mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-22 13:54:57 +08:00
66af8e2764
Propagate the 'fpu->fpregs_active' naming to the high level function that clears it. Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
771 lines
18 KiB
C
771 lines
18 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <asm/fpu/internal.h>
|
|
|
|
/*
|
|
* Track whether the kernel is using the FPU state
|
|
* currently.
|
|
*
|
|
* This flag is used:
|
|
*
|
|
* - by IRQ context code to potentially use the FPU
|
|
* if it's unused.
|
|
*
|
|
* - to debug kernel_fpu_begin()/end() correctness
|
|
*/
|
|
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
|
|
|
/*
|
|
* Track which context is using the FPU on the CPU:
|
|
*/
|
|
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
static void kernel_fpu_disable(void)
|
|
{
|
|
WARN_ON(this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, true);
|
|
}
|
|
|
|
static void kernel_fpu_enable(void)
|
|
{
|
|
WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, false);
|
|
}
|
|
|
|
static bool kernel_fpu_disabled(void)
|
|
{
|
|
return this_cpu_read(in_kernel_fpu);
|
|
}
|
|
|
|
/*
|
|
* Were we in an interrupt that interrupted kernel mode?
|
|
*
|
|
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
|
* pair does nothing at all: the thread must not have fpu (so
|
|
* that we don't try to save the FPU state), and TS must
|
|
* be set (so that the clts/stts pair does nothing that is
|
|
* visible in the interrupted kernel thread).
|
|
*
|
|
* Except for the eagerfpu case when we return true; in the likely case
|
|
* the thread has FPU but we are not going to set/clear TS.
|
|
*/
|
|
static bool interrupted_kernel_fpu_idle(void)
|
|
{
|
|
if (kernel_fpu_disabled())
|
|
return false;
|
|
|
|
if (use_eager_fpu())
|
|
return true;
|
|
|
|
return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
|
|
}
|
|
|
|
/*
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
* interrupted?
|
|
*
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
* in an interrupt context from user mode - we'll just
|
|
* save the FPU state as required.
|
|
*/
|
|
static bool interrupted_user_mode(void)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
return regs && user_mode(regs);
|
|
}
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*
|
|
* It's always ok in process context (ie "not interrupt")
|
|
* but it is sometimes ok even from an irq.
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
return !in_interrupt() ||
|
|
interrupted_user_mode() ||
|
|
interrupted_kernel_fpu_idle();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
void __kernel_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
kernel_fpu_disable();
|
|
|
|
if (fpu->fpregs_active) {
|
|
fpu_save_init(fpu);
|
|
} else {
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
if (!use_eager_fpu())
|
|
clts();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
|
|
|
void __kernel_fpu_end(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
if (fpu->fpregs_active) {
|
|
if (WARN_ON(restore_fpu_checking(fpu)))
|
|
fpu_reset_state(fpu);
|
|
} else if (!use_eager_fpu()) {
|
|
stts();
|
|
}
|
|
|
|
kernel_fpu_enable();
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
|
|
|
static void __save_fpu(struct fpu *fpu)
|
|
{
|
|
if (use_xsave()) {
|
|
if (unlikely(system_state == SYSTEM_BOOTING))
|
|
xsave_state_booting(&fpu->state->xsave);
|
|
else
|
|
xsave_state(&fpu->state->xsave);
|
|
} else {
|
|
fpu_fxsave(fpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save the FPU state (initialize it if necessary):
|
|
*
|
|
* This only ever gets called for the current task.
|
|
*/
|
|
void fpu__save(struct fpu *fpu)
|
|
{
|
|
WARN_ON(fpu != ¤t->thread.fpu);
|
|
|
|
preempt_disable();
|
|
if (fpu->fpregs_active) {
|
|
if (use_eager_fpu()) {
|
|
__save_fpu(fpu);
|
|
} else {
|
|
fpu_save_init(fpu);
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
}
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__save);
|
|
|
|
void fpstate_init(struct fpu *fpu)
|
|
{
|
|
if (!cpu_has_fpu) {
|
|
finit_soft_fpu(&fpu->state->soft);
|
|
return;
|
|
}
|
|
|
|
memset(fpu->state, 0, xstate_size);
|
|
|
|
if (cpu_has_fxsr) {
|
|
fx_finit(&fpu->state->fxsave);
|
|
} else {
|
|
struct i387_fsave_struct *fp = &fpu->state->fsave;
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_init);
|
|
|
|
/*
|
|
* FPU state allocation:
|
|
*/
|
|
static struct kmem_cache *task_xstate_cachep;
|
|
|
|
void fpstate_cache_init(void)
|
|
{
|
|
task_xstate_cachep =
|
|
kmem_cache_create("task_xstate", xstate_size,
|
|
__alignof__(union thread_xstate),
|
|
SLAB_PANIC | SLAB_NOTRACK, NULL);
|
|
setup_xstate_comp();
|
|
}
|
|
|
|
int fpstate_alloc(struct fpu *fpu)
|
|
{
|
|
if (fpu->state)
|
|
return 0;
|
|
|
|
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
|
if (!fpu->state)
|
|
return -ENOMEM;
|
|
|
|
/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
|
|
WARN_ON((unsigned long)fpu->state & 15);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_alloc);
|
|
|
|
void fpstate_free(struct fpu *fpu)
|
|
{
|
|
if (fpu->state) {
|
|
kmem_cache_free(task_xstate_cachep, fpu->state);
|
|
fpu->state = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_free);
|
|
|
|
/*
|
|
* Copy the current task's FPU state to a new task's FPU context.
|
|
*
|
|
* In the 'eager' case we just save to the destination context.
|
|
*
|
|
* In the 'lazy' case we save to the source context, mark the FPU lazy
|
|
* via stts() and copy the source context into the destination context.
|
|
*/
|
|
static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
|
{
|
|
WARN_ON(src_fpu != ¤t->thread.fpu);
|
|
|
|
if (use_eager_fpu()) {
|
|
memset(&dst_fpu->state->xsave, 0, xstate_size);
|
|
__save_fpu(dst_fpu);
|
|
} else {
|
|
fpu__save(src_fpu);
|
|
memcpy(dst_fpu->state, src_fpu->state, xstate_size);
|
|
}
|
|
}
|
|
|
|
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
|
{
|
|
dst_fpu->counter = 0;
|
|
dst_fpu->fpregs_active = 0;
|
|
dst_fpu->state = NULL;
|
|
dst_fpu->last_cpu = -1;
|
|
|
|
if (src_fpu->fpstate_active) {
|
|
int err = fpstate_alloc(dst_fpu);
|
|
|
|
if (err)
|
|
return err;
|
|
fpu_copy(dst_fpu, src_fpu);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate the backing store for the current task's FPU registers
|
|
* and initialize the registers themselves as well.
|
|
*
|
|
* Can fail.
|
|
*/
|
|
int fpstate_alloc_init(struct fpu *fpu)
|
|
{
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(fpu != ¤t->thread.fpu))
|
|
return -EINVAL;
|
|
if (WARN_ON_ONCE(fpu->fpstate_active))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Memory allocation at the first usage of the FPU and other state.
|
|
*/
|
|
ret = fpstate_alloc(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fpstate_init(fpu);
|
|
|
|
/* Safe to do for the current task: */
|
|
fpu->fpstate_active = 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_alloc_init);
|
|
|
|
/*
|
|
* This function is called before we modify a stopped child's
|
|
* FPU state context.
|
|
*
|
|
* If the child has not used the FPU before then initialize its
|
|
* FPU context.
|
|
*
|
|
* If the child has used the FPU before then unlazy it.
|
|
*
|
|
* [ After this function call, after the context is modified and
|
|
* the child task is woken up, the child task will restore
|
|
* the modified FPU state from the modified context. If we
|
|
* didn't clear its lazy status here then the lazy in-registers
|
|
* state pending on its former CPU could be restored, losing
|
|
* the modifications. ]
|
|
*
|
|
* This function is also called before we read a stopped child's
|
|
* FPU state - to make sure it's modified.
|
|
*
|
|
* TODO: A future optimization would be to skip the unlazying in
|
|
* the read-only case, it's not strictly necessary for
|
|
* read-only access to the context.
|
|
*/
|
|
static int fpu__unlazy_stopped(struct fpu *child_fpu)
|
|
{
|
|
int ret;
|
|
|
|
if (WARN_ON_ONCE(child_fpu == ¤t->thread.fpu))
|
|
return -EINVAL;
|
|
|
|
if (child_fpu->fpstate_active) {
|
|
child_fpu->last_cpu = -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Memory allocation at the first usage of the FPU and other state.
|
|
*/
|
|
ret = fpstate_alloc(child_fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fpstate_init(child_fpu);
|
|
|
|
/* Safe to do for stopped child tasks: */
|
|
child_fpu->fpstate_active = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 'fpu__restore()' saves the current math information in the
|
|
* old math state array, and gets the new ones from the current task
|
|
*
|
|
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
|
|
* Don't touch unless you *really* know how it works.
|
|
*
|
|
* Must be called with kernel preemption disabled (eg with local
|
|
* local interrupts as in the case of do_device_not_available).
|
|
*/
|
|
void fpu__restore(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
|
|
if (!fpu->fpstate_active) {
|
|
local_irq_enable();
|
|
/*
|
|
* does a slab alloc which can sleep
|
|
*/
|
|
if (fpstate_alloc_init(fpu)) {
|
|
/*
|
|
* ran out of memory!
|
|
*/
|
|
do_group_exit(SIGKILL);
|
|
return;
|
|
}
|
|
local_irq_disable();
|
|
}
|
|
|
|
/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
|
|
kernel_fpu_disable();
|
|
fpregs_activate(fpu);
|
|
if (unlikely(restore_fpu_checking(fpu))) {
|
|
fpu_reset_state(fpu);
|
|
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
|
|
} else {
|
|
tsk->thread.fpu.counter++;
|
|
}
|
|
kernel_fpu_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__restore);
|
|
|
|
void fpu__clear(struct task_struct *tsk)
|
|
{
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
|
|
WARN_ON_ONCE(tsk != current); /* Almost certainly an anomaly */
|
|
|
|
if (!use_eager_fpu()) {
|
|
/* FPU state will be reallocated lazily at the first use. */
|
|
drop_fpu(fpu);
|
|
fpstate_free(fpu);
|
|
} else {
|
|
if (!fpu->fpstate_active) {
|
|
/* kthread execs. TODO: cleanup this horror. */
|
|
if (WARN_ON(fpstate_alloc_init(fpu)))
|
|
force_sig(SIGKILL, tsk);
|
|
user_fpu_begin();
|
|
}
|
|
restore_init_xstate();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
|
|
* as the "regset->n" for the xstate regset will be updated based on the feature
|
|
* capabilites supported by the xsave.
|
|
*/
|
|
int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
struct fpu *target_fpu = &target->thread.fpu;
|
|
|
|
return target_fpu->fpstate_active ? regset->n : 0;
|
|
}
|
|
|
|
int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
|
{
|
|
struct fpu *target_fpu = &target->thread.fpu;
|
|
|
|
return (cpu_has_fxsr && target_fpu->fpstate_active) ? regset->n : 0;
|
|
}
|
|
|
|
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state->fxsave, 0, -1);
|
|
}
|
|
|
|
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
int ret;
|
|
|
|
if (!cpu_has_fxsr)
|
|
return -ENODEV;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state->fxsave, 0, -1);
|
|
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
fpu->state->fxsave.mxcsr &= mxcsr_feature_mask;
|
|
|
|
/*
|
|
* update the header bits in the xsave header, indicating the
|
|
* presence of FP and SSE state.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
fpu->state->xsave.header.xfeatures |= XSTATE_FPSSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xsave_struct *xsave;
|
|
int ret;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xsave = &fpu->state->xsave;
|
|
|
|
/*
|
|
* Copy the 48bytes defined by the software first into the xstate
|
|
* memory layout in the thread struct, so that we can copy the entire
|
|
* xstateregs to the user using one user_regset_copyout().
|
|
*/
|
|
memcpy(&xsave->i387.sw_reserved,
|
|
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
|
/*
|
|
* Copy the xstate memory layout.
|
|
*/
|
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
|
return ret;
|
|
}
|
|
|
|
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct xsave_struct *xsave;
|
|
int ret;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -ENODEV;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xsave = &fpu->state->xsave;
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
|
/*
|
|
* mxcsr reserved bits must be masked to zero for security reasons.
|
|
*/
|
|
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
|
xsave->header.xfeatures &= xfeatures_mask;
|
|
/*
|
|
* These bits must be zero.
|
|
*/
|
|
memset(&xsave->header.reserved, 0, 48);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
|
|
/*
|
|
* FPU tag word conversions.
|
|
*/
|
|
|
|
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
|
{
|
|
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
|
|
|
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
|
tmp = ~twd;
|
|
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
|
/* and move the valid bits to the lower byte. */
|
|
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
|
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
|
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
|
|
|
return tmp;
|
|
}
|
|
|
|
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
|
#define FP_EXP_TAG_VALID 0
|
|
#define FP_EXP_TAG_ZERO 1
|
|
#define FP_EXP_TAG_SPECIAL 2
|
|
#define FP_EXP_TAG_EMPTY 3
|
|
|
|
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
|
|
{
|
|
struct _fpxreg *st;
|
|
u32 tos = (fxsave->swd >> 11) & 7;
|
|
u32 twd = (unsigned long) fxsave->twd;
|
|
u32 tag;
|
|
u32 ret = 0xffff0000u;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++, twd >>= 1) {
|
|
if (twd & 0x1) {
|
|
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
|
|
|
switch (st->exponent & 0x7fff) {
|
|
case 0x7fff:
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
case 0x0000:
|
|
if (!st->significand[0] &&
|
|
!st->significand[1] &&
|
|
!st->significand[2] &&
|
|
!st->significand[3])
|
|
tag = FP_EXP_TAG_ZERO;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
default:
|
|
if (st->significand[3] & 0x8000)
|
|
tag = FP_EXP_TAG_VALID;
|
|
else
|
|
tag = FP_EXP_TAG_SPECIAL;
|
|
break;
|
|
}
|
|
} else {
|
|
tag = FP_EXP_TAG_EMPTY;
|
|
}
|
|
ret |= tag << (2 * i);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FXSR floating point environment conversions.
|
|
*/
|
|
|
|
void
|
|
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
env->cwd = fxsave->cwd | 0xffff0000u;
|
|
env->swd = fxsave->swd | 0xffff0000u;
|
|
env->twd = twd_fxsr_to_i387(fxsave);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
env->fip = fxsave->rip;
|
|
env->foo = fxsave->rdp;
|
|
/*
|
|
* should be actually ds/cs at fpu exception time, but
|
|
* that information is not available in 64bit mode.
|
|
*/
|
|
env->fcs = task_pt_regs(tsk)->cs;
|
|
if (tsk == current) {
|
|
savesegment(ds, env->fos);
|
|
} else {
|
|
env->fos = tsk->thread.ds;
|
|
}
|
|
env->fos |= 0xffff0000;
|
|
#else
|
|
env->fip = fxsave->fip;
|
|
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
|
env->foo = fxsave->foo;
|
|
env->fos = fxsave->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(to[0]));
|
|
}
|
|
|
|
void convert_to_fxsr(struct task_struct *tsk,
|
|
const struct user_i387_ia32_struct *env)
|
|
|
|
{
|
|
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
|
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
|
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
|
int i;
|
|
|
|
fxsave->cwd = env->cwd;
|
|
fxsave->swd = env->swd;
|
|
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
|
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
|
#ifdef CONFIG_X86_64
|
|
fxsave->rip = env->fip;
|
|
fxsave->rdp = env->foo;
|
|
/* cs and ds ignored */
|
|
#else
|
|
fxsave->fip = env->fip;
|
|
fxsave->fcs = (env->fcs & 0xffff);
|
|
fxsave->foo = env->foo;
|
|
fxsave->fos = env->fos;
|
|
#endif
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
memcpy(&to[i], &from[i], sizeof(from[0]));
|
|
}
|
|
|
|
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
void *kbuf, void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state->fsave, 0,
|
|
-1);
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (kbuf && pos == 0 && count == sizeof(env)) {
|
|
convert_from_fxsr(kbuf, target);
|
|
return 0;
|
|
}
|
|
|
|
convert_from_fxsr(&env, target);
|
|
|
|
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
}
|
|
|
|
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
|
unsigned int pos, unsigned int count,
|
|
const void *kbuf, const void __user *ubuf)
|
|
{
|
|
struct fpu *fpu = &target->thread.fpu;
|
|
struct user_i387_ia32_struct env;
|
|
int ret;
|
|
|
|
ret = fpu__unlazy_stopped(fpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sanitize_i387_state(target);
|
|
|
|
if (!static_cpu_has(X86_FEATURE_FPU))
|
|
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
|
|
|
if (!cpu_has_fxsr)
|
|
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
|
&fpu->state->fsave, 0,
|
|
-1);
|
|
|
|
if (pos > 0 || count < sizeof(env))
|
|
convert_from_fxsr(&env, target);
|
|
|
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
|
if (!ret)
|
|
convert_to_fxsr(target, &env);
|
|
|
|
/*
|
|
* update the header bit in the xsave header, indicating the
|
|
* presence of FP.
|
|
*/
|
|
if (cpu_has_xsave)
|
|
fpu->state->xsave.header.xfeatures |= XSTATE_FP;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FPU state for core dumps.
|
|
* This is only used for a.out dumps now.
|
|
* It is declared generically using elf_fpregset_t (which is
|
|
* struct user_i387_struct) but is in fact only used for 32-bit
|
|
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
|
|
*/
|
|
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct fpu *fpu = &tsk->thread.fpu;
|
|
int fpvalid;
|
|
|
|
fpvalid = fpu->fpstate_active;
|
|
if (fpvalid)
|
|
fpvalid = !fpregs_get(tsk, NULL,
|
|
0, sizeof(struct user_i387_ia32_struct),
|
|
ufpu, NULL);
|
|
|
|
return fpvalid;
|
|
}
|
|
EXPORT_SYMBOL(dump_fpu);
|
|
|
|
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|