mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 16:54:20 +08:00
c37927d435
* 'trivial' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl: block: autoconvert trivial BKL users to private mutex drivers: autoconvert trivial BKL users to private mutex ipmi: autoconvert trivial BKL users to private mutex mac: autoconvert trivial BKL users to private mutex mtd: autoconvert trivial BKL users to private mutex scsi: autoconvert trivial BKL users to private mutex Fix up trivial conflicts (due to addition of private mutex right next to deletion of a version string) in drivers/char/pcmcia/cm40[04]0_cs.c
728 lines
20 KiB
C
728 lines
20 KiB
C
/*
|
|
* HP i8042 SDC + MSM-58321 BBRTC driver.
|
|
*
|
|
* Copyright (c) 2001 Brian S. Julin
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL").
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
*
|
|
* References:
|
|
* System Device Controller Microprocessor Firmware Theory of Operation
|
|
* for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
|
|
* efirtc.c by Stephane Eranian/Hewlett Packard
|
|
*
|
|
*/
|
|
|
|
#include <linux/hp_sdc.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/time.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/semaphore.h>
|
|
|
|
MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
|
|
MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
|
|
#define RTC_VERSION "1.10d"
|
|
|
|
static DEFINE_MUTEX(hp_sdc_rtc_mutex);
|
|
static unsigned long epoch = 2000;
|
|
|
|
static struct semaphore i8042tregs;
|
|
|
|
static hp_sdc_irqhook hp_sdc_rtc_isr;
|
|
|
|
static struct fasync_struct *hp_sdc_rtc_async_queue;
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
|
|
|
|
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos);
|
|
|
|
static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
|
|
unsigned int cmd, unsigned long arg);
|
|
|
|
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
|
|
|
|
static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
|
|
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
|
|
|
|
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data);
|
|
|
|
static void hp_sdc_rtc_isr (int irq, void *dev_id,
|
|
uint8_t status, uint8_t data)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
|
|
{
|
|
struct semaphore tsem;
|
|
hp_sdc_transaction t;
|
|
uint8_t tseq[91];
|
|
int i;
|
|
|
|
i = 0;
|
|
while (i < 91) {
|
|
tseq[i++] = HP_SDC_ACT_DATAREG |
|
|
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
|
|
tseq[i++] = 0x01; /* write i8042[0x70] */
|
|
tseq[i] = i / 7; /* BBRTC reg address */
|
|
i++;
|
|
tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
|
|
tseq[i++] = 2; /* expect 1 stat/dat pair back. */
|
|
i++; i++; /* buffer for stat/dat pair */
|
|
}
|
|
tseq[84] |= HP_SDC_ACT_SEMAPHORE;
|
|
t.endidx = 91;
|
|
t.seq = tseq;
|
|
t.act.semaphore = &tsem;
|
|
sema_init(&tsem, 0);
|
|
|
|
if (hp_sdc_enqueue_transaction(&t)) return -1;
|
|
|
|
down_interruptible(&tsem); /* Put ourselves to sleep for results. */
|
|
|
|
/* Check for nonpresence of BBRTC */
|
|
if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
|
|
tseq[55] | tseq[62] | tseq[34] | tseq[41] |
|
|
tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
|
|
return -1;
|
|
|
|
memset(rtctm, 0, sizeof(struct rtc_time));
|
|
rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
|
|
rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
|
|
rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
|
|
rtctm->tm_wday = (tseq[48] & 0x0f);
|
|
rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
|
|
rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
|
|
rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
|
|
{
|
|
struct rtc_time tm, tm_last;
|
|
int i = 0;
|
|
|
|
/* MSM-58321 has no read latch, so must read twice and compare. */
|
|
|
|
if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
|
|
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
|
|
|
|
while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
|
|
if (i++ > 4) return -1;
|
|
memcpy(&tm_last, &tm, sizeof(struct rtc_time));
|
|
if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
|
|
}
|
|
|
|
memcpy(rtctm, &tm, sizeof(struct rtc_time));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
|
|
{
|
|
hp_sdc_transaction t;
|
|
uint8_t tseq[26] = {
|
|
HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
|
|
0,
|
|
HP_SDC_CMD_READ_T1, 2, 0, 0,
|
|
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
|
|
HP_SDC_CMD_READ_T2, 2, 0, 0,
|
|
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
|
|
HP_SDC_CMD_READ_T3, 2, 0, 0,
|
|
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
|
|
HP_SDC_CMD_READ_T4, 2, 0, 0,
|
|
HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
|
|
HP_SDC_CMD_READ_T5, 2, 0, 0
|
|
};
|
|
|
|
t.endidx = numreg * 5;
|
|
|
|
tseq[1] = loadcmd;
|
|
tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
|
|
|
|
t.seq = tseq;
|
|
t.act.semaphore = &i8042tregs;
|
|
|
|
down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
|
|
|
|
if (hp_sdc_enqueue_transaction(&t)) return -1;
|
|
|
|
down_interruptible(&i8042tregs); /* Sleep until results come back. */
|
|
up(&i8042tregs);
|
|
|
|
return (tseq[5] |
|
|
((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
|
|
((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
|
|
}
|
|
|
|
|
|
/* Read the i8042 real-time clock */
|
|
static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
|
|
int64_t raw;
|
|
uint32_t tenms;
|
|
unsigned int days;
|
|
|
|
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
|
|
if (raw < 0) return -1;
|
|
|
|
tenms = (uint32_t)raw & 0xffffff;
|
|
days = (unsigned int)(raw >> 24) & 0xffff;
|
|
|
|
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
|
|
res->tv_sec = (time_t)(tenms / 100) + days * 86400;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the i8042 fast handshake timer */
|
|
static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
|
|
int64_t raw;
|
|
unsigned int tenms;
|
|
|
|
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
|
|
if (raw < 0) return -1;
|
|
|
|
tenms = (unsigned int)raw & 0xffff;
|
|
|
|
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
|
|
res->tv_sec = (time_t)(tenms / 100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the i8042 match timer (a.k.a. alarm) */
|
|
static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
|
|
int64_t raw;
|
|
uint32_t tenms;
|
|
|
|
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
|
|
if (raw < 0) return -1;
|
|
|
|
tenms = (uint32_t)raw & 0xffffff;
|
|
|
|
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
|
|
res->tv_sec = (time_t)(tenms / 100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the i8042 delay timer */
|
|
static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
|
|
int64_t raw;
|
|
uint32_t tenms;
|
|
|
|
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
|
|
if (raw < 0) return -1;
|
|
|
|
tenms = (uint32_t)raw & 0xffffff;
|
|
|
|
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
|
|
res->tv_sec = (time_t)(tenms / 100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the i8042 cycle timer (a.k.a. periodic) */
|
|
static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
|
|
int64_t raw;
|
|
uint32_t tenms;
|
|
|
|
raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
|
|
if (raw < 0) return -1;
|
|
|
|
tenms = (uint32_t)raw & 0xffffff;
|
|
|
|
res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
|
|
res->tv_sec = (time_t)(tenms / 100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Set the i8042 real-time clock */
|
|
static int hp_sdc_rtc_set_rt (struct timeval *setto)
|
|
{
|
|
uint32_t tenms;
|
|
unsigned int days;
|
|
hp_sdc_transaction t;
|
|
uint8_t tseq[11] = {
|
|
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
|
|
HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
|
|
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
|
|
HP_SDC_CMD_SET_RTD, 2, 0, 0
|
|
};
|
|
|
|
t.endidx = 10;
|
|
|
|
if (0xffff < setto->tv_sec / 86400) return -1;
|
|
days = setto->tv_sec / 86400;
|
|
if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
|
|
days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
|
|
if (days > 0xffff) return -1;
|
|
|
|
if (0xffffff < setto->tv_sec) return -1;
|
|
tenms = setto->tv_sec * 100;
|
|
if (0xffffff < setto->tv_usec / 10000) return -1;
|
|
tenms += setto->tv_usec / 10000;
|
|
if (tenms > 0xffffff) return -1;
|
|
|
|
tseq[3] = (uint8_t)(tenms & 0xff);
|
|
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
|
|
tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
|
|
|
|
tseq[9] = (uint8_t)(days & 0xff);
|
|
tseq[10] = (uint8_t)((days >> 8) & 0xff);
|
|
|
|
t.seq = tseq;
|
|
|
|
if (hp_sdc_enqueue_transaction(&t)) return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Set the i8042 fast handshake timer */
|
|
static int hp_sdc_rtc_set_fhs (struct timeval *setto)
|
|
{
|
|
uint32_t tenms;
|
|
hp_sdc_transaction t;
|
|
uint8_t tseq[5] = {
|
|
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
|
|
HP_SDC_CMD_SET_FHS, 2, 0, 0
|
|
};
|
|
|
|
t.endidx = 4;
|
|
|
|
if (0xffff < setto->tv_sec) return -1;
|
|
tenms = setto->tv_sec * 100;
|
|
if (0xffff < setto->tv_usec / 10000) return -1;
|
|
tenms += setto->tv_usec / 10000;
|
|
if (tenms > 0xffff) return -1;
|
|
|
|
tseq[3] = (uint8_t)(tenms & 0xff);
|
|
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
|
|
|
|
t.seq = tseq;
|
|
|
|
if (hp_sdc_enqueue_transaction(&t)) return -1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Set the i8042 match timer (a.k.a. alarm) */
|
|
#define hp_sdc_rtc_set_mt (setto) \
|
|
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
|
|
|
|
/* Set the i8042 delay timer */
|
|
#define hp_sdc_rtc_set_dt (setto) \
|
|
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
|
|
|
|
/* Set the i8042 cycle timer (a.k.a. periodic) */
|
|
#define hp_sdc_rtc_set_ct (setto) \
|
|
hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
|
|
|
|
/* Set one of the i8042 3-byte wide timers */
|
|
static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
|
|
{
|
|
uint32_t tenms;
|
|
hp_sdc_transaction t;
|
|
uint8_t tseq[6] = {
|
|
HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
|
|
0, 3, 0, 0, 0
|
|
};
|
|
|
|
t.endidx = 6;
|
|
|
|
if (0xffffff < setto->tv_sec) return -1;
|
|
tenms = setto->tv_sec * 100;
|
|
if (0xffffff < setto->tv_usec / 10000) return -1;
|
|
tenms += setto->tv_usec / 10000;
|
|
if (tenms > 0xffffff) return -1;
|
|
|
|
tseq[1] = setcmd;
|
|
tseq[3] = (uint8_t)(tenms & 0xff);
|
|
tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
|
|
tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
|
|
|
|
t.seq = tseq;
|
|
|
|
if (hp_sdc_enqueue_transaction(&t)) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos) {
|
|
ssize_t retval;
|
|
|
|
if (count < sizeof(unsigned long))
|
|
return -EINVAL;
|
|
|
|
retval = put_user(68, (unsigned long __user *)buf);
|
|
return retval;
|
|
}
|
|
|
|
static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
|
|
{
|
|
unsigned long l;
|
|
|
|
l = 0;
|
|
if (l != 0)
|
|
return POLLIN | POLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
|
|
}
|
|
|
|
static int hp_sdc_rtc_proc_output (char *buf)
|
|
{
|
|
#define YN(bit) ("no")
|
|
#define NY(bit) ("yes")
|
|
char *p;
|
|
struct rtc_time tm;
|
|
struct timeval tv;
|
|
|
|
memset(&tm, 0, sizeof(struct rtc_time));
|
|
|
|
p = buf;
|
|
|
|
if (hp_sdc_rtc_read_bbrtc(&tm)) {
|
|
p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p,
|
|
"rtc_time\t: %02d:%02d:%02d\n"
|
|
"rtc_date\t: %04d-%02d-%02d\n"
|
|
"rtc_epoch\t: %04lu\n",
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec,
|
|
tm.tm_year + 1900, tm.tm_mon + 1,
|
|
tm.tm_mday, epoch);
|
|
}
|
|
|
|
if (hp_sdc_rtc_read_rt(&tv)) {
|
|
p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
|
|
tv.tv_sec, (int)tv.tv_usec/1000);
|
|
}
|
|
|
|
if (hp_sdc_rtc_read_fhs(&tv)) {
|
|
p += sprintf(p, "handshake\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
|
|
tv.tv_sec, (int)tv.tv_usec/1000);
|
|
}
|
|
|
|
if (hp_sdc_rtc_read_mt(&tv)) {
|
|
p += sprintf(p, "alarm\t\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
|
|
tv.tv_sec, (int)tv.tv_usec/1000);
|
|
}
|
|
|
|
if (hp_sdc_rtc_read_dt(&tv)) {
|
|
p += sprintf(p, "delay\t\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
|
|
tv.tv_sec, (int)tv.tv_usec/1000);
|
|
}
|
|
|
|
if (hp_sdc_rtc_read_ct(&tv)) {
|
|
p += sprintf(p, "periodic\t: READ FAILED!\n");
|
|
} else {
|
|
p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
|
|
tv.tv_sec, (int)tv.tv_usec/1000);
|
|
}
|
|
|
|
p += sprintf(p,
|
|
"DST_enable\t: %s\n"
|
|
"BCD\t\t: %s\n"
|
|
"24hr\t\t: %s\n"
|
|
"square_wave\t: %s\n"
|
|
"alarm_IRQ\t: %s\n"
|
|
"update_IRQ\t: %s\n"
|
|
"periodic_IRQ\t: %s\n"
|
|
"periodic_freq\t: %ld\n"
|
|
"batt_status\t: %s\n",
|
|
YN(RTC_DST_EN),
|
|
NY(RTC_DM_BINARY),
|
|
YN(RTC_24H),
|
|
YN(RTC_SQWE),
|
|
YN(RTC_AIE),
|
|
YN(RTC_UIE),
|
|
YN(RTC_PIE),
|
|
1UL,
|
|
1 ? "okay" : "dead");
|
|
|
|
return p - buf;
|
|
#undef YN
|
|
#undef NY
|
|
}
|
|
|
|
static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
int len = hp_sdc_rtc_proc_output (page);
|
|
if (len <= off+count) *eof = 1;
|
|
*start = page + off;
|
|
len -= off;
|
|
if (len>count) len = count;
|
|
if (len<0) len = 0;
|
|
return len;
|
|
}
|
|
|
|
static int hp_sdc_rtc_ioctl(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
#if 1
|
|
return -EINVAL;
|
|
#else
|
|
|
|
struct rtc_time wtime;
|
|
struct timeval ttime;
|
|
int use_wtime = 0;
|
|
|
|
/* This needs major work. */
|
|
|
|
switch (cmd) {
|
|
|
|
case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
|
|
case RTC_AIE_ON: /* Allow alarm interrupts. */
|
|
case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
|
|
case RTC_PIE_ON: /* Allow periodic ints */
|
|
case RTC_UIE_ON: /* Allow ints for RTC updates. */
|
|
case RTC_UIE_OFF: /* Allow ints for RTC updates. */
|
|
{
|
|
/* We cannot mask individual user timers and we
|
|
cannot tell them apart when they occur, so it
|
|
would be disingenuous to succeed these IOCTLs */
|
|
return -EINVAL;
|
|
}
|
|
case RTC_ALM_READ: /* Read the present alarm time */
|
|
{
|
|
if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
|
|
if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
|
|
|
|
wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
|
|
wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
|
|
wtime.tm_sec = ttime.tv_sec;
|
|
|
|
break;
|
|
}
|
|
case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
|
|
{
|
|
return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
|
|
}
|
|
case RTC_IRQP_SET: /* Set periodic IRQ rate. */
|
|
{
|
|
/*
|
|
* The max we can do is 100Hz.
|
|
*/
|
|
|
|
if ((arg < 1) || (arg > 100)) return -EINVAL;
|
|
ttime.tv_sec = 0;
|
|
ttime.tv_usec = 1000000 / arg;
|
|
if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
|
|
hp_sdc_rtc_freq = arg;
|
|
return 0;
|
|
}
|
|
case RTC_ALM_SET: /* Store a time into the alarm */
|
|
{
|
|
/*
|
|
* This expects a struct hp_sdc_rtc_time. Writing 0xff means
|
|
* "don't care" or "match all" for PC timers. The HP SDC
|
|
* does not support that perk, but it could be emulated fairly
|
|
* easily. Only the tm_hour, tm_min and tm_sec are used.
|
|
* We could do it with 10ms accuracy with the HP SDC, if the
|
|
* rtc interface left us a way to do that.
|
|
*/
|
|
struct hp_sdc_rtc_time alm_tm;
|
|
|
|
if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
|
|
sizeof(struct hp_sdc_rtc_time)))
|
|
return -EFAULT;
|
|
|
|
if (alm_tm.tm_hour > 23) return -EINVAL;
|
|
if (alm_tm.tm_min > 59) return -EINVAL;
|
|
if (alm_tm.tm_sec > 59) return -EINVAL;
|
|
|
|
ttime.sec = alm_tm.tm_hour * 3600 +
|
|
alm_tm.tm_min * 60 + alm_tm.tm_sec;
|
|
ttime.usec = 0;
|
|
if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
|
|
return 0;
|
|
}
|
|
case RTC_RD_TIME: /* Read the time/date from RTC */
|
|
{
|
|
if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
|
|
break;
|
|
}
|
|
case RTC_SET_TIME: /* Set the RTC */
|
|
{
|
|
struct rtc_time hp_sdc_rtc_tm;
|
|
unsigned char mon, day, hrs, min, sec, leap_yr;
|
|
unsigned int yrs;
|
|
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
|
|
sizeof(struct rtc_time)))
|
|
return -EFAULT;
|
|
|
|
yrs = hp_sdc_rtc_tm.tm_year + 1900;
|
|
mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
|
|
day = hp_sdc_rtc_tm.tm_mday;
|
|
hrs = hp_sdc_rtc_tm.tm_hour;
|
|
min = hp_sdc_rtc_tm.tm_min;
|
|
sec = hp_sdc_rtc_tm.tm_sec;
|
|
|
|
if (yrs < 1970)
|
|
return -EINVAL;
|
|
|
|
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
|
|
|
|
if ((mon > 12) || (day == 0))
|
|
return -EINVAL;
|
|
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
|
|
return -EINVAL;
|
|
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
|
|
return -EINVAL;
|
|
|
|
if ((yrs -= eH) > 255) /* They are unsigned */
|
|
return -EINVAL;
|
|
|
|
|
|
return 0;
|
|
}
|
|
case RTC_EPOCH_READ: /* Read the epoch. */
|
|
{
|
|
return put_user (epoch, (unsigned long *)arg);
|
|
}
|
|
case RTC_EPOCH_SET: /* Set the epoch. */
|
|
{
|
|
/*
|
|
* There were no RTC clocks before 1900.
|
|
*/
|
|
if (arg < 1900)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
|
|
epoch = arg;
|
|
return 0;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
|
|
#endif
|
|
}
|
|
|
|
static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&hp_sdc_rtc_mutex);
|
|
ret = hp_sdc_rtc_ioctl(file, cmd, arg);
|
|
mutex_unlock(&hp_sdc_rtc_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static const struct file_operations hp_sdc_rtc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = no_llseek,
|
|
.read = hp_sdc_rtc_read,
|
|
.poll = hp_sdc_rtc_poll,
|
|
.unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
|
|
.open = hp_sdc_rtc_open,
|
|
.fasync = hp_sdc_rtc_fasync,
|
|
};
|
|
|
|
static struct miscdevice hp_sdc_rtc_dev = {
|
|
.minor = RTC_MINOR,
|
|
.name = "rtc_HIL",
|
|
.fops = &hp_sdc_rtc_fops
|
|
};
|
|
|
|
static int __init hp_sdc_rtc_init(void)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef __mc68000__
|
|
if (!MACH_IS_HP300)
|
|
return -ENODEV;
|
|
#endif
|
|
|
|
sema_init(&i8042tregs, 1);
|
|
|
|
if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
|
|
return ret;
|
|
if (misc_register(&hp_sdc_rtc_dev) != 0)
|
|
printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
|
|
|
|
create_proc_read_entry ("driver/rtc", 0, NULL,
|
|
hp_sdc_rtc_read_proc, NULL);
|
|
|
|
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
|
|
"(RTC v " RTC_VERSION ")\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit hp_sdc_rtc_exit(void)
|
|
{
|
|
remove_proc_entry ("driver/rtc", NULL);
|
|
misc_deregister(&hp_sdc_rtc_dev);
|
|
hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
|
|
printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
|
|
}
|
|
|
|
module_init(hp_sdc_rtc_init);
|
|
module_exit(hp_sdc_rtc_exit);
|