mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-24 14:54:49 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
1159 lines
31 KiB
C
1159 lines
31 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2009 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/slab.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/highmem.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "nic.h"
|
|
#include "workarounds.h"
|
|
|
|
/*
|
|
* TX descriptor ring full threshold
|
|
*
|
|
* The tx_queue descriptor ring fill-level must fall below this value
|
|
* before we restart the netif queue
|
|
*/
|
|
#define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
|
|
|
|
/* We want to be able to nest calls to netif_stop_queue(), since each
|
|
* channel can have an individual stop on the queue.
|
|
*/
|
|
void efx_stop_queue(struct efx_nic *efx)
|
|
{
|
|
spin_lock_bh(&efx->netif_stop_lock);
|
|
EFX_TRACE(efx, "stop TX queue\n");
|
|
|
|
atomic_inc(&efx->netif_stop_count);
|
|
netif_stop_queue(efx->net_dev);
|
|
|
|
spin_unlock_bh(&efx->netif_stop_lock);
|
|
}
|
|
|
|
/* Wake netif's TX queue
|
|
* We want to be able to nest calls to netif_stop_queue(), since each
|
|
* channel can have an individual stop on the queue.
|
|
*/
|
|
void efx_wake_queue(struct efx_nic *efx)
|
|
{
|
|
local_bh_disable();
|
|
if (atomic_dec_and_lock(&efx->netif_stop_count,
|
|
&efx->netif_stop_lock)) {
|
|
EFX_TRACE(efx, "waking TX queue\n");
|
|
netif_wake_queue(efx->net_dev);
|
|
spin_unlock(&efx->netif_stop_lock);
|
|
}
|
|
local_bh_enable();
|
|
}
|
|
|
|
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer)
|
|
{
|
|
if (buffer->unmap_len) {
|
|
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
|
|
dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
|
|
buffer->unmap_len);
|
|
if (buffer->unmap_single)
|
|
pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
else
|
|
pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
buffer->unmap_len = 0;
|
|
buffer->unmap_single = false;
|
|
}
|
|
|
|
if (buffer->skb) {
|
|
dev_kfree_skb_any((struct sk_buff *) buffer->skb);
|
|
buffer->skb = NULL;
|
|
EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
|
|
"complete\n", tx_queue->queue, read_ptr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* struct efx_tso_header - a DMA mapped buffer for packet headers
|
|
* @next: Linked list of free ones.
|
|
* The list is protected by the TX queue lock.
|
|
* @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
|
|
* @dma_addr: The DMA address of the header below.
|
|
*
|
|
* This controls the memory used for a TSO header. Use TSOH_DATA()
|
|
* to find the packet header data. Use TSOH_SIZE() to calculate the
|
|
* total size required for a given packet header length. TSO headers
|
|
* in the free list are exactly %TSOH_STD_SIZE bytes in size.
|
|
*/
|
|
struct efx_tso_header {
|
|
union {
|
|
struct efx_tso_header *next;
|
|
size_t unmap_len;
|
|
};
|
|
dma_addr_t dma_addr;
|
|
};
|
|
|
|
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb);
|
|
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
|
|
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
|
|
struct efx_tso_header *tsoh);
|
|
|
|
static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer)
|
|
{
|
|
if (buffer->tsoh) {
|
|
if (likely(!buffer->tsoh->unmap_len)) {
|
|
buffer->tsoh->next = tx_queue->tso_headers_free;
|
|
tx_queue->tso_headers_free = buffer->tsoh;
|
|
} else {
|
|
efx_tsoh_heap_free(tx_queue, buffer->tsoh);
|
|
}
|
|
buffer->tsoh = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static inline unsigned
|
|
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
|
|
{
|
|
/* Depending on the NIC revision, we can use descriptor
|
|
* lengths up to 8K or 8K-1. However, since PCI Express
|
|
* devices must split read requests at 4K boundaries, there is
|
|
* little benefit from using descriptors that cross those
|
|
* boundaries and we keep things simple by not doing so.
|
|
*/
|
|
unsigned len = (~dma_addr & 0xfff) + 1;
|
|
|
|
/* Work around hardware bug for unaligned buffers. */
|
|
if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
|
|
len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Add a socket buffer to a TX queue
|
|
*
|
|
* This maps all fragments of a socket buffer for DMA and adds them to
|
|
* the TX queue. The queue's insert pointer will be incremented by
|
|
* the number of fragments in the socket buffer.
|
|
*
|
|
* If any DMA mapping fails, any mapped fragments will be unmapped,
|
|
* the queue's insert pointer will be restored to its original value.
|
|
*
|
|
* This function is split out from efx_hard_start_xmit to allow the
|
|
* loopback test to direct packets via specific TX queues.
|
|
*
|
|
* Returns NETDEV_TX_OK or NETDEV_TX_BUSY
|
|
* You must hold netif_tx_lock() to call this function.
|
|
*/
|
|
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct pci_dev *pci_dev = efx->pci_dev;
|
|
struct efx_tx_buffer *buffer;
|
|
skb_frag_t *fragment;
|
|
struct page *page;
|
|
int page_offset;
|
|
unsigned int len, unmap_len = 0, fill_level, insert_ptr;
|
|
dma_addr_t dma_addr, unmap_addr = 0;
|
|
unsigned int dma_len;
|
|
bool unmap_single;
|
|
int q_space, i = 0;
|
|
netdev_tx_t rc = NETDEV_TX_OK;
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
if (skb_shinfo(skb)->gso_size)
|
|
return efx_enqueue_skb_tso(tx_queue, skb);
|
|
|
|
/* Get size of the initial fragment */
|
|
len = skb_headlen(skb);
|
|
|
|
/* Pad if necessary */
|
|
if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
|
|
EFX_BUG_ON_PARANOID(skb->data_len);
|
|
len = 32 + 1;
|
|
if (skb_pad(skb, len - skb->len))
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
|
|
q_space = EFX_TXQ_MASK - 1 - fill_level;
|
|
|
|
/* Map for DMA. Use pci_map_single rather than pci_map_page
|
|
* since this is more efficient on machines with sparse
|
|
* memory.
|
|
*/
|
|
unmap_single = true;
|
|
dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
|
|
|
|
/* Process all fragments */
|
|
while (1) {
|
|
if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
|
|
goto pci_err;
|
|
|
|
/* Store fields for marking in the per-fragment final
|
|
* descriptor */
|
|
unmap_len = len;
|
|
unmap_addr = dma_addr;
|
|
|
|
/* Add to TX queue, splitting across DMA boundaries */
|
|
do {
|
|
if (unlikely(q_space-- <= 0)) {
|
|
/* It might be that completions have
|
|
* happened since the xmit path last
|
|
* checked. Update the xmit path's
|
|
* copy of read_count.
|
|
*/
|
|
++tx_queue->stopped;
|
|
/* This memory barrier protects the
|
|
* change of stopped from the access
|
|
* of read_count. */
|
|
smp_mb();
|
|
tx_queue->old_read_count =
|
|
*(volatile unsigned *)
|
|
&tx_queue->read_count;
|
|
fill_level = (tx_queue->insert_count
|
|
- tx_queue->old_read_count);
|
|
q_space = EFX_TXQ_MASK - 1 - fill_level;
|
|
if (unlikely(q_space-- <= 0))
|
|
goto stop;
|
|
smp_mb();
|
|
--tx_queue->stopped;
|
|
}
|
|
|
|
insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
|
|
buffer = &tx_queue->buffer[insert_ptr];
|
|
efx_tsoh_free(tx_queue, buffer);
|
|
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
|
EFX_BUG_ON_PARANOID(buffer->skb);
|
|
EFX_BUG_ON_PARANOID(buffer->len);
|
|
EFX_BUG_ON_PARANOID(!buffer->continuation);
|
|
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
if (likely(dma_len >= len))
|
|
dma_len = len;
|
|
|
|
/* Fill out per descriptor fields */
|
|
buffer->len = dma_len;
|
|
buffer->dma_addr = dma_addr;
|
|
len -= dma_len;
|
|
dma_addr += dma_len;
|
|
++tx_queue->insert_count;
|
|
} while (len);
|
|
|
|
/* Transfer ownership of the unmapping to the final buffer */
|
|
buffer->unmap_single = unmap_single;
|
|
buffer->unmap_len = unmap_len;
|
|
unmap_len = 0;
|
|
|
|
/* Get address and size of next fragment */
|
|
if (i >= skb_shinfo(skb)->nr_frags)
|
|
break;
|
|
fragment = &skb_shinfo(skb)->frags[i];
|
|
len = fragment->size;
|
|
page = fragment->page;
|
|
page_offset = fragment->page_offset;
|
|
i++;
|
|
/* Map for DMA */
|
|
unmap_single = false;
|
|
dma_addr = pci_map_page(pci_dev, page, page_offset, len,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
/* Transfer ownership of the skb to the final buffer */
|
|
buffer->skb = skb;
|
|
buffer->continuation = false;
|
|
|
|
/* Pass off to hardware */
|
|
efx_nic_push_buffers(tx_queue);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
pci_err:
|
|
EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
|
|
"fragments for DMA\n", tx_queue->queue, skb->len,
|
|
skb_shinfo(skb)->nr_frags + 1);
|
|
|
|
/* Mark the packet as transmitted, and free the SKB ourselves */
|
|
dev_kfree_skb_any(skb);
|
|
goto unwind;
|
|
|
|
stop:
|
|
rc = NETDEV_TX_BUSY;
|
|
|
|
if (tx_queue->stopped == 1)
|
|
efx_stop_queue(efx);
|
|
|
|
unwind:
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
while (tx_queue->insert_count != tx_queue->write_count) {
|
|
--tx_queue->insert_count;
|
|
insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
|
|
buffer = &tx_queue->buffer[insert_ptr];
|
|
efx_dequeue_buffer(tx_queue, buffer);
|
|
buffer->len = 0;
|
|
}
|
|
|
|
/* Free the fragment we were mid-way through pushing */
|
|
if (unmap_len) {
|
|
if (unmap_single)
|
|
pci_unmap_single(pci_dev, unmap_addr, unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
else
|
|
pci_unmap_page(pci_dev, unmap_addr, unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Remove packets from the TX queue
|
|
*
|
|
* This removes packets from the TX queue, up to and including the
|
|
* specified index.
|
|
*/
|
|
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
|
|
unsigned int index)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int stop_index, read_ptr;
|
|
|
|
stop_index = (index + 1) & EFX_TXQ_MASK;
|
|
read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
|
|
|
|
while (read_ptr != stop_index) {
|
|
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
|
|
if (unlikely(buffer->len == 0)) {
|
|
EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
|
|
"completion id %x\n", tx_queue->queue,
|
|
read_ptr);
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
|
|
return;
|
|
}
|
|
|
|
efx_dequeue_buffer(tx_queue, buffer);
|
|
buffer->continuation = true;
|
|
buffer->len = 0;
|
|
|
|
++tx_queue->read_count;
|
|
read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
|
|
}
|
|
}
|
|
|
|
/* Initiate a packet transmission. We use one channel per CPU
|
|
* (sharing when we have more CPUs than channels). On Falcon, the TX
|
|
* completion events will be directed back to the CPU that transmitted
|
|
* the packet, which should be cache-efficient.
|
|
*
|
|
* Context: non-blocking.
|
|
* Note that returning anything other than NETDEV_TX_OK will cause the
|
|
* OS to free the skb.
|
|
*/
|
|
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
|
|
struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
if (unlikely(efx->port_inhibited))
|
|
return NETDEV_TX_BUSY;
|
|
|
|
if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
|
|
tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
|
|
else
|
|
tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
|
|
|
|
return efx_enqueue_skb(tx_queue, skb);
|
|
}
|
|
|
|
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
|
|
{
|
|
unsigned fill_level;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
|
|
|
|
efx_dequeue_buffers(tx_queue, index);
|
|
|
|
/* See if we need to restart the netif queue. This barrier
|
|
* separates the update of read_count from the test of
|
|
* stopped. */
|
|
smp_mb();
|
|
if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
|
|
fill_level = tx_queue->insert_count - tx_queue->read_count;
|
|
if (fill_level < EFX_TXQ_THRESHOLD) {
|
|
EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
|
|
|
|
/* Do this under netif_tx_lock(), to avoid racing
|
|
* with efx_xmit(). */
|
|
netif_tx_lock(efx->net_dev);
|
|
if (tx_queue->stopped) {
|
|
tx_queue->stopped = 0;
|
|
efx_wake_queue(efx);
|
|
}
|
|
netif_tx_unlock(efx->net_dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int txq_size;
|
|
int i, rc;
|
|
|
|
EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
|
|
|
|
/* Allocate software ring */
|
|
txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
|
|
tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
|
|
if (!tx_queue->buffer)
|
|
return -ENOMEM;
|
|
for (i = 0; i <= EFX_TXQ_MASK; ++i)
|
|
tx_queue->buffer[i].continuation = true;
|
|
|
|
/* Allocate hardware ring */
|
|
rc = efx_nic_probe_tx(tx_queue);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
return rc;
|
|
}
|
|
|
|
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
|
|
|
|
tx_queue->insert_count = 0;
|
|
tx_queue->write_count = 0;
|
|
tx_queue->read_count = 0;
|
|
tx_queue->old_read_count = 0;
|
|
BUG_ON(tx_queue->stopped);
|
|
|
|
/* Set up TX descriptor ring */
|
|
efx_nic_init_tx(tx_queue);
|
|
}
|
|
|
|
void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
if (!tx_queue->buffer)
|
|
return;
|
|
|
|
/* Free any buffers left in the ring */
|
|
while (tx_queue->read_count != tx_queue->write_count) {
|
|
buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
|
|
efx_dequeue_buffer(tx_queue, buffer);
|
|
buffer->continuation = true;
|
|
buffer->len = 0;
|
|
|
|
++tx_queue->read_count;
|
|
}
|
|
}
|
|
|
|
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
|
|
|
|
/* Flush TX queue, remove descriptor ring */
|
|
efx_nic_fini_tx(tx_queue);
|
|
|
|
efx_release_tx_buffers(tx_queue);
|
|
|
|
/* Free up TSO header cache */
|
|
efx_fini_tso(tx_queue);
|
|
|
|
/* Release queue's stop on port, if any */
|
|
if (tx_queue->stopped) {
|
|
tx_queue->stopped = 0;
|
|
efx_wake_queue(tx_queue->efx);
|
|
}
|
|
}
|
|
|
|
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
|
|
efx_nic_remove_tx(tx_queue);
|
|
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
}
|
|
|
|
|
|
/* Efx TCP segmentation acceleration.
|
|
*
|
|
* Why? Because by doing it here in the driver we can go significantly
|
|
* faster than the GSO.
|
|
*
|
|
* Requires TX checksum offload support.
|
|
*/
|
|
|
|
/* Number of bytes inserted at the start of a TSO header buffer,
|
|
* similar to NET_IP_ALIGN.
|
|
*/
|
|
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
|
|
#define TSOH_OFFSET 0
|
|
#else
|
|
#define TSOH_OFFSET NET_IP_ALIGN
|
|
#endif
|
|
|
|
#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
|
|
|
|
/* Total size of struct efx_tso_header, buffer and padding */
|
|
#define TSOH_SIZE(hdr_len) \
|
|
(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
|
|
|
|
/* Size of blocks on free list. Larger blocks must be allocated from
|
|
* the heap.
|
|
*/
|
|
#define TSOH_STD_SIZE 128
|
|
|
|
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
|
|
#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
|
|
#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
|
|
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
|
|
#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
|
|
|
|
/**
|
|
* struct tso_state - TSO state for an SKB
|
|
* @out_len: Remaining length in current segment
|
|
* @seqnum: Current sequence number
|
|
* @ipv4_id: Current IPv4 ID, host endian
|
|
* @packet_space: Remaining space in current packet
|
|
* @dma_addr: DMA address of current position
|
|
* @in_len: Remaining length in current SKB fragment
|
|
* @unmap_len: Length of SKB fragment
|
|
* @unmap_addr: DMA address of SKB fragment
|
|
* @unmap_single: DMA single vs page mapping flag
|
|
* @protocol: Network protocol (after any VLAN header)
|
|
* @header_len: Number of bytes of header
|
|
* @full_packet_size: Number of bytes to put in each outgoing segment
|
|
*
|
|
* The state used during segmentation. It is put into this data structure
|
|
* just to make it easy to pass into inline functions.
|
|
*/
|
|
struct tso_state {
|
|
/* Output position */
|
|
unsigned out_len;
|
|
unsigned seqnum;
|
|
unsigned ipv4_id;
|
|
unsigned packet_space;
|
|
|
|
/* Input position */
|
|
dma_addr_t dma_addr;
|
|
unsigned in_len;
|
|
unsigned unmap_len;
|
|
dma_addr_t unmap_addr;
|
|
bool unmap_single;
|
|
|
|
__be16 protocol;
|
|
unsigned header_len;
|
|
int full_packet_size;
|
|
};
|
|
|
|
|
|
/*
|
|
* Verify that our various assumptions about sk_buffs and the conditions
|
|
* under which TSO will be attempted hold true. Return the protocol number.
|
|
*/
|
|
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
|
{
|
|
__be16 protocol = skb->protocol;
|
|
|
|
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
|
|
protocol);
|
|
if (protocol == htons(ETH_P_8021Q)) {
|
|
/* Find the encapsulated protocol; reset network header
|
|
* and transport header based on that. */
|
|
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
|
|
protocol = veh->h_vlan_encapsulated_proto;
|
|
skb_set_network_header(skb, sizeof(*veh));
|
|
if (protocol == htons(ETH_P_IP))
|
|
skb_set_transport_header(skb, sizeof(*veh) +
|
|
4 * ip_hdr(skb)->ihl);
|
|
else if (protocol == htons(ETH_P_IPV6))
|
|
skb_set_transport_header(skb, sizeof(*veh) +
|
|
sizeof(struct ipv6hdr));
|
|
}
|
|
|
|
if (protocol == htons(ETH_P_IP)) {
|
|
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
|
|
} else {
|
|
EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
|
|
EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
|
|
}
|
|
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
|
|
+ (tcp_hdr(skb)->doff << 2u)) >
|
|
skb_headlen(skb));
|
|
|
|
return protocol;
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate a page worth of efx_tso_header structures, and string them
|
|
* into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
|
|
*/
|
|
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
|
|
{
|
|
|
|
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
|
|
struct efx_tso_header *tsoh;
|
|
dma_addr_t dma_addr;
|
|
u8 *base_kva, *kva;
|
|
|
|
base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
|
|
if (base_kva == NULL) {
|
|
EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
|
|
" headers\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* pci_alloc_consistent() allocates pages. */
|
|
EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
|
|
|
|
for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
|
|
tsoh = (struct efx_tso_header *)kva;
|
|
tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
|
|
tsoh->next = tx_queue->tso_headers_free;
|
|
tx_queue->tso_headers_free = tsoh;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Free up a TSO header, and all others in the same page. */
|
|
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
|
|
struct efx_tso_header *tsoh,
|
|
struct pci_dev *pci_dev)
|
|
{
|
|
struct efx_tso_header **p;
|
|
unsigned long base_kva;
|
|
dma_addr_t base_dma;
|
|
|
|
base_kva = (unsigned long)tsoh & PAGE_MASK;
|
|
base_dma = tsoh->dma_addr & PAGE_MASK;
|
|
|
|
p = &tx_queue->tso_headers_free;
|
|
while (*p != NULL) {
|
|
if (((unsigned long)*p & PAGE_MASK) == base_kva)
|
|
*p = (*p)->next;
|
|
else
|
|
p = &(*p)->next;
|
|
}
|
|
|
|
pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
|
|
}
|
|
|
|
static struct efx_tso_header *
|
|
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
|
|
{
|
|
struct efx_tso_header *tsoh;
|
|
|
|
tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
|
|
if (unlikely(!tsoh))
|
|
return NULL;
|
|
|
|
tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
|
|
TSOH_BUFFER(tsoh), header_len,
|
|
PCI_DMA_TODEVICE);
|
|
if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
|
|
tsoh->dma_addr))) {
|
|
kfree(tsoh);
|
|
return NULL;
|
|
}
|
|
|
|
tsoh->unmap_len = header_len;
|
|
return tsoh;
|
|
}
|
|
|
|
static void
|
|
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
|
|
{
|
|
pci_unmap_single(tx_queue->efx->pci_dev,
|
|
tsoh->dma_addr, tsoh->unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
kfree(tsoh);
|
|
}
|
|
|
|
/**
|
|
* efx_tx_queue_insert - push descriptors onto the TX queue
|
|
* @tx_queue: Efx TX queue
|
|
* @dma_addr: DMA address of fragment
|
|
* @len: Length of fragment
|
|
* @final_buffer: The final buffer inserted into the queue
|
|
*
|
|
* Push descriptors onto the TX queue. Return 0 on success or 1 if
|
|
* @tx_queue full.
|
|
*/
|
|
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
|
dma_addr_t dma_addr, unsigned len,
|
|
struct efx_tx_buffer **final_buffer)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned dma_len, fill_level, insert_ptr;
|
|
int q_space;
|
|
|
|
EFX_BUG_ON_PARANOID(len <= 0);
|
|
|
|
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
|
|
/* -1 as there is no way to represent all descriptors used */
|
|
q_space = EFX_TXQ_MASK - 1 - fill_level;
|
|
|
|
while (1) {
|
|
if (unlikely(q_space-- <= 0)) {
|
|
/* It might be that completions have happened
|
|
* since the xmit path last checked. Update
|
|
* the xmit path's copy of read_count.
|
|
*/
|
|
++tx_queue->stopped;
|
|
/* This memory barrier protects the change of
|
|
* stopped from the access of read_count. */
|
|
smp_mb();
|
|
tx_queue->old_read_count =
|
|
*(volatile unsigned *)&tx_queue->read_count;
|
|
fill_level = (tx_queue->insert_count
|
|
- tx_queue->old_read_count);
|
|
q_space = EFX_TXQ_MASK - 1 - fill_level;
|
|
if (unlikely(q_space-- <= 0)) {
|
|
*final_buffer = NULL;
|
|
return 1;
|
|
}
|
|
smp_mb();
|
|
--tx_queue->stopped;
|
|
}
|
|
|
|
insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
|
|
buffer = &tx_queue->buffer[insert_ptr];
|
|
++tx_queue->insert_count;
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
|
|
tx_queue->read_count >
|
|
EFX_TXQ_MASK);
|
|
|
|
efx_tsoh_free(tx_queue, buffer);
|
|
EFX_BUG_ON_PARANOID(buffer->len);
|
|
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
EFX_BUG_ON_PARANOID(buffer->skb);
|
|
EFX_BUG_ON_PARANOID(!buffer->continuation);
|
|
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
|
|
|
buffer->dma_addr = dma_addr;
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
|
|
/* If there is enough space to send then do so */
|
|
if (dma_len >= len)
|
|
break;
|
|
|
|
buffer->len = dma_len; /* Don't set the other members */
|
|
dma_addr += dma_len;
|
|
len -= dma_len;
|
|
}
|
|
|
|
EFX_BUG_ON_PARANOID(!len);
|
|
buffer->len = len;
|
|
*final_buffer = buffer;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Put a TSO header into the TX queue.
|
|
*
|
|
* This is special-cased because we know that it is small enough to fit in
|
|
* a single fragment, and we know it doesn't cross a page boundary. It
|
|
* also allows us to not worry about end-of-packet etc.
|
|
*/
|
|
static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
|
|
struct efx_tso_header *tsoh, unsigned len)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
|
|
efx_tsoh_free(tx_queue, buffer);
|
|
EFX_BUG_ON_PARANOID(buffer->len);
|
|
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
EFX_BUG_ON_PARANOID(buffer->skb);
|
|
EFX_BUG_ON_PARANOID(!buffer->continuation);
|
|
EFX_BUG_ON_PARANOID(buffer->tsoh);
|
|
buffer->len = len;
|
|
buffer->dma_addr = tsoh->dma_addr;
|
|
buffer->tsoh = tsoh;
|
|
|
|
++tx_queue->insert_count;
|
|
}
|
|
|
|
|
|
/* Remove descriptors put into a tx_queue. */
|
|
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
dma_addr_t unmap_addr;
|
|
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
while (tx_queue->insert_count != tx_queue->write_count) {
|
|
--tx_queue->insert_count;
|
|
buffer = &tx_queue->buffer[tx_queue->insert_count &
|
|
EFX_TXQ_MASK];
|
|
efx_tsoh_free(tx_queue, buffer);
|
|
EFX_BUG_ON_PARANOID(buffer->skb);
|
|
if (buffer->unmap_len) {
|
|
unmap_addr = (buffer->dma_addr + buffer->len -
|
|
buffer->unmap_len);
|
|
if (buffer->unmap_single)
|
|
pci_unmap_single(tx_queue->efx->pci_dev,
|
|
unmap_addr, buffer->unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
else
|
|
pci_unmap_page(tx_queue->efx->pci_dev,
|
|
unmap_addr, buffer->unmap_len,
|
|
PCI_DMA_TODEVICE);
|
|
buffer->unmap_len = 0;
|
|
}
|
|
buffer->len = 0;
|
|
buffer->continuation = true;
|
|
}
|
|
}
|
|
|
|
|
|
/* Parse the SKB header and initialise state. */
|
|
static void tso_start(struct tso_state *st, const struct sk_buff *skb)
|
|
{
|
|
/* All ethernet/IP/TCP headers combined size is TCP header size
|
|
* plus offset of TCP header relative to start of packet.
|
|
*/
|
|
st->header_len = ((tcp_hdr(skb)->doff << 2u)
|
|
+ PTR_DIFF(tcp_hdr(skb), skb->data));
|
|
st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
|
|
|
|
if (st->protocol == htons(ETH_P_IP))
|
|
st->ipv4_id = ntohs(ip_hdr(skb)->id);
|
|
else
|
|
st->ipv4_id = 0;
|
|
st->seqnum = ntohl(tcp_hdr(skb)->seq);
|
|
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
|
|
|
|
st->packet_space = st->full_packet_size;
|
|
st->out_len = skb->len - st->header_len;
|
|
st->unmap_len = 0;
|
|
st->unmap_single = false;
|
|
}
|
|
|
|
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
skb_frag_t *frag)
|
|
{
|
|
st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
|
|
frag->page_offset, frag->size,
|
|
PCI_DMA_TODEVICE);
|
|
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
|
|
st->unmap_single = false;
|
|
st->unmap_len = frag->size;
|
|
st->in_len = frag->size;
|
|
st->dma_addr = st->unmap_addr;
|
|
return 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
const struct sk_buff *skb)
|
|
{
|
|
int hl = st->header_len;
|
|
int len = skb_headlen(skb) - hl;
|
|
|
|
st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
|
|
len, PCI_DMA_TODEVICE);
|
|
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
|
|
st->unmap_single = true;
|
|
st->unmap_len = len;
|
|
st->in_len = len;
|
|
st->dma_addr = st->unmap_addr;
|
|
return 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
/**
|
|
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Form descriptors for the current fragment, until we reach the end
|
|
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
|
|
* space in @tx_queue.
|
|
*/
|
|
static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
int n, end_of_packet, rc;
|
|
|
|
if (st->in_len == 0)
|
|
return 0;
|
|
if (st->packet_space == 0)
|
|
return 0;
|
|
|
|
EFX_BUG_ON_PARANOID(st->in_len <= 0);
|
|
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
|
|
|
|
n = min(st->in_len, st->packet_space);
|
|
|
|
st->packet_space -= n;
|
|
st->out_len -= n;
|
|
st->in_len -= n;
|
|
|
|
rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
|
|
if (likely(rc == 0)) {
|
|
if (st->out_len == 0)
|
|
/* Transfer ownership of the skb */
|
|
buffer->skb = skb;
|
|
|
|
end_of_packet = st->out_len == 0 || st->packet_space == 0;
|
|
buffer->continuation = !end_of_packet;
|
|
|
|
if (st->in_len == 0) {
|
|
/* Transfer ownership of the pci mapping */
|
|
buffer->unmap_len = st->unmap_len;
|
|
buffer->unmap_single = st->unmap_single;
|
|
st->unmap_len = 0;
|
|
}
|
|
}
|
|
|
|
st->dma_addr += n;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/**
|
|
* tso_start_new_packet - generate a new header and prepare for the new packet
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Generate a new header and prepare for the new packet. Return 0 on
|
|
* success, or -1 if failed to alloc header.
|
|
*/
|
|
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tso_header *tsoh;
|
|
struct tcphdr *tsoh_th;
|
|
unsigned ip_length;
|
|
u8 *header;
|
|
|
|
/* Allocate a DMA-mapped header buffer. */
|
|
if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
|
|
if (tx_queue->tso_headers_free == NULL) {
|
|
if (efx_tsoh_block_alloc(tx_queue))
|
|
return -1;
|
|
}
|
|
EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
|
|
tsoh = tx_queue->tso_headers_free;
|
|
tx_queue->tso_headers_free = tsoh->next;
|
|
tsoh->unmap_len = 0;
|
|
} else {
|
|
tx_queue->tso_long_headers++;
|
|
tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
|
|
if (unlikely(!tsoh))
|
|
return -1;
|
|
}
|
|
|
|
header = TSOH_BUFFER(tsoh);
|
|
tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
|
|
|
|
/* Copy and update the headers. */
|
|
memcpy(header, skb->data, st->header_len);
|
|
|
|
tsoh_th->seq = htonl(st->seqnum);
|
|
st->seqnum += skb_shinfo(skb)->gso_size;
|
|
if (st->out_len > skb_shinfo(skb)->gso_size) {
|
|
/* This packet will not finish the TSO burst. */
|
|
ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
|
|
tsoh_th->fin = 0;
|
|
tsoh_th->psh = 0;
|
|
} else {
|
|
/* This packet will be the last in the TSO burst. */
|
|
ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
|
|
tsoh_th->fin = tcp_hdr(skb)->fin;
|
|
tsoh_th->psh = tcp_hdr(skb)->psh;
|
|
}
|
|
|
|
if (st->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *tsoh_iph =
|
|
(struct iphdr *)(header + SKB_IPV4_OFF(skb));
|
|
|
|
tsoh_iph->tot_len = htons(ip_length);
|
|
|
|
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
|
tsoh_iph->id = htons(st->ipv4_id);
|
|
st->ipv4_id++;
|
|
} else {
|
|
struct ipv6hdr *tsoh_iph =
|
|
(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
|
|
|
|
tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
|
|
}
|
|
|
|
st->packet_space = skb_shinfo(skb)->gso_size;
|
|
++tx_queue->tso_packets;
|
|
|
|
/* Form a descriptor for this header. */
|
|
efx_tso_put_header(tx_queue, tsoh, st->header_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
*
|
|
* Context: You must hold netif_tx_lock() to call this function.
|
|
*
|
|
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
|
* @skb was not enqueued. In all cases @skb is consumed. Return
|
|
* %NETDEV_TX_OK or %NETDEV_TX_BUSY.
|
|
*/
|
|
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
int frag_i, rc, rc2 = NETDEV_TX_OK;
|
|
struct tso_state state;
|
|
|
|
/* Find the packet protocol and sanity-check it */
|
|
state.protocol = efx_tso_check_protocol(skb);
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
tso_start(&state, skb);
|
|
|
|
/* Assume that skb header area contains exactly the headers, and
|
|
* all payload is in the frag list.
|
|
*/
|
|
if (skb_headlen(skb) == state.header_len) {
|
|
/* Grab the first payload fragment. */
|
|
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
|
frag_i = 0;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto mem_err;
|
|
} else {
|
|
rc = tso_get_head_fragment(&state, efx, skb);
|
|
if (rc)
|
|
goto mem_err;
|
|
frag_i = -1;
|
|
}
|
|
|
|
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
|
|
goto mem_err;
|
|
|
|
while (1) {
|
|
rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
|
|
if (unlikely(rc))
|
|
goto stop;
|
|
|
|
/* Move onto the next fragment? */
|
|
if (state.in_len == 0) {
|
|
if (++frag_i >= skb_shinfo(skb)->nr_frags)
|
|
/* End of payload reached. */
|
|
break;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto mem_err;
|
|
}
|
|
|
|
/* Start at new packet? */
|
|
if (state.packet_space == 0 &&
|
|
tso_start_new_packet(tx_queue, skb, &state) < 0)
|
|
goto mem_err;
|
|
}
|
|
|
|
/* Pass off to hardware */
|
|
efx_nic_push_buffers(tx_queue);
|
|
|
|
tx_queue->tso_bursts++;
|
|
return NETDEV_TX_OK;
|
|
|
|
mem_err:
|
|
EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
|
|
dev_kfree_skb_any(skb);
|
|
goto unwind;
|
|
|
|
stop:
|
|
rc2 = NETDEV_TX_BUSY;
|
|
|
|
/* Stop the queue if it wasn't stopped before. */
|
|
if (tx_queue->stopped == 1)
|
|
efx_stop_queue(efx);
|
|
|
|
unwind:
|
|
/* Free the DMA mapping we were in the process of writing out */
|
|
if (state.unmap_len) {
|
|
if (state.unmap_single)
|
|
pci_unmap_single(efx->pci_dev, state.unmap_addr,
|
|
state.unmap_len, PCI_DMA_TODEVICE);
|
|
else
|
|
pci_unmap_page(efx->pci_dev, state.unmap_addr,
|
|
state.unmap_len, PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
efx_enqueue_unwind(tx_queue);
|
|
return rc2;
|
|
}
|
|
|
|
|
|
/*
|
|
* Free up all TSO datastructures associated with tx_queue. This
|
|
* routine should be called only once the tx_queue is both empty and
|
|
* will no longer be used.
|
|
*/
|
|
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned i;
|
|
|
|
if (tx_queue->buffer) {
|
|
for (i = 0; i <= EFX_TXQ_MASK; ++i)
|
|
efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
|
|
}
|
|
|
|
while (tx_queue->tso_headers_free != NULL)
|
|
efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
|
|
tx_queue->efx->pci_dev);
|
|
}
|