mapcount() to fs/proc/internal.h". - David also has some highmem accounting cleanups in the series "mm/highmem: don't track highmem pages manually". - Build-time fixes and cleanups from John Hubbard in the series "cleanups, fixes, and progress towards avoiding "make headers"". - Cleanups and consolidation of the core pagemap handling from Barry Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and utilize them". - Lance Yang's series "Reclaim lazyfree THP without splitting" has reduced the latency of the reclaim of pmd-mapped THPs under fairly common circumstances. A 10x speedup is seen in a microbenchmark. It does this by punting to aother CPU but I guess that's a win unless all CPUs are pegged. - hugetlb_cgroup cleanups from Xiu Jianfeng in the series "mm/hugetlb_cgroup: rework on cftypes". - Miaohe Lin's series "Some cleanups for memory-failure" does just that thing. - Someone other than SeongJae has developed a DAMON feature in Honggyu Kim's series "DAMON based tiered memory management for CXL memory". This adds DAMON features which may be used to help determine the efficiency of our placement of CXL/PCIe attached DRAM. - DAMON user API centralization and simplificatio work in SeongJae Park's series "mm/damon: introduce DAMON parameters online commit function". - In the series "mm: page_type, zsmalloc and page_mapcount_reset()" David Hildenbrand does some maintenance work on zsmalloc - partially modernizing its use of pageframe fields. - Kefeng Wang provides more folio conversions in the series "mm: remove page_maybe_dma_pinned() and page_mkclean()". - More cleanup from David Hildenbrand, this time in the series "mm/memory_hotplug: use PageOffline() instead of PageReserved() for !ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline() pages" and permits the removal of some virtio-mem hacks. - Barry Song's series "mm: clarify folio_add_new_anon_rmap() and __folio_add_anon_rmap()" is a cleanup to the anon folio handling in preparation for mTHP (multisize THP) swapin. - Kefeng Wang's series "mm: improve clear and copy user folio" implements more folio conversions, this time in the area of large folio userspace copying. - The series "Docs/mm/damon/maintaier-profile: document a mailing tool and community meetup series" tells people how to get better involved with other DAMON developers. From SeongJae Park. - A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does that. - David Hildenbrand sends along more cleanups, this time against the migration code. The series is "mm/migrate: move NUMA hinting fault folio isolation + checks under PTL". - Jan Kara has found quite a lot of strangenesses and minor errors in the readahead code. He addresses this in the series "mm: Fix various readahead quirks". - SeongJae Park's series "selftests/damon: test DAMOS tried regions and {min,max}_nr_regions" adds features and addresses errors in DAMON's self testing code. - Gavin Shan has found a userspace-triggerable WARN in the pagecache code. The series "mm/filemap: Limit page cache size to that supported by xarray" addresses this. The series is marked cc:stable. - Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations and cleanup" cleans up and slightly optimizes KSM. - Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of code motion. The series (which also makes the memcg-v1 code Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put under config option" and "mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1" - Dan Schatzberg's series "Add swappiness argument to memory.reclaim" adds an additional feature to this cgroup-v2 control file. - The series "Userspace controls soft-offline pages" from Jiaqi Yan permits userspace to stop the kernel's automatic treatment of excessive correctable memory errors. In order to permit userspace to monitor and handle this situation. - Kefeng Wang's series "mm: migrate: support poison recover from migrate folio" teaches the kernel to appropriately handle migration from poisoned source folios rather than simply panicing. - SeongJae Park's series "Docs/damon: minor fixups and improvements" does those things. - In the series "mm/zsmalloc: change back to per-size_class lock" Chengming Zhou improves zsmalloc's scalability and memory utilization. - Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare refcount increments. So these paes can first be moved aside if they reside in the movable zone or a CMA block. - Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps for much faster reading of vma information. The series is "query VMAs from /proc/<pid>/maps". - In the series "mm: introduce per-order mTHP split counters" Lance Yang improves the kernel's presentation of developer information related to multisize THP splitting. - Michael Ellerman has developed the series "Reimplement huge pages without hugepd on powerpc (8xx, e500, book3s/64)". This permits userspace to use all available huge page sizes. - In the series "revert unconditional slab and page allocator fault injection calls" Vlastimil Babka removes a performance-affecting and not very useful feature from slab fault injection. * tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits) mm/mglru: fix ineffective protection calculation mm/zswap: fix a white space issue mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio mm/hugetlb: fix possible recursive locking detected warning mm/gup: clear the LRU flag of a page before adding to LRU batch mm/numa_balancing: teach mpol_to_str about the balancing mode mm: memcg1: convert charge move flags to unsigned long long alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting lib: reuse page_ext_data() to obtain codetag_ref lib: add missing newline character in the warning message mm/mglru: fix overshooting shrinker memory mm/mglru: fix div-by-zero in vmpressure_calc_level() mm/kmemleak: replace strncpy() with strscpy() mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB mm: ignore data-race in __swap_writepage hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr mm: shmem: rename mTHP shmem counters mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async() mm/migrate: putback split folios when numa hint migration fails ...
1376 lines
36 KiB
C
1376 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Slab allocator functions that are independent of the allocator strategy
|
|
*
|
|
* (C) 2012 Christoph Lameter <cl@linux.com>
|
|
*/
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/kasan.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/stackdepot.h>
|
|
|
|
#include "internal.h"
|
|
#include "slab.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kmem.h>
|
|
|
|
enum slab_state slab_state;
|
|
LIST_HEAD(slab_caches);
|
|
DEFINE_MUTEX(slab_mutex);
|
|
struct kmem_cache *kmem_cache;
|
|
|
|
static LIST_HEAD(slab_caches_to_rcu_destroy);
|
|
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
|
|
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
|
|
slab_caches_to_rcu_destroy_workfn);
|
|
|
|
/*
|
|
* Set of flags that will prevent slab merging
|
|
*/
|
|
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
|
SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
|
|
SLAB_FAILSLAB | SLAB_NO_MERGE)
|
|
|
|
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
|
|
SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
|
|
|
|
/*
|
|
* Merge control. If this is set then no merging of slab caches will occur.
|
|
*/
|
|
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
|
|
|
|
static int __init setup_slab_nomerge(char *str)
|
|
{
|
|
slab_nomerge = true;
|
|
return 1;
|
|
}
|
|
|
|
static int __init setup_slab_merge(char *str)
|
|
{
|
|
slab_nomerge = false;
|
|
return 1;
|
|
}
|
|
|
|
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
|
|
__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
|
|
|
|
__setup("slab_nomerge", setup_slab_nomerge);
|
|
__setup("slab_merge", setup_slab_merge);
|
|
|
|
/*
|
|
* Determine the size of a slab object
|
|
*/
|
|
unsigned int kmem_cache_size(struct kmem_cache *s)
|
|
{
|
|
return s->object_size;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static int kmem_cache_sanity_check(const char *name, unsigned int size)
|
|
{
|
|
if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
|
|
pr_err("kmem_cache_create(%s) integrity check failed\n", name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Figure out what the alignment of the objects will be given a set of
|
|
* flags, a user specified alignment and the size of the objects.
|
|
*/
|
|
static unsigned int calculate_alignment(slab_flags_t flags,
|
|
unsigned int align, unsigned int size)
|
|
{
|
|
/*
|
|
* If the user wants hardware cache aligned objects then follow that
|
|
* suggestion if the object is sufficiently large.
|
|
*
|
|
* The hardware cache alignment cannot override the specified
|
|
* alignment though. If that is greater then use it.
|
|
*/
|
|
if (flags & SLAB_HWCACHE_ALIGN) {
|
|
unsigned int ralign;
|
|
|
|
ralign = cache_line_size();
|
|
while (size <= ralign / 2)
|
|
ralign /= 2;
|
|
align = max(align, ralign);
|
|
}
|
|
|
|
align = max(align, arch_slab_minalign());
|
|
|
|
return ALIGN(align, sizeof(void *));
|
|
}
|
|
|
|
/*
|
|
* Find a mergeable slab cache
|
|
*/
|
|
int slab_unmergeable(struct kmem_cache *s)
|
|
{
|
|
if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
|
|
return 1;
|
|
|
|
if (s->ctor)
|
|
return 1;
|
|
|
|
#ifdef CONFIG_HARDENED_USERCOPY
|
|
if (s->usersize)
|
|
return 1;
|
|
#endif
|
|
|
|
/*
|
|
* We may have set a slab to be unmergeable during bootstrap.
|
|
*/
|
|
if (s->refcount < 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
|
|
slab_flags_t flags, const char *name, void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s;
|
|
|
|
if (slab_nomerge)
|
|
return NULL;
|
|
|
|
if (ctor)
|
|
return NULL;
|
|
|
|
size = ALIGN(size, sizeof(void *));
|
|
align = calculate_alignment(flags, align, size);
|
|
size = ALIGN(size, align);
|
|
flags = kmem_cache_flags(flags, name);
|
|
|
|
if (flags & SLAB_NEVER_MERGE)
|
|
return NULL;
|
|
|
|
list_for_each_entry_reverse(s, &slab_caches, list) {
|
|
if (slab_unmergeable(s))
|
|
continue;
|
|
|
|
if (size > s->size)
|
|
continue;
|
|
|
|
if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
|
|
continue;
|
|
/*
|
|
* Check if alignment is compatible.
|
|
* Courtesy of Adrian Drzewiecki
|
|
*/
|
|
if ((s->size & ~(align - 1)) != s->size)
|
|
continue;
|
|
|
|
if (s->size - size >= sizeof(void *))
|
|
continue;
|
|
|
|
return s;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct kmem_cache *create_cache(const char *name,
|
|
unsigned int object_size, unsigned int align,
|
|
slab_flags_t flags, unsigned int useroffset,
|
|
unsigned int usersize, void (*ctor)(void *),
|
|
struct kmem_cache *root_cache)
|
|
{
|
|
struct kmem_cache *s;
|
|
int err;
|
|
|
|
if (WARN_ON(useroffset + usersize > object_size))
|
|
useroffset = usersize = 0;
|
|
|
|
err = -ENOMEM;
|
|
s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
|
|
if (!s)
|
|
goto out;
|
|
|
|
s->name = name;
|
|
s->size = s->object_size = object_size;
|
|
s->align = align;
|
|
s->ctor = ctor;
|
|
#ifdef CONFIG_HARDENED_USERCOPY
|
|
s->useroffset = useroffset;
|
|
s->usersize = usersize;
|
|
#endif
|
|
|
|
err = __kmem_cache_create(s, flags);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
s->refcount = 1;
|
|
list_add(&s->list, &slab_caches);
|
|
return s;
|
|
|
|
out_free_cache:
|
|
kmem_cache_free(kmem_cache, s);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* kmem_cache_create_usercopy - Create a cache with a region suitable
|
|
* for copying to userspace
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @useroffset: Usercopy region offset
|
|
* @usersize: Usercopy region size
|
|
* @ctor: A constructor for the objects.
|
|
*
|
|
* Cannot be called within a interrupt, but can be interrupted.
|
|
* The @ctor is run when new pages are allocated by the cache.
|
|
*
|
|
* The flags are
|
|
*
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
* to catch references to uninitialised memory.
|
|
*
|
|
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
|
|
* for buffer overruns.
|
|
*
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
* as davem.
|
|
*
|
|
* Return: a pointer to the cache on success, NULL on failure.
|
|
*/
|
|
struct kmem_cache *
|
|
kmem_cache_create_usercopy(const char *name,
|
|
unsigned int size, unsigned int align,
|
|
slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize,
|
|
void (*ctor)(void *))
|
|
{
|
|
struct kmem_cache *s = NULL;
|
|
const char *cache_name;
|
|
int err;
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
/*
|
|
* If no slab_debug was enabled globally, the static key is not yet
|
|
* enabled by setup_slub_debug(). Enable it if the cache is being
|
|
* created with any of the debugging flags passed explicitly.
|
|
* It's also possible that this is the first cache created with
|
|
* SLAB_STORE_USER and we should init stack_depot for it.
|
|
*/
|
|
if (flags & SLAB_DEBUG_FLAGS)
|
|
static_branch_enable(&slub_debug_enabled);
|
|
if (flags & SLAB_STORE_USER)
|
|
stack_depot_init();
|
|
#endif
|
|
|
|
mutex_lock(&slab_mutex);
|
|
|
|
err = kmem_cache_sanity_check(name, size);
|
|
if (err) {
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Refuse requests with allocator specific flags */
|
|
if (flags & ~SLAB_FLAGS_PERMITTED) {
|
|
err = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Some allocators will constraint the set of valid flags to a subset
|
|
* of all flags. We expect them to define CACHE_CREATE_MASK in this
|
|
* case, and we'll just provide them with a sanitized version of the
|
|
* passed flags.
|
|
*/
|
|
flags &= CACHE_CREATE_MASK;
|
|
|
|
/* Fail closed on bad usersize of useroffset values. */
|
|
if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
|
|
WARN_ON(!usersize && useroffset) ||
|
|
WARN_ON(size < usersize || size - usersize < useroffset))
|
|
usersize = useroffset = 0;
|
|
|
|
if (!usersize)
|
|
s = __kmem_cache_alias(name, size, align, flags, ctor);
|
|
if (s)
|
|
goto out_unlock;
|
|
|
|
cache_name = kstrdup_const(name, GFP_KERNEL);
|
|
if (!cache_name) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
s = create_cache(cache_name, size,
|
|
calculate_alignment(flags, align, size),
|
|
flags, useroffset, usersize, ctor, NULL);
|
|
if (IS_ERR(s)) {
|
|
err = PTR_ERR(s);
|
|
kfree_const(cache_name);
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
if (err) {
|
|
if (flags & SLAB_PANIC)
|
|
panic("%s: Failed to create slab '%s'. Error %d\n",
|
|
__func__, name, err);
|
|
else {
|
|
pr_warn("%s(%s) failed with error %d\n",
|
|
__func__, name, err);
|
|
dump_stack();
|
|
}
|
|
return NULL;
|
|
}
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_create_usercopy);
|
|
|
|
/**
|
|
* kmem_cache_create - Create a cache.
|
|
* @name: A string which is used in /proc/slabinfo to identify this cache.
|
|
* @size: The size of objects to be created in this cache.
|
|
* @align: The required alignment for the objects.
|
|
* @flags: SLAB flags
|
|
* @ctor: A constructor for the objects.
|
|
*
|
|
* Cannot be called within a interrupt, but can be interrupted.
|
|
* The @ctor is run when new pages are allocated by the cache.
|
|
*
|
|
* The flags are
|
|
*
|
|
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
|
|
* to catch references to uninitialised memory.
|
|
*
|
|
* %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
|
|
* for buffer overruns.
|
|
*
|
|
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
|
|
* cacheline. This can be beneficial if you're counting cycles as closely
|
|
* as davem.
|
|
*
|
|
* Return: a pointer to the cache on success, NULL on failure.
|
|
*/
|
|
struct kmem_cache *
|
|
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
|
|
slab_flags_t flags, void (*ctor)(void *))
|
|
{
|
|
return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
|
|
ctor);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_create);
|
|
|
|
static struct kmem_cache *kmem_buckets_cache __ro_after_init;
|
|
|
|
/**
|
|
* kmem_buckets_create - Create a set of caches that handle dynamic sized
|
|
* allocations via kmem_buckets_alloc()
|
|
* @name: A prefix string which is used in /proc/slabinfo to identify this
|
|
* cache. The individual caches with have their sizes as the suffix.
|
|
* @flags: SLAB flags (see kmem_cache_create() for details).
|
|
* @useroffset: Starting offset within an allocation that may be copied
|
|
* to/from userspace.
|
|
* @usersize: How many bytes, starting at @useroffset, may be copied
|
|
* to/from userspace.
|
|
* @ctor: A constructor for the objects, run when new allocations are made.
|
|
*
|
|
* Cannot be called within an interrupt, but can be interrupted.
|
|
*
|
|
* Return: a pointer to the cache on success, NULL on failure. When
|
|
* CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and
|
|
* subsequent calls to kmem_buckets_alloc() will fall back to kmalloc().
|
|
* (i.e. callers only need to check for NULL on failure.)
|
|
*/
|
|
kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
|
|
unsigned int useroffset,
|
|
unsigned int usersize,
|
|
void (*ctor)(void *))
|
|
{
|
|
kmem_buckets *b;
|
|
int idx;
|
|
|
|
/*
|
|
* When the separate buckets API is not built in, just return
|
|
* a non-NULL value for the kmem_buckets pointer, which will be
|
|
* unused when performing allocations.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_SLAB_BUCKETS))
|
|
return ZERO_SIZE_PTR;
|
|
|
|
if (WARN_ON(!kmem_buckets_cache))
|
|
return NULL;
|
|
|
|
b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO);
|
|
if (WARN_ON(!b))
|
|
return NULL;
|
|
|
|
flags |= SLAB_NO_MERGE;
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) {
|
|
char *short_size, *cache_name;
|
|
unsigned int cache_useroffset, cache_usersize;
|
|
unsigned int size;
|
|
|
|
if (!kmalloc_caches[KMALLOC_NORMAL][idx])
|
|
continue;
|
|
|
|
size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size;
|
|
if (!size)
|
|
continue;
|
|
|
|
short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-');
|
|
if (WARN_ON(!short_size))
|
|
goto fail;
|
|
|
|
cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1);
|
|
if (WARN_ON(!cache_name))
|
|
goto fail;
|
|
|
|
if (useroffset >= size) {
|
|
cache_useroffset = 0;
|
|
cache_usersize = 0;
|
|
} else {
|
|
cache_useroffset = useroffset;
|
|
cache_usersize = min(size - cache_useroffset, usersize);
|
|
}
|
|
(*b)[idx] = kmem_cache_create_usercopy(cache_name, size,
|
|
0, flags, cache_useroffset,
|
|
cache_usersize, ctor);
|
|
kfree(cache_name);
|
|
if (WARN_ON(!(*b)[idx]))
|
|
goto fail;
|
|
}
|
|
|
|
return b;
|
|
|
|
fail:
|
|
for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++)
|
|
kmem_cache_destroy((*b)[idx]);
|
|
kfree(b);
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(kmem_buckets_create);
|
|
|
|
#ifdef SLAB_SUPPORTS_SYSFS
|
|
/*
|
|
* For a given kmem_cache, kmem_cache_destroy() should only be called
|
|
* once or there will be a use-after-free problem. The actual deletion
|
|
* and release of the kobject does not need slab_mutex or cpu_hotplug_lock
|
|
* protection. So they are now done without holding those locks.
|
|
*
|
|
* Note that there will be a slight delay in the deletion of sysfs files
|
|
* if kmem_cache_release() is called indrectly from a work function.
|
|
*/
|
|
static void kmem_cache_release(struct kmem_cache *s)
|
|
{
|
|
if (slab_state >= FULL) {
|
|
sysfs_slab_unlink(s);
|
|
sysfs_slab_release(s);
|
|
} else {
|
|
slab_kmem_cache_release(s);
|
|
}
|
|
}
|
|
#else
|
|
static void kmem_cache_release(struct kmem_cache *s)
|
|
{
|
|
slab_kmem_cache_release(s);
|
|
}
|
|
#endif
|
|
|
|
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
|
|
{
|
|
LIST_HEAD(to_destroy);
|
|
struct kmem_cache *s, *s2;
|
|
|
|
/*
|
|
* On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
|
|
* @slab_caches_to_rcu_destroy list. The slab pages are freed
|
|
* through RCU and the associated kmem_cache are dereferenced
|
|
* while freeing the pages, so the kmem_caches should be freed only
|
|
* after the pending RCU operations are finished. As rcu_barrier()
|
|
* is a pretty slow operation, we batch all pending destructions
|
|
* asynchronously.
|
|
*/
|
|
mutex_lock(&slab_mutex);
|
|
list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
|
|
mutex_unlock(&slab_mutex);
|
|
|
|
if (list_empty(&to_destroy))
|
|
return;
|
|
|
|
rcu_barrier();
|
|
|
|
list_for_each_entry_safe(s, s2, &to_destroy, list) {
|
|
debugfs_slab_release(s);
|
|
kfence_shutdown_cache(s);
|
|
kmem_cache_release(s);
|
|
}
|
|
}
|
|
|
|
static int shutdown_cache(struct kmem_cache *s)
|
|
{
|
|
/* free asan quarantined objects */
|
|
kasan_cache_shutdown(s);
|
|
|
|
if (__kmem_cache_shutdown(s) != 0)
|
|
return -EBUSY;
|
|
|
|
list_del(&s->list);
|
|
|
|
if (s->flags & SLAB_TYPESAFE_BY_RCU) {
|
|
list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
|
|
schedule_work(&slab_caches_to_rcu_destroy_work);
|
|
} else {
|
|
kfence_shutdown_cache(s);
|
|
debugfs_slab_release(s);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void slab_kmem_cache_release(struct kmem_cache *s)
|
|
{
|
|
__kmem_cache_release(s);
|
|
kfree_const(s->name);
|
|
kmem_cache_free(kmem_cache, s);
|
|
}
|
|
|
|
void kmem_cache_destroy(struct kmem_cache *s)
|
|
{
|
|
int err = -EBUSY;
|
|
bool rcu_set;
|
|
|
|
if (unlikely(!s) || !kasan_check_byte(s))
|
|
return;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&slab_mutex);
|
|
|
|
rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
|
|
|
|
s->refcount--;
|
|
if (s->refcount)
|
|
goto out_unlock;
|
|
|
|
err = shutdown_cache(s);
|
|
WARN(err, "%s %s: Slab cache still has objects when called from %pS",
|
|
__func__, s->name, (void *)_RET_IP_);
|
|
out_unlock:
|
|
mutex_unlock(&slab_mutex);
|
|
cpus_read_unlock();
|
|
if (!err && !rcu_set)
|
|
kmem_cache_release(s);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_destroy);
|
|
|
|
/**
|
|
* kmem_cache_shrink - Shrink a cache.
|
|
* @cachep: The cache to shrink.
|
|
*
|
|
* Releases as many slabs as possible for a cache.
|
|
* To help debugging, a zero exit status indicates all slabs were released.
|
|
*
|
|
* Return: %0 if all slabs were released, non-zero otherwise
|
|
*/
|
|
int kmem_cache_shrink(struct kmem_cache *cachep)
|
|
{
|
|
kasan_cache_shrink(cachep);
|
|
|
|
return __kmem_cache_shrink(cachep);
|
|
}
|
|
EXPORT_SYMBOL(kmem_cache_shrink);
|
|
|
|
bool slab_is_available(void)
|
|
{
|
|
return slab_state >= UP;
|
|
}
|
|
|
|
#ifdef CONFIG_PRINTK
|
|
static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
|
|
{
|
|
if (__kfence_obj_info(kpp, object, slab))
|
|
return;
|
|
__kmem_obj_info(kpp, object, slab);
|
|
}
|
|
|
|
/**
|
|
* kmem_dump_obj - Print available slab provenance information
|
|
* @object: slab object for which to find provenance information.
|
|
*
|
|
* This function uses pr_cont(), so that the caller is expected to have
|
|
* printed out whatever preamble is appropriate. The provenance information
|
|
* depends on the type of object and on how much debugging is enabled.
|
|
* For a slab-cache object, the fact that it is a slab object is printed,
|
|
* and, if available, the slab name, return address, and stack trace from
|
|
* the allocation and last free path of that object.
|
|
*
|
|
* Return: %true if the pointer is to a not-yet-freed object from
|
|
* kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
|
|
* is to an already-freed object, and %false otherwise.
|
|
*/
|
|
bool kmem_dump_obj(void *object)
|
|
{
|
|
char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
|
|
int i;
|
|
struct slab *slab;
|
|
unsigned long ptroffset;
|
|
struct kmem_obj_info kp = { };
|
|
|
|
/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
|
|
if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
|
|
return false;
|
|
slab = virt_to_slab(object);
|
|
if (!slab)
|
|
return false;
|
|
|
|
kmem_obj_info(&kp, object, slab);
|
|
if (kp.kp_slab_cache)
|
|
pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
|
|
else
|
|
pr_cont(" slab%s", cp);
|
|
if (is_kfence_address(object))
|
|
pr_cont(" (kfence)");
|
|
if (kp.kp_objp)
|
|
pr_cont(" start %px", kp.kp_objp);
|
|
if (kp.kp_data_offset)
|
|
pr_cont(" data offset %lu", kp.kp_data_offset);
|
|
if (kp.kp_objp) {
|
|
ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
|
|
pr_cont(" pointer offset %lu", ptroffset);
|
|
}
|
|
if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
|
|
pr_cont(" size %u", kp.kp_slab_cache->object_size);
|
|
if (kp.kp_ret)
|
|
pr_cont(" allocated at %pS\n", kp.kp_ret);
|
|
else
|
|
pr_cont("\n");
|
|
for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
|
|
if (!kp.kp_stack[i])
|
|
break;
|
|
pr_info(" %pS\n", kp.kp_stack[i]);
|
|
}
|
|
|
|
if (kp.kp_free_stack[0])
|
|
pr_cont(" Free path:\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
|
|
if (!kp.kp_free_stack[i])
|
|
break;
|
|
pr_info(" %pS\n", kp.kp_free_stack[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kmem_dump_obj);
|
|
#endif
|
|
|
|
/* Create a cache during boot when no slab services are available yet */
|
|
void __init create_boot_cache(struct kmem_cache *s, const char *name,
|
|
unsigned int size, slab_flags_t flags,
|
|
unsigned int useroffset, unsigned int usersize)
|
|
{
|
|
int err;
|
|
unsigned int align = ARCH_KMALLOC_MINALIGN;
|
|
|
|
s->name = name;
|
|
s->size = s->object_size = size;
|
|
|
|
/*
|
|
* kmalloc caches guarantee alignment of at least the largest
|
|
* power-of-two divisor of the size. For power-of-two sizes,
|
|
* it is the size itself.
|
|
*/
|
|
if (flags & SLAB_KMALLOC)
|
|
align = max(align, 1U << (ffs(size) - 1));
|
|
s->align = calculate_alignment(flags, align, size);
|
|
|
|
#ifdef CONFIG_HARDENED_USERCOPY
|
|
s->useroffset = useroffset;
|
|
s->usersize = usersize;
|
|
#endif
|
|
|
|
err = __kmem_cache_create(s, flags);
|
|
|
|
if (err)
|
|
panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
|
|
name, size, err);
|
|
|
|
s->refcount = -1; /* Exempt from merging for now */
|
|
}
|
|
|
|
static struct kmem_cache *__init create_kmalloc_cache(const char *name,
|
|
unsigned int size,
|
|
slab_flags_t flags)
|
|
{
|
|
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
|
|
|
|
if (!s)
|
|
panic("Out of memory when creating slab %s\n", name);
|
|
|
|
create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
|
|
list_add(&s->list, &slab_caches);
|
|
s->refcount = 1;
|
|
return s;
|
|
}
|
|
|
|
kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init =
|
|
{ /* initialization for https://llvm.org/pr42570 */ };
|
|
EXPORT_SYMBOL(kmalloc_caches);
|
|
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
unsigned long random_kmalloc_seed __ro_after_init;
|
|
EXPORT_SYMBOL(random_kmalloc_seed);
|
|
#endif
|
|
|
|
/*
|
|
* Conversion table for small slabs sizes / 8 to the index in the
|
|
* kmalloc array. This is necessary for slabs < 192 since we have non power
|
|
* of two cache sizes there. The size of larger slabs can be determined using
|
|
* fls.
|
|
*/
|
|
u8 kmalloc_size_index[24] __ro_after_init = {
|
|
3, /* 8 */
|
|
4, /* 16 */
|
|
5, /* 24 */
|
|
5, /* 32 */
|
|
6, /* 40 */
|
|
6, /* 48 */
|
|
6, /* 56 */
|
|
6, /* 64 */
|
|
1, /* 72 */
|
|
1, /* 80 */
|
|
1, /* 88 */
|
|
1, /* 96 */
|
|
7, /* 104 */
|
|
7, /* 112 */
|
|
7, /* 120 */
|
|
7, /* 128 */
|
|
2, /* 136 */
|
|
2, /* 144 */
|
|
2, /* 152 */
|
|
2, /* 160 */
|
|
2, /* 168 */
|
|
2, /* 176 */
|
|
2, /* 184 */
|
|
2 /* 192 */
|
|
};
|
|
|
|
size_t kmalloc_size_roundup(size_t size)
|
|
{
|
|
if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
|
|
/*
|
|
* The flags don't matter since size_index is common to all.
|
|
* Neither does the caller for just getting ->object_size.
|
|
*/
|
|
return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size;
|
|
}
|
|
|
|
/* Above the smaller buckets, size is a multiple of page size. */
|
|
if (size && size <= KMALLOC_MAX_SIZE)
|
|
return PAGE_SIZE << get_order(size);
|
|
|
|
/*
|
|
* Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
|
|
* and very large size - kmalloc() may fail.
|
|
*/
|
|
return size;
|
|
|
|
}
|
|
EXPORT_SYMBOL(kmalloc_size_roundup);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
|
|
#else
|
|
#define KMALLOC_DMA_NAME(sz)
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
|
|
#else
|
|
#define KMALLOC_CGROUP_NAME(sz)
|
|
#endif
|
|
|
|
#ifndef CONFIG_SLUB_TINY
|
|
#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
|
|
#else
|
|
#define KMALLOC_RCL_NAME(sz)
|
|
#endif
|
|
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
|
|
#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
|
|
#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
|
|
#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
|
|
#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
|
|
#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
|
|
#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
|
|
#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
|
|
#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
|
|
#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
|
|
#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
|
|
#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
|
|
#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
|
|
#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
|
|
#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
|
|
#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
|
|
#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
|
|
#else // CONFIG_RANDOM_KMALLOC_CACHES
|
|
#define KMALLOC_RANDOM_NAME(N, sz)
|
|
#endif
|
|
|
|
#define INIT_KMALLOC_INFO(__size, __short_size) \
|
|
{ \
|
|
.name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
|
|
KMALLOC_RCL_NAME(__short_size) \
|
|
KMALLOC_CGROUP_NAME(__short_size) \
|
|
KMALLOC_DMA_NAME(__short_size) \
|
|
KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
|
|
.size = __size, \
|
|
}
|
|
|
|
/*
|
|
* kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
|
|
* kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
|
|
* kmalloc-2M.
|
|
*/
|
|
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
|
|
INIT_KMALLOC_INFO(0, 0),
|
|
INIT_KMALLOC_INFO(96, 96),
|
|
INIT_KMALLOC_INFO(192, 192),
|
|
INIT_KMALLOC_INFO(8, 8),
|
|
INIT_KMALLOC_INFO(16, 16),
|
|
INIT_KMALLOC_INFO(32, 32),
|
|
INIT_KMALLOC_INFO(64, 64),
|
|
INIT_KMALLOC_INFO(128, 128),
|
|
INIT_KMALLOC_INFO(256, 256),
|
|
INIT_KMALLOC_INFO(512, 512),
|
|
INIT_KMALLOC_INFO(1024, 1k),
|
|
INIT_KMALLOC_INFO(2048, 2k),
|
|
INIT_KMALLOC_INFO(4096, 4k),
|
|
INIT_KMALLOC_INFO(8192, 8k),
|
|
INIT_KMALLOC_INFO(16384, 16k),
|
|
INIT_KMALLOC_INFO(32768, 32k),
|
|
INIT_KMALLOC_INFO(65536, 64k),
|
|
INIT_KMALLOC_INFO(131072, 128k),
|
|
INIT_KMALLOC_INFO(262144, 256k),
|
|
INIT_KMALLOC_INFO(524288, 512k),
|
|
INIT_KMALLOC_INFO(1048576, 1M),
|
|
INIT_KMALLOC_INFO(2097152, 2M)
|
|
};
|
|
|
|
/*
|
|
* Patch up the size_index table if we have strange large alignment
|
|
* requirements for the kmalloc array. This is only the case for
|
|
* MIPS it seems. The standard arches will not generate any code here.
|
|
*
|
|
* Largest permitted alignment is 256 bytes due to the way we
|
|
* handle the index determination for the smaller caches.
|
|
*
|
|
* Make sure that nothing crazy happens if someone starts tinkering
|
|
* around with ARCH_KMALLOC_MINALIGN
|
|
*/
|
|
void __init setup_kmalloc_cache_index_table(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
|
|
!is_power_of_2(KMALLOC_MIN_SIZE));
|
|
|
|
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
|
|
unsigned int elem = size_index_elem(i);
|
|
|
|
if (elem >= ARRAY_SIZE(kmalloc_size_index))
|
|
break;
|
|
kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 64) {
|
|
/*
|
|
* The 96 byte sized cache is not used if the alignment
|
|
* is 64 byte.
|
|
*/
|
|
for (i = 64 + 8; i <= 96; i += 8)
|
|
kmalloc_size_index[size_index_elem(i)] = 7;
|
|
|
|
}
|
|
|
|
if (KMALLOC_MIN_SIZE >= 128) {
|
|
/*
|
|
* The 192 byte sized cache is not used if the alignment
|
|
* is 128 byte. Redirect kmalloc to use the 256 byte cache
|
|
* instead.
|
|
*/
|
|
for (i = 128 + 8; i <= 192; i += 8)
|
|
kmalloc_size_index[size_index_elem(i)] = 8;
|
|
}
|
|
}
|
|
|
|
static unsigned int __kmalloc_minalign(void)
|
|
{
|
|
unsigned int minalign = dma_get_cache_alignment();
|
|
|
|
if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
|
|
is_swiotlb_allocated())
|
|
minalign = ARCH_KMALLOC_MINALIGN;
|
|
|
|
return max(minalign, arch_slab_minalign());
|
|
}
|
|
|
|
static void __init
|
|
new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
|
|
{
|
|
slab_flags_t flags = 0;
|
|
unsigned int minalign = __kmalloc_minalign();
|
|
unsigned int aligned_size = kmalloc_info[idx].size;
|
|
int aligned_idx = idx;
|
|
|
|
if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
|
|
flags |= SLAB_RECLAIM_ACCOUNT;
|
|
} else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) {
|
|
if (mem_cgroup_kmem_disabled()) {
|
|
kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
|
|
return;
|
|
}
|
|
flags |= SLAB_ACCOUNT;
|
|
} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
|
|
flags |= SLAB_CACHE_DMA;
|
|
}
|
|
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
|
|
flags |= SLAB_NO_MERGE;
|
|
#endif
|
|
|
|
/*
|
|
* If CONFIG_MEMCG is enabled, disable cache merging for
|
|
* KMALLOC_NORMAL caches.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL))
|
|
flags |= SLAB_NO_MERGE;
|
|
|
|
if (minalign > ARCH_KMALLOC_MINALIGN) {
|
|
aligned_size = ALIGN(aligned_size, minalign);
|
|
aligned_idx = __kmalloc_index(aligned_size, false);
|
|
}
|
|
|
|
if (!kmalloc_caches[type][aligned_idx])
|
|
kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
|
|
kmalloc_info[aligned_idx].name[type],
|
|
aligned_size, flags);
|
|
if (idx != aligned_idx)
|
|
kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
|
|
}
|
|
|
|
/*
|
|
* Create the kmalloc array. Some of the regular kmalloc arrays
|
|
* may already have been created because they were needed to
|
|
* enable allocations for slab creation.
|
|
*/
|
|
void __init create_kmalloc_caches(void)
|
|
{
|
|
int i;
|
|
enum kmalloc_cache_type type;
|
|
|
|
/*
|
|
* Including KMALLOC_CGROUP if CONFIG_MEMCG defined
|
|
*/
|
|
for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
|
|
/* Caches that are NOT of the two-to-the-power-of size. */
|
|
if (KMALLOC_MIN_SIZE <= 32)
|
|
new_kmalloc_cache(1, type);
|
|
if (KMALLOC_MIN_SIZE <= 64)
|
|
new_kmalloc_cache(2, type);
|
|
|
|
/* Caches that are of the two-to-the-power-of size. */
|
|
for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
|
|
new_kmalloc_cache(i, type);
|
|
}
|
|
#ifdef CONFIG_RANDOM_KMALLOC_CACHES
|
|
random_kmalloc_seed = get_random_u64();
|
|
#endif
|
|
|
|
/* Kmalloc array is now usable */
|
|
slab_state = UP;
|
|
|
|
if (IS_ENABLED(CONFIG_SLAB_BUCKETS))
|
|
kmem_buckets_cache = kmem_cache_create("kmalloc_buckets",
|
|
sizeof(kmem_buckets),
|
|
0, SLAB_NO_MERGE, NULL);
|
|
}
|
|
|
|
/**
|
|
* __ksize -- Report full size of underlying allocation
|
|
* @object: pointer to the object
|
|
*
|
|
* This should only be used internally to query the true size of allocations.
|
|
* It is not meant to be a way to discover the usable size of an allocation
|
|
* after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
|
|
* the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
|
|
* and/or FORTIFY_SOURCE.
|
|
*
|
|
* Return: size of the actual memory used by @object in bytes
|
|
*/
|
|
size_t __ksize(const void *object)
|
|
{
|
|
struct folio *folio;
|
|
|
|
if (unlikely(object == ZERO_SIZE_PTR))
|
|
return 0;
|
|
|
|
folio = virt_to_folio(object);
|
|
|
|
if (unlikely(!folio_test_slab(folio))) {
|
|
if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
|
|
return 0;
|
|
if (WARN_ON(object != folio_address(folio)))
|
|
return 0;
|
|
return folio_size(folio);
|
|
}
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
skip_orig_size_check(folio_slab(folio)->slab_cache, object);
|
|
#endif
|
|
|
|
return slab_ksize(folio_slab(folio)->slab_cache);
|
|
}
|
|
|
|
gfp_t kmalloc_fix_flags(gfp_t flags)
|
|
{
|
|
gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
|
|
|
|
flags &= ~GFP_SLAB_BUG_MASK;
|
|
pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
|
|
invalid_mask, &invalid_mask, flags, &flags);
|
|
dump_stack();
|
|
|
|
return flags;
|
|
}
|
|
|
|
#ifdef CONFIG_SLAB_FREELIST_RANDOM
|
|
/* Randomize a generic freelist */
|
|
static void freelist_randomize(unsigned int *list,
|
|
unsigned int count)
|
|
{
|
|
unsigned int rand;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
list[i] = i;
|
|
|
|
/* Fisher-Yates shuffle */
|
|
for (i = count - 1; i > 0; i--) {
|
|
rand = get_random_u32_below(i + 1);
|
|
swap(list[i], list[rand]);
|
|
}
|
|
}
|
|
|
|
/* Create a random sequence per cache */
|
|
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
|
|
gfp_t gfp)
|
|
{
|
|
|
|
if (count < 2 || cachep->random_seq)
|
|
return 0;
|
|
|
|
cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
|
|
if (!cachep->random_seq)
|
|
return -ENOMEM;
|
|
|
|
freelist_randomize(cachep->random_seq, count);
|
|
return 0;
|
|
}
|
|
|
|
/* Destroy the per-cache random freelist sequence */
|
|
void cache_random_seq_destroy(struct kmem_cache *cachep)
|
|
{
|
|
kfree(cachep->random_seq);
|
|
cachep->random_seq = NULL;
|
|
}
|
|
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
|
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
#define SLABINFO_RIGHTS (0400)
|
|
|
|
static void print_slabinfo_header(struct seq_file *m)
|
|
{
|
|
/*
|
|
* Output format version, so at least we can change it
|
|
* without _too_ many complaints.
|
|
*/
|
|
seq_puts(m, "slabinfo - version: 2.1\n");
|
|
seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
|
|
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
|
|
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static void *slab_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
mutex_lock(&slab_mutex);
|
|
return seq_list_start(&slab_caches, *pos);
|
|
}
|
|
|
|
static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
return seq_list_next(p, &slab_caches, pos);
|
|
}
|
|
|
|
static void slab_stop(struct seq_file *m, void *p)
|
|
{
|
|
mutex_unlock(&slab_mutex);
|
|
}
|
|
|
|
static void cache_show(struct kmem_cache *s, struct seq_file *m)
|
|
{
|
|
struct slabinfo sinfo;
|
|
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
get_slabinfo(s, &sinfo);
|
|
|
|
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
|
|
s->name, sinfo.active_objs, sinfo.num_objs, s->size,
|
|
sinfo.objects_per_slab, (1 << sinfo.cache_order));
|
|
|
|
seq_printf(m, " : tunables %4u %4u %4u",
|
|
sinfo.limit, sinfo.batchcount, sinfo.shared);
|
|
seq_printf(m, " : slabdata %6lu %6lu %6lu",
|
|
sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static int slab_show(struct seq_file *m, void *p)
|
|
{
|
|
struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
|
|
|
|
if (p == slab_caches.next)
|
|
print_slabinfo_header(m);
|
|
cache_show(s, m);
|
|
return 0;
|
|
}
|
|
|
|
void dump_unreclaimable_slab(void)
|
|
{
|
|
struct kmem_cache *s;
|
|
struct slabinfo sinfo;
|
|
|
|
/*
|
|
* Here acquiring slab_mutex is risky since we don't prefer to get
|
|
* sleep in oom path. But, without mutex hold, it may introduce a
|
|
* risk of crash.
|
|
* Use mutex_trylock to protect the list traverse, dump nothing
|
|
* without acquiring the mutex.
|
|
*/
|
|
if (!mutex_trylock(&slab_mutex)) {
|
|
pr_warn("excessive unreclaimable slab but cannot dump stats\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("Unreclaimable slab info:\n");
|
|
pr_info("Name Used Total\n");
|
|
|
|
list_for_each_entry(s, &slab_caches, list) {
|
|
if (s->flags & SLAB_RECLAIM_ACCOUNT)
|
|
continue;
|
|
|
|
get_slabinfo(s, &sinfo);
|
|
|
|
if (sinfo.num_objs > 0)
|
|
pr_info("%-17s %10luKB %10luKB\n", s->name,
|
|
(sinfo.active_objs * s->size) / 1024,
|
|
(sinfo.num_objs * s->size) / 1024);
|
|
}
|
|
mutex_unlock(&slab_mutex);
|
|
}
|
|
|
|
/*
|
|
* slabinfo_op - iterator that generates /proc/slabinfo
|
|
*
|
|
* Output layout:
|
|
* cache-name
|
|
* num-active-objs
|
|
* total-objs
|
|
* object size
|
|
* num-active-slabs
|
|
* total-slabs
|
|
* num-pages-per-slab
|
|
* + further values on SMP and with statistics enabled
|
|
*/
|
|
static const struct seq_operations slabinfo_op = {
|
|
.start = slab_start,
|
|
.next = slab_next,
|
|
.stop = slab_stop,
|
|
.show = slab_show,
|
|
};
|
|
|
|
static int slabinfo_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &slabinfo_op);
|
|
}
|
|
|
|
static const struct proc_ops slabinfo_proc_ops = {
|
|
.proc_flags = PROC_ENTRY_PERMANENT,
|
|
.proc_open = slabinfo_open,
|
|
.proc_read = seq_read,
|
|
.proc_lseek = seq_lseek,
|
|
.proc_release = seq_release,
|
|
};
|
|
|
|
static int __init slab_proc_init(void)
|
|
{
|
|
proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
|
|
return 0;
|
|
}
|
|
module_init(slab_proc_init);
|
|
|
|
#endif /* CONFIG_SLUB_DEBUG */
|
|
|
|
static __always_inline __realloc_size(2) void *
|
|
__do_krealloc(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
size_t ks;
|
|
|
|
/* Check for double-free before calling ksize. */
|
|
if (likely(!ZERO_OR_NULL_PTR(p))) {
|
|
if (!kasan_check_byte(p))
|
|
return NULL;
|
|
ks = ksize(p);
|
|
} else
|
|
ks = 0;
|
|
|
|
/* If the object still fits, repoison it precisely. */
|
|
if (ks >= new_size) {
|
|
p = kasan_krealloc((void *)p, new_size, flags);
|
|
return (void *)p;
|
|
}
|
|
|
|
ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
|
|
if (ret && p) {
|
|
/* Disable KASAN checks as the object's redzone is accessed. */
|
|
kasan_disable_current();
|
|
memcpy(ret, kasan_reset_tag(p), ks);
|
|
kasan_enable_current();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* krealloc - reallocate memory. The contents will remain unchanged.
|
|
* @p: object to reallocate memory for.
|
|
* @new_size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* The contents of the object pointed to are preserved up to the
|
|
* lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
|
|
* If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
|
|
* is 0 and @p is not a %NULL pointer, the object pointed to is freed.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL in case of error
|
|
*/
|
|
void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
|
|
{
|
|
void *ret;
|
|
|
|
if (unlikely(!new_size)) {
|
|
kfree(p);
|
|
return ZERO_SIZE_PTR;
|
|
}
|
|
|
|
ret = __do_krealloc(p, new_size, flags);
|
|
if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
|
|
kfree(p);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(krealloc_noprof);
|
|
|
|
/**
|
|
* kfree_sensitive - Clear sensitive information in memory before freeing
|
|
* @p: object to free memory of
|
|
*
|
|
* The memory of the object @p points to is zeroed before freed.
|
|
* If @p is %NULL, kfree_sensitive() does nothing.
|
|
*
|
|
* Note: this function zeroes the whole allocated buffer which can be a good
|
|
* deal bigger than the requested buffer size passed to kmalloc(). So be
|
|
* careful when using this function in performance sensitive code.
|
|
*/
|
|
void kfree_sensitive(const void *p)
|
|
{
|
|
size_t ks;
|
|
void *mem = (void *)p;
|
|
|
|
ks = ksize(mem);
|
|
if (ks) {
|
|
kasan_unpoison_range(mem, ks);
|
|
memzero_explicit(mem, ks);
|
|
}
|
|
kfree(mem);
|
|
}
|
|
EXPORT_SYMBOL(kfree_sensitive);
|
|
|
|
size_t ksize(const void *objp)
|
|
{
|
|
/*
|
|
* We need to first check that the pointer to the object is valid.
|
|
* The KASAN report printed from ksize() is more useful, then when
|
|
* it's printed later when the behaviour could be undefined due to
|
|
* a potential use-after-free or double-free.
|
|
*
|
|
* We use kasan_check_byte(), which is supported for the hardware
|
|
* tag-based KASAN mode, unlike kasan_check_read/write().
|
|
*
|
|
* If the pointed to memory is invalid, we return 0 to avoid users of
|
|
* ksize() writing to and potentially corrupting the memory region.
|
|
*
|
|
* We want to perform the check before __ksize(), to avoid potentially
|
|
* crashing in __ksize() due to accessing invalid metadata.
|
|
*/
|
|
if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
|
|
return 0;
|
|
|
|
return kfence_ksize(objp) ?: __ksize(objp);
|
|
}
|
|
EXPORT_SYMBOL(ksize);
|
|
|
|
/* Tracepoints definitions. */
|
|
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
|
|
EXPORT_TRACEPOINT_SYMBOL(kfree);
|
|
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
|
|
|