linux/kernel/rcu/tree_exp.h
Paul E. McKenney 05f415715c rcu: Speed up expedited GPs when interrupting RCU reader
In PREEMPT kernels, an expedited grace period might send an IPI to a
CPU that is executing an RCU read-side critical section.  In that case,
it would be nice if the rcu_read_unlock() directly interacted with the
RCU core code to immediately report the quiescent state.  And this does
happen in the case where the reader has been preempted.  But it would
also be a nice performance optimization if immediate reporting also
happened in the preemption-free case.

This commit therefore adds an ->exp_hint field to the task_struct structure's
->rcu_read_unlock_special field.  The IPI handler sets this hint when
it has interrupted an RCU read-side critical section, and this causes
the outermost rcu_read_unlock() call to invoke rcu_read_unlock_special(),
which, if preemption is enabled, reports the quiescent state immediately.
If preemption is disabled, then the report is required to be deferred
until preemption (or bottom halves or interrupts or whatever) is re-enabled.

Because this is a hint, it does nothing for more complicated cases.  For
example, if the IPI interrupts an RCU reader, but interrupts are disabled
across the rcu_read_unlock(), but another rcu_read_lock() is executed
before interrupts are re-enabled, the hint will already have been cleared.
If you do crazy things like this, reporting will be deferred until some
later RCU_SOFTIRQ handler, context switch, cond_resched(), or similar.

Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-11-12 09:03:59 -08:00

842 lines
25 KiB
C

/*
* RCU expedited grace periods
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2016
*
* Authors: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
#include <linux/lockdep.h>
/*
* Record the start of an expedited grace period.
*/
static void rcu_exp_gp_seq_start(void)
{
rcu_seq_start(&rcu_state.expedited_sequence);
}
/*
* Return then value that expedited-grace-period counter will have
* at the end of the current grace period.
*/
static __maybe_unused unsigned long rcu_exp_gp_seq_endval(void)
{
return rcu_seq_endval(&rcu_state.expedited_sequence);
}
/*
* Record the end of an expedited grace period.
*/
static void rcu_exp_gp_seq_end(void)
{
rcu_seq_end(&rcu_state.expedited_sequence);
smp_mb(); /* Ensure that consecutive grace periods serialize. */
}
/*
* Take a snapshot of the expedited-grace-period counter.
*/
static unsigned long rcu_exp_gp_seq_snap(void)
{
unsigned long s;
smp_mb(); /* Caller's modifications seen first by other CPUs. */
s = rcu_seq_snap(&rcu_state.expedited_sequence);
trace_rcu_exp_grace_period(rcu_state.name, s, TPS("snap"));
return s;
}
/*
* Given a counter snapshot from rcu_exp_gp_seq_snap(), return true
* if a full expedited grace period has elapsed since that snapshot
* was taken.
*/
static bool rcu_exp_gp_seq_done(unsigned long s)
{
return rcu_seq_done(&rcu_state.expedited_sequence, s);
}
/*
* Reset the ->expmaskinit values in the rcu_node tree to reflect any
* recent CPU-online activity. Note that these masks are not cleared
* when CPUs go offline, so they reflect the union of all CPUs that have
* ever been online. This means that this function normally takes its
* no-work-to-do fastpath.
*/
static void sync_exp_reset_tree_hotplug(void)
{
bool done;
unsigned long flags;
unsigned long mask;
unsigned long oldmask;
int ncpus = smp_load_acquire(&rcu_state.ncpus); /* Order vs. locking. */
struct rcu_node *rnp;
struct rcu_node *rnp_up;
/* If no new CPUs onlined since last time, nothing to do. */
if (likely(ncpus == rcu_state.ncpus_snap))
return;
rcu_state.ncpus_snap = ncpus;
/*
* Each pass through the following loop propagates newly onlined
* CPUs for the current rcu_node structure up the rcu_node tree.
*/
rcu_for_each_leaf_node(rnp) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (rnp->expmaskinit == rnp->expmaskinitnext) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
continue; /* No new CPUs, nothing to do. */
}
/* Update this node's mask, track old value for propagation. */
oldmask = rnp->expmaskinit;
rnp->expmaskinit = rnp->expmaskinitnext;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* If was already nonzero, nothing to propagate. */
if (oldmask)
continue;
/* Propagate the new CPU up the tree. */
mask = rnp->grpmask;
rnp_up = rnp->parent;
done = false;
while (rnp_up) {
raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
if (rnp_up->expmaskinit)
done = true;
rnp_up->expmaskinit |= mask;
raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
if (done)
break;
mask = rnp_up->grpmask;
rnp_up = rnp_up->parent;
}
}
}
/*
* Reset the ->expmask values in the rcu_node tree in preparation for
* a new expedited grace period.
*/
static void __maybe_unused sync_exp_reset_tree(void)
{
unsigned long flags;
struct rcu_node *rnp;
sync_exp_reset_tree_hotplug();
rcu_for_each_node_breadth_first(rnp) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
WARN_ON_ONCE(rnp->expmask);
rnp->expmask = rnp->expmaskinit;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
}
/*
* Return non-zero if there is no RCU expedited grace period in progress
* for the specified rcu_node structure, in other words, if all CPUs and
* tasks covered by the specified rcu_node structure have done their bit
* for the current expedited grace period. Works only for preemptible
* RCU -- other RCU implementation use other means.
*
* Caller must hold the specificed rcu_node structure's ->lock
*/
static bool sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
raw_lockdep_assert_held_rcu_node(rnp);
return rnp->exp_tasks == NULL &&
READ_ONCE(rnp->expmask) == 0;
}
/*
* Like sync_rcu_preempt_exp_done(), but this function assumes the caller
* doesn't hold the rcu_node's ->lock, and will acquire and release the lock
* itself
*/
static bool sync_rcu_preempt_exp_done_unlocked(struct rcu_node *rnp)
{
unsigned long flags;
bool ret;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
ret = sync_rcu_preempt_exp_done(rnp);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return ret;
}
/*
* Report the exit from RCU read-side critical section for the last task
* that queued itself during or before the current expedited preemptible-RCU
* grace period. This event is reported either to the rcu_node structure on
* which the task was queued or to one of that rcu_node structure's ancestors,
* recursively up the tree. (Calm down, calm down, we do the recursion
* iteratively!)
*
* Caller must hold the specified rcu_node structure's ->lock.
*/
static void __rcu_report_exp_rnp(struct rcu_node *rnp,
bool wake, unsigned long flags)
__releases(rnp->lock)
{
unsigned long mask;
for (;;) {
if (!sync_rcu_preempt_exp_done(rnp)) {
if (!rnp->expmask)
rcu_initiate_boost(rnp, flags);
else
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
break;
}
if (rnp->parent == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
if (wake) {
smp_mb(); /* EGP done before wake_up(). */
swake_up_one(&rcu_state.expedited_wq);
}
break;
}
mask = rnp->grpmask;
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
rnp = rnp->parent;
raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
WARN_ON_ONCE(!(rnp->expmask & mask));
rnp->expmask &= ~mask;
}
}
/*
* Report expedited quiescent state for specified node. This is a
* lock-acquisition wrapper function for __rcu_report_exp_rnp().
*/
static void __maybe_unused rcu_report_exp_rnp(struct rcu_node *rnp, bool wake)
{
unsigned long flags;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
__rcu_report_exp_rnp(rnp, wake, flags);
}
/*
* Report expedited quiescent state for multiple CPUs, all covered by the
* specified leaf rcu_node structure.
*/
static void rcu_report_exp_cpu_mult(struct rcu_node *rnp,
unsigned long mask, bool wake)
{
unsigned long flags;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (!(rnp->expmask & mask)) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return;
}
rnp->expmask &= ~mask;
__rcu_report_exp_rnp(rnp, wake, flags); /* Releases rnp->lock. */
}
/*
* Report expedited quiescent state for specified rcu_data (CPU).
*/
static void rcu_report_exp_rdp(struct rcu_data *rdp)
{
WRITE_ONCE(rdp->deferred_qs, false);
rcu_report_exp_cpu_mult(rdp->mynode, rdp->grpmask, true);
}
/* Common code for work-done checking. */
static bool sync_exp_work_done(unsigned long s)
{
if (rcu_exp_gp_seq_done(s)) {
trace_rcu_exp_grace_period(rcu_state.name, s, TPS("done"));
/* Ensure test happens before caller kfree(). */
smp_mb__before_atomic(); /* ^^^ */
return true;
}
return false;
}
/*
* Funnel-lock acquisition for expedited grace periods. Returns true
* if some other task completed an expedited grace period that this task
* can piggy-back on, and with no mutex held. Otherwise, returns false
* with the mutex held, indicating that the caller must actually do the
* expedited grace period.
*/
static bool exp_funnel_lock(unsigned long s)
{
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id());
struct rcu_node *rnp = rdp->mynode;
struct rcu_node *rnp_root = rcu_get_root();
/* Low-contention fastpath. */
if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
(rnp == rnp_root ||
ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
mutex_trylock(&rcu_state.exp_mutex))
goto fastpath;
/*
* Each pass through the following loop works its way up
* the rcu_node tree, returning if others have done the work or
* otherwise falls through to acquire ->exp_mutex. The mapping
* from CPU to rcu_node structure can be inexact, as it is just
* promoting locality and is not strictly needed for correctness.
*/
for (; rnp != NULL; rnp = rnp->parent) {
if (sync_exp_work_done(s))
return true;
/* Work not done, either wait here or go up. */
spin_lock(&rnp->exp_lock);
if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {
/* Someone else doing GP, so wait for them. */
spin_unlock(&rnp->exp_lock);
trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level,
rnp->grplo, rnp->grphi,
TPS("wait"));
wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3],
sync_exp_work_done(s));
return true;
}
rnp->exp_seq_rq = s; /* Followers can wait on us. */
spin_unlock(&rnp->exp_lock);
trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level,
rnp->grplo, rnp->grphi, TPS("nxtlvl"));
}
mutex_lock(&rcu_state.exp_mutex);
fastpath:
if (sync_exp_work_done(s)) {
mutex_unlock(&rcu_state.exp_mutex);
return true;
}
rcu_exp_gp_seq_start();
trace_rcu_exp_grace_period(rcu_state.name, s, TPS("start"));
return false;
}
/*
* Select the CPUs within the specified rcu_node that the upcoming
* expedited grace period needs to wait for.
*/
static void sync_rcu_exp_select_node_cpus(struct work_struct *wp)
{
int cpu;
unsigned long flags;
smp_call_func_t func;
unsigned long mask_ofl_test;
unsigned long mask_ofl_ipi;
int ret;
struct rcu_exp_work *rewp =
container_of(wp, struct rcu_exp_work, rew_work);
struct rcu_node *rnp = container_of(rewp, struct rcu_node, rew);
func = rewp->rew_func;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/* Each pass checks a CPU for identity, offline, and idle. */
mask_ofl_test = 0;
for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) {
unsigned long mask = leaf_node_cpu_bit(rnp, cpu);
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
int snap;
if (raw_smp_processor_id() == cpu ||
!(rnp->qsmaskinitnext & mask)) {
mask_ofl_test |= mask;
} else {
snap = rcu_dynticks_snap(rdp);
if (rcu_dynticks_in_eqs(snap))
mask_ofl_test |= mask;
else
rdp->exp_dynticks_snap = snap;
}
}
mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
/*
* Need to wait for any blocked tasks as well. Note that
* additional blocking tasks will also block the expedited GP
* until such time as the ->expmask bits are cleared.
*/
if (rcu_preempt_has_tasks(rnp))
rnp->exp_tasks = rnp->blkd_tasks.next;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* IPI the remaining CPUs for expedited quiescent state. */
for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) {
unsigned long mask = leaf_node_cpu_bit(rnp, cpu);
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
if (!(mask_ofl_ipi & mask))
continue;
retry_ipi:
if (rcu_dynticks_in_eqs_since(rdp, rdp->exp_dynticks_snap)) {
mask_ofl_test |= mask;
continue;
}
ret = smp_call_function_single(cpu, func, NULL, 0);
if (!ret) {
mask_ofl_ipi &= ~mask;
continue;
}
/* Failed, raced with CPU hotplug operation. */
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if ((rnp->qsmaskinitnext & mask) &&
(rnp->expmask & mask)) {
/* Online, so delay for a bit and try again. */
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("selectofl"));
schedule_timeout_uninterruptible(1);
goto retry_ipi;
}
/* CPU really is offline, so we can ignore it. */
if (!(rnp->expmask & mask))
mask_ofl_ipi &= ~mask;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
/* Report quiescent states for those that went offline. */
mask_ofl_test |= mask_ofl_ipi;
if (mask_ofl_test)
rcu_report_exp_cpu_mult(rnp, mask_ofl_test, false);
}
/*
* Select the nodes that the upcoming expedited grace period needs
* to wait for.
*/
static void sync_rcu_exp_select_cpus(smp_call_func_t func)
{
int cpu;
struct rcu_node *rnp;
trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("reset"));
sync_exp_reset_tree();
trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("select"));
/* Schedule work for each leaf rcu_node structure. */
rcu_for_each_leaf_node(rnp) {
rnp->exp_need_flush = false;
if (!READ_ONCE(rnp->expmask))
continue; /* Avoid early boot non-existent wq. */
rnp->rew.rew_func = func;
if (!READ_ONCE(rcu_par_gp_wq) ||
rcu_scheduler_active != RCU_SCHEDULER_RUNNING ||
rcu_is_last_leaf_node(rnp)) {
/* No workqueues yet or last leaf, do direct call. */
sync_rcu_exp_select_node_cpus(&rnp->rew.rew_work);
continue;
}
INIT_WORK(&rnp->rew.rew_work, sync_rcu_exp_select_node_cpus);
preempt_disable();
cpu = find_next_bit(&rnp->ffmask, BITS_PER_LONG, -1);
/* If all offline, queue the work on an unbound CPU. */
if (unlikely(cpu > rnp->grphi - rnp->grplo))
cpu = WORK_CPU_UNBOUND;
else
cpu += rnp->grplo;
queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work);
preempt_enable();
rnp->exp_need_flush = true;
}
/* Wait for workqueue jobs (if any) to complete. */
rcu_for_each_leaf_node(rnp)
if (rnp->exp_need_flush)
flush_work(&rnp->rew.rew_work);
}
static void synchronize_sched_expedited_wait(void)
{
int cpu;
unsigned long jiffies_stall;
unsigned long jiffies_start;
unsigned long mask;
int ndetected;
struct rcu_node *rnp;
struct rcu_node *rnp_root = rcu_get_root();
int ret;
trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("startwait"));
jiffies_stall = rcu_jiffies_till_stall_check();
jiffies_start = jiffies;
for (;;) {
ret = swait_event_timeout_exclusive(
rcu_state.expedited_wq,
sync_rcu_preempt_exp_done_unlocked(rnp_root),
jiffies_stall);
if (ret > 0 || sync_rcu_preempt_exp_done_unlocked(rnp_root))
return;
WARN_ON(ret < 0); /* workqueues should not be signaled. */
if (rcu_cpu_stall_suppress)
continue;
panic_on_rcu_stall();
pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
rcu_state.name);
ndetected = 0;
rcu_for_each_leaf_node(rnp) {
ndetected += rcu_print_task_exp_stall(rnp);
for_each_leaf_node_possible_cpu(rnp, cpu) {
struct rcu_data *rdp;
mask = leaf_node_cpu_bit(rnp, cpu);
if (!(rnp->expmask & mask))
continue;
ndetected++;
rdp = per_cpu_ptr(&rcu_data, cpu);
pr_cont(" %d-%c%c%c", cpu,
"O."[!!cpu_online(cpu)],
"o."[!!(rdp->grpmask & rnp->expmaskinit)],
"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
}
}
pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
jiffies - jiffies_start, rcu_state.expedited_sequence,
rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
if (ndetected) {
pr_err("blocking rcu_node structures:");
rcu_for_each_node_breadth_first(rnp) {
if (rnp == rnp_root)
continue; /* printed unconditionally */
if (sync_rcu_preempt_exp_done_unlocked(rnp))
continue;
pr_cont(" l=%u:%d-%d:%#lx/%c",
rnp->level, rnp->grplo, rnp->grphi,
rnp->expmask,
".T"[!!rnp->exp_tasks]);
}
pr_cont("\n");
}
rcu_for_each_leaf_node(rnp) {
for_each_leaf_node_possible_cpu(rnp, cpu) {
mask = leaf_node_cpu_bit(rnp, cpu);
if (!(rnp->expmask & mask))
continue;
dump_cpu_task(cpu);
}
}
jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
}
}
/*
* Wait for the current expedited grace period to complete, and then
* wake up everyone who piggybacked on the just-completed expedited
* grace period. Also update all the ->exp_seq_rq counters as needed
* in order to avoid counter-wrap problems.
*/
static void rcu_exp_wait_wake(unsigned long s)
{
struct rcu_node *rnp;
synchronize_sched_expedited_wait();
rcu_exp_gp_seq_end();
trace_rcu_exp_grace_period(rcu_state.name, s, TPS("end"));
/*
* Switch over to wakeup mode, allowing the next GP, but -only- the
* next GP, to proceed.
*/
mutex_lock(&rcu_state.exp_wake_mutex);
rcu_for_each_node_breadth_first(rnp) {
if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
spin_lock(&rnp->exp_lock);
/* Recheck, avoid hang in case someone just arrived. */
if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
rnp->exp_seq_rq = s;
spin_unlock(&rnp->exp_lock);
}
smp_mb(); /* All above changes before wakeup. */
wake_up_all(&rnp->exp_wq[rcu_seq_ctr(rcu_state.expedited_sequence) & 0x3]);
}
trace_rcu_exp_grace_period(rcu_state.name, s, TPS("endwake"));
mutex_unlock(&rcu_state.exp_wake_mutex);
}
/*
* Common code to drive an expedited grace period forward, used by
* workqueues and mid-boot-time tasks.
*/
static void rcu_exp_sel_wait_wake(smp_call_func_t func, unsigned long s)
{
/* Initialize the rcu_node tree in preparation for the wait. */
sync_rcu_exp_select_cpus(func);
/* Wait and clean up, including waking everyone. */
rcu_exp_wait_wake(s);
}
/*
* Work-queue handler to drive an expedited grace period forward.
*/
static void wait_rcu_exp_gp(struct work_struct *wp)
{
struct rcu_exp_work *rewp;
rewp = container_of(wp, struct rcu_exp_work, rew_work);
rcu_exp_sel_wait_wake(rewp->rew_func, rewp->rew_s);
}
/*
* Given a smp_call_function() handler, kick off the specified
* implementation of expedited grace period.
*/
static void _synchronize_rcu_expedited(smp_call_func_t func)
{
struct rcu_data *rdp;
struct rcu_exp_work rew;
struct rcu_node *rnp;
unsigned long s;
/* If expedited grace periods are prohibited, fall back to normal. */
if (rcu_gp_is_normal()) {
wait_rcu_gp(call_rcu);
return;
}
/* Take a snapshot of the sequence number. */
s = rcu_exp_gp_seq_snap();
if (exp_funnel_lock(s))
return; /* Someone else did our work for us. */
/* Ensure that load happens before action based on it. */
if (unlikely(rcu_scheduler_active == RCU_SCHEDULER_INIT)) {
/* Direct call during scheduler init and early_initcalls(). */
rcu_exp_sel_wait_wake(func, s);
} else {
/* Marshall arguments & schedule the expedited grace period. */
rew.rew_func = func;
rew.rew_s = s;
INIT_WORK_ONSTACK(&rew.rew_work, wait_rcu_exp_gp);
queue_work(rcu_gp_wq, &rew.rew_work);
}
/* Wait for expedited grace period to complete. */
rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id());
rnp = rcu_get_root();
wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3],
sync_exp_work_done(s));
smp_mb(); /* Workqueue actions happen before return. */
/* Let the next expedited grace period start. */
mutex_unlock(&rcu_state.exp_mutex);
}
#ifdef CONFIG_PREEMPT_RCU
/*
* Remote handler for smp_call_function_single(). If there is an
* RCU read-side critical section in effect, request that the
* next rcu_read_unlock() record the quiescent state up the
* ->expmask fields in the rcu_node tree. Otherwise, immediately
* report the quiescent state.
*/
static void sync_rcu_exp_handler(void *unused)
{
unsigned long flags;
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
struct rcu_node *rnp = rdp->mynode;
struct task_struct *t = current;
/*
* First, the common case of not being in an RCU read-side
* critical section. If also enabled or idle, immediately
* report the quiescent state, otherwise defer.
*/
if (!t->rcu_read_lock_nesting) {
if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) ||
rcu_dynticks_curr_cpu_in_eqs()) {
rcu_report_exp_rdp(rdp);
} else {
rdp->deferred_qs = true;
set_tsk_need_resched(t);
set_preempt_need_resched();
}
return;
}
/*
* Second, the less-common case of being in an RCU read-side
* critical section. In this case we can count on a future
* rcu_read_unlock(). However, this rcu_read_unlock() might
* execute on some other CPU, but in that case there will be
* a future context switch. Either way, if the expedited
* grace period is still waiting on this CPU, set ->deferred_qs
* so that the eventual quiescent state will be reported.
* Note that there is a large group of race conditions that
* can have caused this quiescent state to already have been
* reported, so we really do need to check ->expmask.
*/
if (t->rcu_read_lock_nesting > 0) {
raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (rnp->expmask & rdp->grpmask) {
rdp->deferred_qs = true;
WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, true);
}
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
/*
* The final and least likely case is where the interrupted
* code was just about to or just finished exiting the RCU-preempt
* read-side critical section, and no, we can't tell which.
* So either way, set ->deferred_qs to flag later code that
* a quiescent state is required.
*
* If the CPU is fully enabled (or if some buggy RCU-preempt
* read-side critical section is being used from idle), just
* invoke rcu_preempt_defer_qs() to immediately report the
* quiescent state. We cannot use rcu_read_unlock_special()
* because we are in an interrupt handler, which will cause that
* function to take an early exit without doing anything.
*
* Otherwise, force a context switch after the CPU enables everything.
*/
rdp->deferred_qs = true;
if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) ||
WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs())) {
rcu_preempt_deferred_qs(t);
} else {
set_tsk_need_resched(t);
set_preempt_need_resched();
}
}
/* PREEMPT=y, so no PREEMPT=n expedited grace period to clean up after. */
static void sync_sched_exp_online_cleanup(int cpu)
{
}
/**
* synchronize_rcu_expedited - Brute-force RCU grace period
*
* Wait for an RCU-preempt grace period, but expedite it. The basic
* idea is to IPI all non-idle non-nohz online CPUs. The IPI handler
* checks whether the CPU is in an RCU-preempt critical section, and
* if so, it sets a flag that causes the outermost rcu_read_unlock()
* to report the quiescent state. On the other hand, if the CPU is
* not in an RCU read-side critical section, the IPI handler reports
* the quiescent state immediately.
*
* Although this is a greate improvement over previous expedited
* implementations, it is still unfriendly to real-time workloads, so is
* thus not recommended for any sort of common-case code. In fact, if
* you are using synchronize_rcu_expedited() in a loop, please restructure
* your code to batch your updates, and then Use a single synchronize_rcu()
* instead.
*
* This has the same semantics as (but is more brutal than) synchronize_rcu().
*/
void synchronize_rcu_expedited(void)
{
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_rcu_expedited() in RCU read-side critical section");
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
return;
_synchronize_rcu_expedited(sync_rcu_exp_handler);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
#else /* #ifdef CONFIG_PREEMPT_RCU */
/* Invoked on each online non-idle CPU for expedited quiescent state. */
static void sync_sched_exp_handler(void *unused)
{
struct rcu_data *rdp;
struct rcu_node *rnp;
rdp = this_cpu_ptr(&rcu_data);
rnp = rdp->mynode;
if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
return;
if (rcu_is_cpu_rrupt_from_idle()) {
rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
return;
}
__this_cpu_write(rcu_data.cpu_no_qs.b.exp, true);
/* Store .exp before .rcu_urgent_qs. */
smp_store_release(this_cpu_ptr(&rcu_data.rcu_urgent_qs), true);
set_tsk_need_resched(current);
set_preempt_need_resched();
}
/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
static void sync_sched_exp_online_cleanup(int cpu)
{
struct rcu_data *rdp;
int ret;
struct rcu_node *rnp;
rdp = per_cpu_ptr(&rcu_data, cpu);
rnp = rdp->mynode;
if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
return;
ret = smp_call_function_single(cpu, sync_sched_exp_handler, NULL, 0);
WARN_ON_ONCE(ret);
}
/*
* Because a context switch is a grace period for !PREEMPT, any
* blocking grace-period wait automatically implies a grace period if
* there is only one CPU online at any point time during execution of
* either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
* occasionally incorrectly indicate that there are multiple CPUs online
* when there was in fact only one the whole time, as this just adds some
* overhead: RCU still operates correctly.
*/
static int rcu_blocking_is_gp(void)
{
int ret;
might_sleep(); /* Check for RCU read-side critical section. */
preempt_disable();
ret = num_online_cpus() <= 1;
preempt_enable();
return ret;
}
/* PREEMPT=n implementation of synchronize_rcu_expedited(). */
void synchronize_rcu_expedited(void)
{
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_rcu_expedited() in RCU read-side critical section");
/* If only one CPU, this is automatically a grace period. */
if (rcu_blocking_is_gp())
return;
_synchronize_rcu_expedited(sync_sched_exp_handler);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */