mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 18:24:14 +08:00
d00a569284
x86 is strongly ordered and all its atomic ops imply a full barrier. Implement the two new primitives as the old ones were. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/n/tip-knswsr5mldkr0w1lrdxvc81w@git.kernel.org Cc: Dave Jones <davej@redhat.com> Cc: Jesse Brandeburg <jesse.brandeburg@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michel Lespinasse <walken@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
131 lines
3.4 KiB
C
131 lines
3.4 KiB
C
#ifndef _ASM_X86_SYNC_BITOPS_H
|
|
#define _ASM_X86_SYNC_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
/*
|
|
* These have to be done with inline assembly: that way the bit-setting
|
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
|
* was cleared before the operation and != 0 if it was not.
|
|
*
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
|
|
#define ADDR (*(volatile long *)addr)
|
|
|
|
/**
|
|
* sync_set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
*
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void sync_set_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
asm volatile("lock; bts %1,%0"
|
|
: "+m" (ADDR)
|
|
: "Ir" (nr)
|
|
: "memory");
|
|
}
|
|
|
|
/**
|
|
* sync_clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* sync_clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static inline void sync_clear_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
asm volatile("lock; btr %1,%0"
|
|
: "+m" (ADDR)
|
|
: "Ir" (nr)
|
|
: "memory");
|
|
}
|
|
|
|
/**
|
|
* sync_change_bit - Toggle a bit in memory
|
|
* @nr: Bit to change
|
|
* @addr: Address to start counting from
|
|
*
|
|
* sync_change_bit() is atomic and may not be reordered.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void sync_change_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
asm volatile("lock; btc %1,%0"
|
|
: "+m" (ADDR)
|
|
: "Ir" (nr)
|
|
: "memory");
|
|
}
|
|
|
|
/**
|
|
* sync_test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int sync_test_and_set_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("lock; bts %2,%1\n\tsbbl %0,%0"
|
|
: "=r" (oldbit), "+m" (ADDR)
|
|
: "Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* sync_test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int sync_test_and_clear_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("lock; btr %2,%1\n\tsbbl %0,%0"
|
|
: "=r" (oldbit), "+m" (ADDR)
|
|
: "Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* sync_test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int sync_test_and_change_bit(long nr, volatile unsigned long *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("lock; btc %2,%1\n\tsbbl %0,%0"
|
|
: "=r" (oldbit), "+m" (ADDR)
|
|
: "Ir" (nr) : "memory");
|
|
return oldbit;
|
|
}
|
|
|
|
#define sync_test_bit(nr, addr) test_bit(nr, addr)
|
|
|
|
#undef ADDR
|
|
|
|
#endif /* _ASM_X86_SYNC_BITOPS_H */
|