linux/tools/testing/selftests/kvm/rseq_test.c
Gavin Shan 0fcc102923 KVM: selftests: Use getcpu() instead of sched_getcpu() in rseq_test
sched_getcpu() is glibc dependent and it can simply return the CPU
ID from the registered rseq information, as Florian Weimer pointed.
In this case, it's pointless to compare the return value from
sched_getcpu() and that fetched from the registered rseq information.

Fix the issue by replacing sched_getcpu() with getcpu(), as Florian
suggested. The comments are modified accordingly by replacing
"sched_getcpu()" with "getcpu()".

Reported-by: Yihuang Yu <yihyu@redhat.com>
Suggested-by: Florian Weimer <fweimer@redhat.com>
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Message-Id: <20220810104114.6838-3-gshan@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-08-10 15:08:29 -04:00

283 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#define _GNU_SOURCE /* for program_invocation_short_name */
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <syscall.h>
#include <sys/ioctl.h>
#include <sys/sysinfo.h>
#include <asm/barrier.h>
#include <linux/atomic.h>
#include <linux/rseq.h>
#include <linux/unistd.h>
#include "kvm_util.h"
#include "processor.h"
#include "test_util.h"
#include "../rseq/rseq.c"
/*
* Any bug related to task migration is likely to be timing-dependent; perform
* a large number of migrations to reduce the odds of a false negative.
*/
#define NR_TASK_MIGRATIONS 100000
static pthread_t migration_thread;
static cpu_set_t possible_mask;
static int min_cpu, max_cpu;
static bool done;
static atomic_t seq_cnt;
static void guest_code(void)
{
for (;;)
GUEST_SYNC(0);
}
/*
* We have to perform direct system call for getcpu() because it's
* not available until glic 2.29.
*/
static void sys_getcpu(unsigned *cpu)
{
int r;
r = syscall(__NR_getcpu, cpu, NULL, NULL);
TEST_ASSERT(!r, "getcpu failed, errno = %d (%s)", errno, strerror(errno));
}
static int next_cpu(int cpu)
{
/*
* Advance to the next CPU, skipping those that weren't in the original
* affinity set. Sadly, there is no CPU_SET_FOR_EACH, and cpu_set_t's
* data storage is considered as opaque. Note, if this task is pinned
* to a small set of discontigous CPUs, e.g. 2 and 1023, this loop will
* burn a lot cycles and the test will take longer than normal to
* complete.
*/
do {
cpu++;
if (cpu > max_cpu) {
cpu = min_cpu;
TEST_ASSERT(CPU_ISSET(cpu, &possible_mask),
"Min CPU = %d must always be usable", cpu);
break;
}
} while (!CPU_ISSET(cpu, &possible_mask));
return cpu;
}
static void *migration_worker(void *__rseq_tid)
{
pid_t rseq_tid = (pid_t)(unsigned long)__rseq_tid;
cpu_set_t allowed_mask;
int r, i, cpu;
CPU_ZERO(&allowed_mask);
for (i = 0, cpu = min_cpu; i < NR_TASK_MIGRATIONS; i++, cpu = next_cpu(cpu)) {
CPU_SET(cpu, &allowed_mask);
/*
* Bump the sequence count twice to allow the reader to detect
* that a migration may have occurred in between rseq and sched
* CPU ID reads. An odd sequence count indicates a migration
* is in-progress, while a completely different count indicates
* a migration occurred since the count was last read.
*/
atomic_inc(&seq_cnt);
/*
* Ensure the odd count is visible while getcpu() isn't
* stable, i.e. while changing affinity is in-progress.
*/
smp_wmb();
r = sched_setaffinity(rseq_tid, sizeof(allowed_mask), &allowed_mask);
TEST_ASSERT(!r, "sched_setaffinity failed, errno = %d (%s)",
errno, strerror(errno));
smp_wmb();
atomic_inc(&seq_cnt);
CPU_CLR(cpu, &allowed_mask);
/*
* Wait 1-10us before proceeding to the next iteration and more
* specifically, before bumping seq_cnt again. A delay is
* needed on three fronts:
*
* 1. To allow sched_setaffinity() to prompt migration before
* ioctl(KVM_RUN) enters the guest so that TIF_NOTIFY_RESUME
* (or TIF_NEED_RESCHED, which indirectly leads to handling
* NOTIFY_RESUME) is handled in KVM context.
*
* If NOTIFY_RESUME/NEED_RESCHED is set after KVM enters
* the guest, the guest will trigger a IO/MMIO exit all the
* way to userspace and the TIF flags will be handled by
* the generic "exit to userspace" logic, not by KVM. The
* exit to userspace is necessary to give the test a chance
* to check the rseq CPU ID (see #2).
*
* Alternatively, guest_code() could include an instruction
* to trigger an exit that is handled by KVM, but any such
* exit requires architecture specific code.
*
* 2. To let ioctl(KVM_RUN) make its way back to the test
* before the next round of migration. The test's check on
* the rseq CPU ID must wait for migration to complete in
* order to avoid false positive, thus any kernel rseq bug
* will be missed if the next migration starts before the
* check completes.
*
* 3. To ensure the read-side makes efficient forward progress,
* e.g. if getcpu() involves a syscall. Stalling the read-side
* means the test will spend more time waiting for getcpu()
* to stabilize and less time trying to hit the timing-dependent
* bug.
*
* Because any bug in this area is likely to be timing-dependent,
* run with a range of delays at 1us intervals from 1us to 10us
* as a best effort to avoid tuning the test to the point where
* it can hit _only_ the original bug and not detect future
* regressions.
*
* The original bug can reproduce with a delay up to ~500us on
* x86-64, but starts to require more iterations to reproduce
* as the delay creeps above ~10us, and the average runtime of
* each iteration obviously increases as well. Cap the delay
* at 10us to keep test runtime reasonable while minimizing
* potential coverage loss.
*
* The lower bound for reproducing the bug is likely below 1us,
* e.g. failures occur on x86-64 with nanosleep(0), but at that
* point the overhead of the syscall likely dominates the delay.
* Use usleep() for simplicity and to avoid unnecessary kernel
* dependencies.
*/
usleep((i % 10) + 1);
}
done = true;
return NULL;
}
static void calc_min_max_cpu(void)
{
int i, cnt, nproc;
TEST_REQUIRE(CPU_COUNT(&possible_mask) >= 2);
/*
* CPU_SET doesn't provide a FOR_EACH helper, get the min/max CPU that
* this task is affined to in order to reduce the time spent querying
* unusable CPUs, e.g. if this task is pinned to a small percentage of
* total CPUs.
*/
nproc = get_nprocs_conf();
min_cpu = -1;
max_cpu = -1;
cnt = 0;
for (i = 0; i < nproc; i++) {
if (!CPU_ISSET(i, &possible_mask))
continue;
if (min_cpu == -1)
min_cpu = i;
max_cpu = i;
cnt++;
}
__TEST_REQUIRE(cnt >= 2,
"Only one usable CPU, task migration not possible");
}
int main(int argc, char *argv[])
{
int r, i, snapshot;
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
u32 cpu, rseq_cpu;
/* Tell stdout not to buffer its content */
setbuf(stdout, NULL);
r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask);
TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno,
strerror(errno));
calc_min_max_cpu();
r = rseq_register_current_thread();
TEST_ASSERT(!r, "rseq_register_current_thread failed, errno = %d (%s)",
errno, strerror(errno));
/*
* Create and run a dummy VM that immediately exits to userspace via
* GUEST_SYNC, while concurrently migrating the process by setting its
* CPU affinity.
*/
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
ucall_init(vm, NULL);
pthread_create(&migration_thread, NULL, migration_worker,
(void *)(unsigned long)gettid());
for (i = 0; !done; i++) {
vcpu_run(vcpu);
TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
"Guest failed?");
/*
* Verify rseq's CPU matches sched's CPU. Ensure migration
* doesn't occur between getcpu() and reading the rseq cpu_id
* by rereading both if the sequence count changes, or if the
* count is odd (migration in-progress).
*/
do {
/*
* Drop bit 0 to force a mismatch if the count is odd,
* i.e. if a migration is in-progress.
*/
snapshot = atomic_read(&seq_cnt) & ~1;
/*
* Ensure calling getcpu() and reading rseq.cpu_id complete
* in a single "no migration" window, i.e. are not reordered
* across the seq_cnt reads.
*/
smp_rmb();
sys_getcpu(&cpu);
rseq_cpu = rseq_current_cpu_raw();
smp_rmb();
} while (snapshot != atomic_read(&seq_cnt));
TEST_ASSERT(rseq_cpu == cpu,
"rseq CPU = %d, sched CPU = %d\n", rseq_cpu, cpu);
}
/*
* Sanity check that the test was able to enter the guest a reasonable
* number of times, e.g. didn't get stalled too often/long waiting for
* getcpu() to stabilize. A 2:1 migration:KVM_RUN ratio is a fairly
* conservative ratio on x86-64, which can do _more_ KVM_RUNs than
* migrations given the 1us+ delay in the migration task.
*/
TEST_ASSERT(i > (NR_TASK_MIGRATIONS / 2),
"Only performed %d KVM_RUNs, task stalled too much?\n", i);
pthread_join(migration_thread, NULL);
kvm_vm_free(vm);
rseq_unregister_current_thread();
return 0;
}