linux/drivers/scsi/lpfc/lpfc_init.c
James Smart a257bf905e [SCSI] lpfc 8.3.1: misc fixes/changes
8.3.1 Fixes/Changes :

- Fix incorrect byte-swapping on word 4 of IOCB (data length) which
  caused LUNs to not be discovered on big-endian (e.g. PPC)

- Remove a bad cast of MBslimaddr which loses the __iomem (sparse)

- Make lpfc_debugfs_mask_disc_trc static (sparse)

- Correct misspelled word BlockGuard in lpfc_logmsg.h comment

- Replaced repeated code segment for canceling IOCBs from a list with
  a function call, lpfc_sli_cancel_iocbs().

- Increased HBQ buffers to support 40KB SSC sequences.

- Added sysfs interface to update speed and topology parameter without
  link bounce.

- Fixed bug with sysfs fc_host WWNs not being updated after changing
  the WWNs.

- Check if the active mailbox is NULL in the beginning of the mailbox
  timeout handler - fixes panic in the mailbox timeout handler while
  running IO stress test

- Fixed system panic in lpfc_pci_remove_one() due to ndlp indirect
  reference to phba through vport

- Removed de-reference of scsi device after call to scsi_done() to fix
  panic in scsi completion path while accessing scsi device after
  scsi_done is called.

- Fixed "Nodelist not empty" message when unloading the driver after
  target reboot test

- Added LP2105 HBA model description

- Added code to print all 16 words of unrecognized ASYNC events

- Fixed memory leak in vport create + delete loop

- Added support for handling dual error bit from HBA

- Fixed a driver NULL pointer dereference in lpfc_sli_process_sol_iocb

- Fixed a discovery bug with FC switch reboot in lpfc_setup_disc_node

- Take NULL termintator into account when calculating available buffer space

Signed-off-by: James Smart <james.smart@emulex.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
2009-04-27 09:42:47 -05:00

3574 lines
104 KiB
C

/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2004-2008 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.emulex.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
*******************************************************************/
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/ctype.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_fc.h>
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc_scsi.h"
#include "lpfc.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_version.h"
char *_dump_buf_data;
unsigned long _dump_buf_data_order;
char *_dump_buf_dif;
unsigned long _dump_buf_dif_order;
spinlock_t _dump_buf_lock;
static int lpfc_parse_vpd(struct lpfc_hba *, uint8_t *, int);
static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *);
static int lpfc_post_rcv_buf(struct lpfc_hba *);
static struct scsi_transport_template *lpfc_transport_template = NULL;
static struct scsi_transport_template *lpfc_vport_transport_template = NULL;
static DEFINE_IDR(lpfc_hba_index);
/**
* lpfc_config_port_prep - Perform lpfc initialization prior to config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization prior to issuing the CONFIG_PORT
* mailbox command. It retrieves the revision information from the HBA and
* collects the Vital Product Data (VPD) about the HBA for preparing the
* configuration of the HBA.
*
* Return codes:
* 0 - success.
* -ERESTART - requests the SLI layer to reset the HBA and try again.
* Any other value - indicates an error.
**/
int
lpfc_config_port_prep(struct lpfc_hba *phba)
{
lpfc_vpd_t *vp = &phba->vpd;
int i = 0, rc;
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
char *lpfc_vpd_data = NULL;
uint16_t offset = 0;
static char licensed[56] =
"key unlock for use with gnu public licensed code only\0";
static int init_key = 1;
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->mb;
phba->link_state = LPFC_INIT_MBX_CMDS;
if (lpfc_is_LC_HBA(phba->pcidev->device)) {
if (init_key) {
uint32_t *ptext = (uint32_t *) licensed;
for (i = 0; i < 56; i += sizeof (uint32_t), ptext++)
*ptext = cpu_to_be32(*ptext);
init_key = 0;
}
lpfc_read_nv(phba, pmb);
memset((char*)mb->un.varRDnvp.rsvd3, 0,
sizeof (mb->un.varRDnvp.rsvd3));
memcpy((char*)mb->un.varRDnvp.rsvd3, licensed,
sizeof (licensed));
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0324 Config Port initialization "
"error, mbxCmd x%x READ_NVPARM, "
"mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename,
sizeof(phba->wwnn));
memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname,
sizeof(phba->wwpn));
}
phba->sli3_options = 0x0;
/* Setup and issue mailbox READ REV command */
lpfc_read_rev(phba, pmb);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0439 Adapter failed to init, mbxCmd x%x "
"READ_REV, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mempool_free( pmb, phba->mbox_mem_pool);
return -ERESTART;
}
/*
* The value of rr must be 1 since the driver set the cv field to 1.
* This setting requires the FW to set all revision fields.
*/
if (mb->un.varRdRev.rr == 0) {
vp->rev.rBit = 0;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0440 Adapter failed to init, READ_REV has "
"missing revision information.\n");
mempool_free(pmb, phba->mbox_mem_pool);
return -ERESTART;
}
if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EINVAL;
}
/* Save information as VPD data */
vp->rev.rBit = 1;
memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t));
vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev;
memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16);
vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev;
memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16);
vp->rev.biuRev = mb->un.varRdRev.biuRev;
vp->rev.smRev = mb->un.varRdRev.smRev;
vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev;
vp->rev.endecRev = mb->un.varRdRev.endecRev;
vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh;
vp->rev.fcphLow = mb->un.varRdRev.fcphLow;
vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh;
vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow;
vp->rev.postKernRev = mb->un.varRdRev.postKernRev;
vp->rev.opFwRev = mb->un.varRdRev.opFwRev;
/* If the sli feature level is less then 9, we must
* tear down all RPIs and VPIs on link down if NPIV
* is enabled.
*/
if (vp->rev.feaLevelHigh < 9)
phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN;
if (lpfc_is_LC_HBA(phba->pcidev->device))
memcpy(phba->RandomData, (char *)&mb->un.varWords[24],
sizeof (phba->RandomData));
/* Get adapter VPD information */
lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL);
if (!lpfc_vpd_data)
goto out_free_mbox;
do {
lpfc_dump_mem(phba, pmb, offset);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0441 VPD not present on adapter, "
"mbxCmd x%x DUMP VPD, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
mb->un.varDmp.word_cnt = 0;
}
if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset)
mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset;
lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
lpfc_vpd_data + offset,
mb->un.varDmp.word_cnt);
offset += mb->un.varDmp.word_cnt;
} while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE);
lpfc_parse_vpd(phba, lpfc_vpd_data, offset);
kfree(lpfc_vpd_data);
out_free_mbox:
mempool_free(pmb, phba->mbox_mem_pool);
return 0;
}
/**
* lpfc_config_async_cmpl - Completion handler for config async event mbox cmd
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for driver's configuring asynchronous event
* mailbox command to the device. If the mailbox command returns successfully,
* it will set internal async event support flag to 1; otherwise, it will
* set internal async event support flag to 0.
**/
static void
lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
if (pmboxq->mb.mbxStatus == MBX_SUCCESS)
phba->temp_sensor_support = 1;
else
phba->temp_sensor_support = 0;
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the completion handler for dump mailbox command for getting
* wake up parameters. When this command complete, the response contain
* Option rom version of the HBA. This function translate the version number
* into a human readable string and store it in OptionROMVersion.
**/
static void
lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
{
struct prog_id *prg;
uint32_t prog_id_word;
char dist = ' ';
/* character array used for decoding dist type. */
char dist_char[] = "nabx";
if (pmboxq->mb.mbxStatus != MBX_SUCCESS) {
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
prg = (struct prog_id *) &prog_id_word;
/* word 7 contain option rom version */
prog_id_word = pmboxq->mb.un.varWords[7];
/* Decode the Option rom version word to a readable string */
if (prg->dist < 4)
dist = dist_char[prg->dist];
if ((prg->dist == 3) && (prg->num == 0))
sprintf(phba->OptionROMVersion, "%d.%d%d",
prg->ver, prg->rev, prg->lev);
else
sprintf(phba->OptionROMVersion, "%d.%d%d%c%d",
prg->ver, prg->rev, prg->lev,
dist, prg->num);
mempool_free(pmboxq, phba->mbox_mem_pool);
return;
}
/**
* lpfc_config_port_post - Perform lpfc initialization after config port
* @phba: pointer to lpfc hba data structure.
*
* This routine will do LPFC initialization after the CONFIG_PORT mailbox
* command call. It performs all internal resource and state setups on the
* port: post IOCB buffers, enable appropriate host interrupt attentions,
* ELS ring timers, etc.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_config_port_post(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
LPFC_MBOXQ_t *pmb;
MAILBOX_t *mb;
struct lpfc_dmabuf *mp;
struct lpfc_sli *psli = &phba->sli;
uint32_t status, timeout;
int i, j;
int rc;
spin_lock_irq(&phba->hbalock);
/*
* If the Config port completed correctly the HBA is not
* over heated any more.
*/
if (phba->over_temp_state == HBA_OVER_TEMP)
phba->over_temp_state = HBA_NORMAL_TEMP;
spin_unlock_irq(&phba->hbalock);
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
phba->link_state = LPFC_HBA_ERROR;
return -ENOMEM;
}
mb = &pmb->mb;
/* Get login parameters for NID. */
lpfc_read_sparam(phba, pmb, 0);
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0448 Adapter failed init, mbxCmd x%x "
"READ_SPARM mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mp = (struct lpfc_dmabuf *) pmb->context1;
mempool_free( pmb, phba->mbox_mem_pool);
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
return -EIO;
}
mp = (struct lpfc_dmabuf *) pmb->context1;
memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm));
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
pmb->context1 = NULL;
if (phba->cfg_soft_wwnn)
u64_to_wwn(phba->cfg_soft_wwnn,
vport->fc_sparam.nodeName.u.wwn);
if (phba->cfg_soft_wwpn)
u64_to_wwn(phba->cfg_soft_wwpn,
vport->fc_sparam.portName.u.wwn);
memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName,
sizeof (struct lpfc_name));
memcpy(&vport->fc_portname, &vport->fc_sparam.portName,
sizeof (struct lpfc_name));
/* Update the fc_host data structures with new wwn. */
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
/* If no serial number in VPD data, use low 6 bytes of WWNN */
/* This should be consolidated into parse_vpd ? - mr */
if (phba->SerialNumber[0] == 0) {
uint8_t *outptr;
outptr = &vport->fc_nodename.u.s.IEEE[0];
for (i = 0; i < 12; i++) {
status = *outptr++;
j = ((status & 0xf0) >> 4);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
i++;
j = (status & 0xf);
if (j <= 9)
phba->SerialNumber[i] =
(char)((uint8_t) 0x30 + (uint8_t) j);
else
phba->SerialNumber[i] =
(char)((uint8_t) 0x61 + (uint8_t) (j - 10));
}
}
lpfc_read_config(phba, pmb);
pmb->vport = vport;
if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0453 Adapter failed to init, mbxCmd x%x "
"READ_CONFIG, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
phba->link_state = LPFC_HBA_ERROR;
mempool_free( pmb, phba->mbox_mem_pool);
return -EIO;
}
/* Reset the DFT_HBA_Q_DEPTH to the max xri */
if (phba->cfg_hba_queue_depth > (mb->un.varRdConfig.max_xri+1))
phba->cfg_hba_queue_depth =
mb->un.varRdConfig.max_xri + 1;
phba->lmt = mb->un.varRdConfig.lmt;
/* Get the default values for Model Name and Description */
lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc);
if ((phba->cfg_link_speed > LINK_SPEED_10G)
|| ((phba->cfg_link_speed == LINK_SPEED_1G)
&& !(phba->lmt & LMT_1Gb))
|| ((phba->cfg_link_speed == LINK_SPEED_2G)
&& !(phba->lmt & LMT_2Gb))
|| ((phba->cfg_link_speed == LINK_SPEED_4G)
&& !(phba->lmt & LMT_4Gb))
|| ((phba->cfg_link_speed == LINK_SPEED_8G)
&& !(phba->lmt & LMT_8Gb))
|| ((phba->cfg_link_speed == LINK_SPEED_10G)
&& !(phba->lmt & LMT_10Gb))) {
/* Reset link speed to auto */
lpfc_printf_log(phba, KERN_WARNING, LOG_LINK_EVENT,
"1302 Invalid speed for this board: "
"Reset link speed to auto: x%x\n",
phba->cfg_link_speed);
phba->cfg_link_speed = LINK_SPEED_AUTO;
}
phba->link_state = LPFC_LINK_DOWN;
/* Only process IOCBs on ELS ring till hba_state is READY */
if (psli->ring[psli->extra_ring].cmdringaddr)
psli->ring[psli->extra_ring].flag |= LPFC_STOP_IOCB_EVENT;
if (psli->ring[psli->fcp_ring].cmdringaddr)
psli->ring[psli->fcp_ring].flag |= LPFC_STOP_IOCB_EVENT;
if (psli->ring[psli->next_ring].cmdringaddr)
psli->ring[psli->next_ring].flag |= LPFC_STOP_IOCB_EVENT;
/* Post receive buffers for desired rings */
if (phba->sli_rev != 3)
lpfc_post_rcv_buf(phba);
/*
* Configure HBA MSI-X attention conditions to messages if MSI-X mode
*/
if (phba->intr_type == MSIX) {
rc = lpfc_config_msi(phba, pmb);
if (rc) {
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0352 Config MSI mailbox command "
"failed, mbxCmd x%x, mbxStatus x%x\n",
pmb->mb.mbxCommand, pmb->mb.mbxStatus);
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
}
/* Initialize ERATT handling flag */
phba->hba_flag &= ~HBA_ERATT_HANDLED;
/* Enable appropriate host interrupts */
spin_lock_irq(&phba->hbalock);
status = readl(phba->HCregaddr);
status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA;
if (psli->num_rings > 0)
status |= HC_R0INT_ENA;
if (psli->num_rings > 1)
status |= HC_R1INT_ENA;
if (psli->num_rings > 2)
status |= HC_R2INT_ENA;
if (psli->num_rings > 3)
status |= HC_R3INT_ENA;
if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) &&
(phba->cfg_poll & DISABLE_FCP_RING_INT))
status &= ~(HC_R0INT_ENA);
writel(status, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
/* Set up ring-0 (ELS) timer */
timeout = phba->fc_ratov * 2;
mod_timer(&vport->els_tmofunc, jiffies + HZ * timeout);
/* Set up heart beat (HB) timer */
mod_timer(&phba->hb_tmofunc, jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
phba->hb_outstanding = 0;
phba->last_completion_time = jiffies;
/* Set up error attention (ERATT) polling timer */
mod_timer(&phba->eratt_poll, jiffies + HZ * LPFC_ERATT_POLL_INTERVAL);
lpfc_init_link(phba, pmb, phba->cfg_topology, phba->cfg_link_speed);
pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
lpfc_set_loopback_flag(phba);
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0454 Adapter failed to init, mbxCmd x%x "
"INIT_LINK, mbxStatus x%x\n",
mb->mbxCommand, mb->mbxStatus);
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
phba->link_state = LPFC_HBA_ERROR;
if (rc != MBX_BUSY)
mempool_free(pmb, phba->mbox_mem_pool);
return -EIO;
}
/* MBOX buffer will be freed in mbox compl */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
lpfc_config_async(phba, pmb, LPFC_ELS_RING);
pmb->mbox_cmpl = lpfc_config_async_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba,
KERN_ERR,
LOG_INIT,
"0456 Adapter failed to issue "
"ASYNCEVT_ENABLE mbox status x%x \n.",
rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
/* Get Option rom version */
pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
lpfc_dump_wakeup_param(phba, pmb);
pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl;
pmb->vport = phba->pport;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0435 Adapter failed "
"to get Option ROM version status x%x\n.", rc);
mempool_free(pmb, phba->mbox_mem_pool);
}
return 0;
}
/**
* lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do LPFC uninitialization before the HBA is reset when
* bringing down the SLI Layer.
*
* Return codes
* 0 - success.
* Any other value - error.
**/
int
lpfc_hba_down_prep(struct lpfc_hba *phba)
{
struct lpfc_vport **vports;
int i;
/* Disable interrupts */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
if (phba->pport->load_flag & FC_UNLOADING)
lpfc_cleanup_discovery_resources(phba->pport);
else {
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++)
lpfc_cleanup_discovery_resources(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
}
return 0;
}
/**
* lpfc_hba_down_post - Perform lpfc uninitialization after HBA reset
* @phba: pointer to lpfc HBA data structure.
*
* This routine will do uninitialization after the HBA is reset when bring
* down the SLI Layer.
*
* Return codes
* 0 - sucess.
* Any other value - error.
**/
int
lpfc_hba_down_post(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
struct lpfc_dmabuf *mp, *next_mp;
LIST_HEAD(completions);
int i;
if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)
lpfc_sli_hbqbuf_free_all(phba);
else {
/* Cleanup preposted buffers on the ELS ring */
pring = &psli->ring[LPFC_ELS_RING];
list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
list_del(&mp->list);
pring->postbufq_cnt--;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
kfree(mp);
}
}
spin_lock_irq(&phba->hbalock);
for (i = 0; i < psli->num_rings; i++) {
pring = &psli->ring[i];
/* At this point in time the HBA is either reset or DOA. Either
* way, nothing should be on txcmplq as it will NEVER complete.
*/
list_splice_init(&pring->txcmplq, &completions);
pring->txcmplq_cnt = 0;
spin_unlock_irq(&phba->hbalock);
/* Cancel all the IOCBs from the completions list */
lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
IOERR_SLI_ABORTED);
lpfc_sli_abort_iocb_ring(phba, pring);
spin_lock_irq(&phba->hbalock);
}
spin_unlock_irq(&phba->hbalock);
return 0;
}
/**
* lpfc_hb_timeout - The HBA-timer timeout handler
* @ptr: unsigned long holds the pointer to lpfc hba data structure.
*
* This is the HBA-timer timeout handler registered to the lpfc driver. When
* this timer fires, a HBA timeout event shall be posted to the lpfc driver
* work-port-events bitmap and the worker thread is notified. This timeout
* event will be used by the worker thread to invoke the actual timeout
* handler routine, lpfc_hb_timeout_handler. Any periodical operations will
* be performed in the timeout handler and the HBA timeout event bit shall
* be cleared by the worker thread after it has taken the event bitmap out.
**/
static void
lpfc_hb_timeout(unsigned long ptr)
{
struct lpfc_hba *phba;
uint32_t tmo_posted;
unsigned long iflag;
phba = (struct lpfc_hba *)ptr;
/* Check for heart beat timeout conditions */
spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO;
if (!tmo_posted)
phba->pport->work_port_events |= WORKER_HB_TMO;
spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
/* Tell the worker thread there is work to do */
if (!tmo_posted)
lpfc_worker_wake_up(phba);
return;
}
/**
* lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function
* @phba: pointer to lpfc hba data structure.
* @pmboxq: pointer to the driver internal queue element for mailbox command.
*
* This is the callback function to the lpfc heart-beat mailbox command.
* If configured, the lpfc driver issues the heart-beat mailbox command to
* the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the
* heart-beat mailbox command is issued, the driver shall set up heart-beat
* timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks
* heart-beat outstanding state. Once the mailbox command comes back and
* no error conditions detected, the heart-beat mailbox command timer is
* reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding
* state is cleared for the next heart-beat. If the timer expired with the
* heart-beat outstanding state set, the driver will put the HBA offline.
**/
static void
lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq)
{
unsigned long drvr_flag;
spin_lock_irqsave(&phba->hbalock, drvr_flag);
phba->hb_outstanding = 0;
spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
/* Check and reset heart-beat timer is necessary */
mempool_free(pmboxq, phba->mbox_mem_pool);
if (!(phba->pport->fc_flag & FC_OFFLINE_MODE) &&
!(phba->link_state == LPFC_HBA_ERROR) &&
!(phba->pport->load_flag & FC_UNLOADING))
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
return;
}
/**
* lpfc_hb_timeout_handler - The HBA-timer timeout handler
* @phba: pointer to lpfc hba data structure.
*
* This is the actual HBA-timer timeout handler to be invoked by the worker
* thread whenever the HBA timer fired and HBA-timeout event posted. This
* handler performs any periodic operations needed for the device. If such
* periodic event has already been attended to either in the interrupt handler
* or by processing slow-ring or fast-ring events within the HBA-timer
* timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets
* the timer for the next timeout period. If lpfc heart-beat mailbox command
* is configured and there is no heart-beat mailbox command outstanding, a
* heart-beat mailbox is issued and timer set properly. Otherwise, if there
* has been a heart-beat mailbox command outstanding, the HBA shall be put
* to offline.
**/
void
lpfc_hb_timeout_handler(struct lpfc_hba *phba)
{
LPFC_MBOXQ_t *pmboxq;
struct lpfc_dmabuf *buf_ptr;
int retval;
struct lpfc_sli *psli = &phba->sli;
LIST_HEAD(completions);
if ((phba->link_state == LPFC_HBA_ERROR) ||
(phba->pport->load_flag & FC_UNLOADING) ||
(phba->pport->fc_flag & FC_OFFLINE_MODE))
return;
spin_lock_irq(&phba->pport->work_port_lock);
if (time_after(phba->last_completion_time + LPFC_HB_MBOX_INTERVAL * HZ,
jiffies)) {
spin_unlock_irq(&phba->pport->work_port_lock);
if (!phba->hb_outstanding)
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
else
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_TIMEOUT);
return;
}
spin_unlock_irq(&phba->pport->work_port_lock);
if (phba->elsbuf_cnt &&
(phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) {
spin_lock_irq(&phba->hbalock);
list_splice_init(&phba->elsbuf, &completions);
phba->elsbuf_cnt = 0;
phba->elsbuf_prev_cnt = 0;
spin_unlock_irq(&phba->hbalock);
while (!list_empty(&completions)) {
list_remove_head(&completions, buf_ptr,
struct lpfc_dmabuf, list);
lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
kfree(buf_ptr);
}
}
phba->elsbuf_prev_cnt = phba->elsbuf_cnt;
/* If there is no heart beat outstanding, issue a heartbeat command */
if (phba->cfg_enable_hba_heartbeat) {
if (!phba->hb_outstanding) {
pmboxq = mempool_alloc(phba->mbox_mem_pool,GFP_KERNEL);
if (!pmboxq) {
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
return;
}
lpfc_heart_beat(phba, pmboxq);
pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl;
pmboxq->vport = phba->pport;
retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
if (retval != MBX_BUSY && retval != MBX_SUCCESS) {
mempool_free(pmboxq, phba->mbox_mem_pool);
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
return;
}
mod_timer(&phba->hb_tmofunc,
jiffies + HZ * LPFC_HB_MBOX_TIMEOUT);
phba->hb_outstanding = 1;
return;
} else {
/*
* If heart beat timeout called with hb_outstanding set
* we need to take the HBA offline.
*/
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0459 Adapter heartbeat failure, "
"taking this port offline.\n");
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI2_ACTIVE;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba);
lpfc_offline(phba);
lpfc_unblock_mgmt_io(phba);
phba->link_state = LPFC_HBA_ERROR;
lpfc_hba_down_post(phba);
}
}
}
/**
* lpfc_offline_eratt - Bring lpfc offline on hardware error attention
* @phba: pointer to lpfc hba data structure.
*
* This routine is called to bring the HBA offline when HBA hardware error
* other than Port Error 6 has been detected.
**/
static void
lpfc_offline_eratt(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI2_ACTIVE;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_prep(phba);
lpfc_offline(phba);
lpfc_reset_barrier(phba);
lpfc_sli_brdreset(phba);
lpfc_hba_down_post(phba);
lpfc_sli_brdready(phba, HS_MBRDY);
lpfc_unblock_mgmt_io(phba);
phba->link_state = LPFC_HBA_ERROR;
return;
}
/**
* lpfc_handle_deferred_eratt - The HBA hardware deferred error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the deferred HBA hardware error
* conditions. This type of error is indicated by HBA by setting ER1
* and another ER bit in the host status register. The driver will
* wait until the ER1 bit clears before handling the error condition.
**/
static void
lpfc_handle_deferred_eratt(struct lpfc_hba *phba)
{
uint32_t old_host_status = phba->work_hs;
struct lpfc_sli_ring *pring;
struct lpfc_sli *psli = &phba->sli;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0479 Deferred Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI2_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggred erratt. That could cause the I/Os
* dropped by the firmware. Error iocb (I/O) on txcmplq and let the
* SCSI layer retry it after re-establishing link.
*/
pring = &psli->ring[psli->fcp_ring];
lpfc_sli_abort_iocb_ring(phba, pring);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba);
lpfc_offline(phba);
/* Wait for the ER1 bit to clear.*/
while (phba->work_hs & HS_FFER1) {
msleep(100);
phba->work_hs = readl(phba->HSregaddr);
/* If driver is unloading let the worker thread continue */
if (phba->pport->load_flag & FC_UNLOADING) {
phba->work_hs = 0;
break;
}
}
/*
* This is to ptrotect against a race condition in which
* first write to the host attention register clear the
* host status register.
*/
if ((!phba->work_hs) && (!(phba->pport->load_flag & FC_UNLOADING)))
phba->work_hs = old_host_status & ~HS_FFER1;
phba->hba_flag &= ~DEFER_ERATT;
phba->work_status[0] = readl(phba->MBslimaddr + 0xa8);
phba->work_status[1] = readl(phba->MBslimaddr + 0xac);
}
/**
* lpfc_handle_eratt - The HBA hardware error handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to handle the following HBA hardware error
* conditions:
* 1 - HBA error attention interrupt
* 2 - DMA ring index out of range
* 3 - Mailbox command came back as unknown
**/
void
lpfc_handle_eratt(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
uint32_t event_data;
unsigned long temperature;
struct temp_event temp_event_data;
struct Scsi_Host *shost;
struct lpfc_board_event_header board_event;
/* If the pci channel is offline, ignore possible errors,
* since we cannot communicate with the pci card anyway. */
if (pci_channel_offline(phba->pcidev))
return;
/* If resets are disabled then leave the HBA alone and return */
if (!phba->cfg_enable_hba_reset)
return;
/* Send an internal error event to mgmt application */
board_event.event_type = FC_REG_BOARD_EVENT;
board_event.subcategory = LPFC_EVENT_PORTINTERR;
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(board_event),
(char *) &board_event,
LPFC_NL_VENDOR_ID);
if (phba->hba_flag & DEFER_ERATT)
lpfc_handle_deferred_eratt(phba);
if (phba->work_hs & HS_FFER6) {
/* Re-establishing Link */
lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT,
"1301 Re-establishing Link "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI2_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/*
* Firmware stops when it triggled erratt with HS_FFER6.
* That could cause the I/Os dropped by the firmware.
* Error iocb (I/O) on txcmplq and let the SCSI layer
* retry it after re-establishing link.
*/
pring = &psli->ring[psli->fcp_ring];
lpfc_sli_abort_iocb_ring(phba, pring);
/*
* There was a firmware error. Take the hba offline and then
* attempt to restart it.
*/
lpfc_offline_prep(phba);
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
if (lpfc_online(phba) == 0) { /* Initialize the HBA */
lpfc_unblock_mgmt_io(phba);
return;
}
lpfc_unblock_mgmt_io(phba);
} else if (phba->work_hs & HS_CRIT_TEMP) {
temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET);
temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
temp_event_data.event_code = LPFC_CRIT_TEMP;
temp_event_data.data = (uint32_t)temperature;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0406 Adapter maximum temperature exceeded "
"(%ld), taking this port offline "
"Data: x%x x%x x%x\n",
temperature, phba->work_hs,
phba->work_status[0], phba->work_status[1]);
shost = lpfc_shost_from_vport(phba->pport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(temp_event_data),
(char *) &temp_event_data,
SCSI_NL_VID_TYPE_PCI
| PCI_VENDOR_ID_EMULEX);
spin_lock_irq(&phba->hbalock);
phba->over_temp_state = HBA_OVER_TEMP;
spin_unlock_irq(&phba->hbalock);
lpfc_offline_eratt(phba);
} else {
/* The if clause above forces this code path when the status
* failure is a value other than FFER6. Do not call the offline
* twice. This is the adapter hardware error path.
*/
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0457 Adapter Hardware Error "
"Data: x%x x%x x%x\n",
phba->work_hs,
phba->work_status[0], phba->work_status[1]);
event_data = FC_REG_DUMP_EVENT;
shost = lpfc_shost_from_vport(vport);
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(event_data), (char *) &event_data,
SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX);
lpfc_offline_eratt(phba);
}
return;
}
/**
* lpfc_handle_latt - The HBA link event handler
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked from the worker thread to handle a HBA host
* attention link event.
**/
void
lpfc_handle_latt(struct lpfc_hba *phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_sli *psli = &phba->sli;
LPFC_MBOXQ_t *pmb;
volatile uint32_t control;
struct lpfc_dmabuf *mp;
int rc = 0;
pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = 1;
goto lpfc_handle_latt_err_exit;
}
mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
if (!mp) {
rc = 2;
goto lpfc_handle_latt_free_pmb;
}
mp->virt = lpfc_mbuf_alloc(phba, 0, &mp->phys);
if (!mp->virt) {
rc = 3;
goto lpfc_handle_latt_free_mp;
}
/* Cleanup any outstanding ELS commands */
lpfc_els_flush_all_cmd(phba);
psli->slistat.link_event++;
lpfc_read_la(phba, pmb, mp);
pmb->mbox_cmpl = lpfc_mbx_cmpl_read_la;
pmb->vport = vport;
/* Block ELS IOCBs until we have processed this mbox command */
phba->sli.ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT;
rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT);
if (rc == MBX_NOT_FINISHED) {
rc = 4;
goto lpfc_handle_latt_free_mbuf;
}
/* Clear Link Attention in HA REG */
spin_lock_irq(&phba->hbalock);
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
return;
lpfc_handle_latt_free_mbuf:
phba->sli.ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT;
lpfc_mbuf_free(phba, mp->virt, mp->phys);
lpfc_handle_latt_free_mp:
kfree(mp);
lpfc_handle_latt_free_pmb:
mempool_free(pmb, phba->mbox_mem_pool);
lpfc_handle_latt_err_exit:
/* Enable Link attention interrupts */
spin_lock_irq(&phba->hbalock);
psli->sli_flag |= LPFC_PROCESS_LA;
control = readl(phba->HCregaddr);
control |= HC_LAINT_ENA;
writel(control, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear Link Attention in HA REG */
writel(HA_LATT, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
spin_unlock_irq(&phba->hbalock);
lpfc_linkdown(phba);
phba->link_state = LPFC_HBA_ERROR;
lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
"0300 LATT: Cannot issue READ_LA: Data:%d\n", rc);
return;
}
/**
* lpfc_parse_vpd - Parse VPD (Vital Product Data)
* @phba: pointer to lpfc hba data structure.
* @vpd: pointer to the vital product data.
* @len: length of the vital product data in bytes.
*
* This routine parses the Vital Product Data (VPD). The VPD is treated as
* an array of characters. In this routine, the ModelName, ProgramType, and
* ModelDesc, etc. fields of the phba data structure will be populated.
*
* Return codes
* 0 - pointer to the VPD passed in is NULL
* 1 - success
**/
static int
lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len)
{
uint8_t lenlo, lenhi;
int Length;
int i, j;
int finished = 0;
int index = 0;
if (!vpd)
return 0;
/* Vital Product */
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0455 Vital Product Data: x%x x%x x%x x%x\n",
(uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2],
(uint32_t) vpd[3]);
while (!finished && (index < (len - 4))) {
switch (vpd[index]) {
case 0x82:
case 0x91:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
i = ((((unsigned short)lenhi) << 8) + lenlo);
index += i;
break;
case 0x90:
index += 1;
lenlo = vpd[index];
index += 1;
lenhi = vpd[index];
index += 1;
Length = ((((unsigned short)lenhi) << 8) + lenlo);
if (Length > len - index)
Length = len - index;
while (Length > 0) {
/* Look for Serial Number */
if ((vpd[index] == 'S') && (vpd[index+1] == 'N')) {
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->SerialNumber[j++] = vpd[index++];
if (j == 31)
break;
}
phba->SerialNumber[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '1')) {
phba->vpd_flag |= VPD_MODEL_DESC;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelDesc[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ModelDesc[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '2')) {
phba->vpd_flag |= VPD_MODEL_NAME;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ModelName[j++] = vpd[index++];
if (j == 79)
break;
}
phba->ModelName[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '3')) {
phba->vpd_flag |= VPD_PROGRAM_TYPE;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->ProgramType[j++] = vpd[index++];
if (j == 255)
break;
}
phba->ProgramType[j] = 0;
continue;
}
else if ((vpd[index] == 'V') && (vpd[index+1] == '4')) {
phba->vpd_flag |= VPD_PORT;
index += 2;
i = vpd[index];
index += 1;
j = 0;
Length -= (3+i);
while(i--) {
phba->Port[j++] = vpd[index++];
if (j == 19)
break;
}
phba->Port[j] = 0;
continue;
}
else {
index += 2;
i = vpd[index];
index += 1;
index += i;
Length -= (3 + i);
}
}
finished = 0;
break;
case 0x78:
finished = 1;
break;
default:
index ++;
break;
}
}
return(1);
}
/**
* lpfc_get_hba_model_desc - Retrieve HBA device model name and description
* @phba: pointer to lpfc hba data structure.
* @mdp: pointer to the data structure to hold the derived model name.
* @descp: pointer to the data structure to hold the derived description.
*
* This routine retrieves HBA's description based on its registered PCI device
* ID. The @descp passed into this function points to an array of 256 chars. It
* shall be returned with the model name, maximum speed, and the host bus type.
* The @mdp passed into this function points to an array of 80 chars. When the
* function returns, the @mdp will be filled with the model name.
**/
static void
lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp)
{
lpfc_vpd_t *vp;
uint16_t dev_id = phba->pcidev->device;
int max_speed;
int GE = 0;
struct {
char * name;
int max_speed;
char * bus;
} m = {"<Unknown>", 0, ""};
if (mdp && mdp[0] != '\0'
&& descp && descp[0] != '\0')
return;
if (phba->lmt & LMT_10Gb)
max_speed = 10;
else if (phba->lmt & LMT_8Gb)
max_speed = 8;
else if (phba->lmt & LMT_4Gb)
max_speed = 4;
else if (phba->lmt & LMT_2Gb)
max_speed = 2;
else
max_speed = 1;
vp = &phba->vpd;
switch (dev_id) {
case PCI_DEVICE_ID_FIREFLY:
m = (typeof(m)){"LP6000", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_SUPERFLY:
if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3)
m = (typeof(m)){"LP7000", max_speed, "PCI"};
else
m = (typeof(m)){"LP7000E", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_DRAGONFLY:
m = (typeof(m)){"LP8000", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_CENTAUR:
if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID)
m = (typeof(m)){"LP9002", max_speed, "PCI"};
else
m = (typeof(m)){"LP9000", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_RFLY:
m = (typeof(m)){"LP952", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_PEGASUS:
m = (typeof(m)){"LP9802", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_THOR:
m = (typeof(m)){"LP10000", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_VIPER:
m = (typeof(m)){"LPX1000", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_PFLY:
m = (typeof(m)){"LP982", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_TFLY:
m = (typeof(m)){"LP1050", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_HELIOS:
m = (typeof(m)){"LP11000", max_speed, "PCI-X2"};
break;
case PCI_DEVICE_ID_HELIOS_SCSP:
m = (typeof(m)){"LP11000-SP", max_speed, "PCI-X2"};
break;
case PCI_DEVICE_ID_HELIOS_DCSP:
m = (typeof(m)){"LP11002-SP", max_speed, "PCI-X2"};
break;
case PCI_DEVICE_ID_NEPTUNE:
m = (typeof(m)){"LPe1000", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_NEPTUNE_SCSP:
m = (typeof(m)){"LPe1000-SP", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_NEPTUNE_DCSP:
m = (typeof(m)){"LPe1002-SP", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_BMID:
m = (typeof(m)){"LP1150", max_speed, "PCI-X2"};
break;
case PCI_DEVICE_ID_BSMB:
m = (typeof(m)){"LP111", max_speed, "PCI-X2"};
break;
case PCI_DEVICE_ID_ZEPHYR:
m = (typeof(m)){"LPe11000", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_ZEPHYR_SCSP:
m = (typeof(m)){"LPe11000", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_ZEPHYR_DCSP:
m = (typeof(m)){"LP2105", max_speed, "PCIe"};
GE = 1;
break;
case PCI_DEVICE_ID_ZMID:
m = (typeof(m)){"LPe1150", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_ZSMB:
m = (typeof(m)){"LPe111", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_LP101:
m = (typeof(m)){"LP101", max_speed, "PCI-X"};
break;
case PCI_DEVICE_ID_LP10000S:
m = (typeof(m)){"LP10000-S", max_speed, "PCI"};
break;
case PCI_DEVICE_ID_LP11000S:
m = (typeof(m)){"LP11000-S", max_speed,
"PCI-X2"};
break;
case PCI_DEVICE_ID_LPE11000S:
m = (typeof(m)){"LPe11000-S", max_speed,
"PCIe"};
break;
case PCI_DEVICE_ID_SAT:
m = (typeof(m)){"LPe12000", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_SAT_MID:
m = (typeof(m)){"LPe1250", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_SAT_SMB:
m = (typeof(m)){"LPe121", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_SAT_DCSP:
m = (typeof(m)){"LPe12002-SP", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_SAT_SCSP:
m = (typeof(m)){"LPe12000-SP", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_SAT_S:
m = (typeof(m)){"LPe12000-S", max_speed, "PCIe"};
break;
case PCI_DEVICE_ID_HORNET:
m = (typeof(m)){"LP21000", max_speed, "PCIe"};
GE = 1;
break;
case PCI_DEVICE_ID_PROTEUS_VF:
m = (typeof(m)) {"LPev12000", max_speed, "PCIe IOV"};
break;
case PCI_DEVICE_ID_PROTEUS_PF:
m = (typeof(m)) {"LPev12000", max_speed, "PCIe IOV"};
break;
case PCI_DEVICE_ID_PROTEUS_S:
m = (typeof(m)) {"LPemv12002-S", max_speed, "PCIe IOV"};
break;
default:
m = (typeof(m)){ NULL };
break;
}
if (mdp && mdp[0] == '\0')
snprintf(mdp, 79,"%s", m.name);
if (descp && descp[0] == '\0')
snprintf(descp, 255,
"Emulex %s %d%s %s %s",
m.name, m.max_speed,
(GE) ? "GE" : "Gb",
m.bus,
(GE) ? "FCoE Adapter" : "Fibre Channel Adapter");
}
/**
* lpfc_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring
* @phba: pointer to lpfc hba data structure.
* @pring: pointer to a IOCB ring.
* @cnt: the number of IOCBs to be posted to the IOCB ring.
*
* This routine posts a given number of IOCBs with the associated DMA buffer
* descriptors specified by the cnt argument to the given IOCB ring.
*
* Return codes
* The number of IOCBs NOT able to be posted to the IOCB ring.
**/
int
lpfc_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt)
{
IOCB_t *icmd;
struct lpfc_iocbq *iocb;
struct lpfc_dmabuf *mp1, *mp2;
cnt += pring->missbufcnt;
/* While there are buffers to post */
while (cnt > 0) {
/* Allocate buffer for command iocb */
iocb = lpfc_sli_get_iocbq(phba);
if (iocb == NULL) {
pring->missbufcnt = cnt;
return cnt;
}
icmd = &iocb->iocb;
/* 2 buffers can be posted per command */
/* Allocate buffer to post */
mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp1)
mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys);
if (!mp1 || !mp1->virt) {
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp1->list);
/* Allocate buffer to post */
if (cnt > 1) {
mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL);
if (mp2)
mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI,
&mp2->phys);
if (!mp2 || !mp2->virt) {
kfree(mp2);
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
INIT_LIST_HEAD(&mp2->list);
} else {
mp2 = NULL;
}
icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys);
icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys);
icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE;
icmd->ulpBdeCount = 1;
cnt--;
if (mp2) {
icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys);
icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys);
icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE;
cnt--;
icmd->ulpBdeCount = 2;
}
icmd->ulpCommand = CMD_QUE_RING_BUF64_CN;
icmd->ulpLe = 1;
if (lpfc_sli_issue_iocb(phba, pring, iocb, 0) == IOCB_ERROR) {
lpfc_mbuf_free(phba, mp1->virt, mp1->phys);
kfree(mp1);
cnt++;
if (mp2) {
lpfc_mbuf_free(phba, mp2->virt, mp2->phys);
kfree(mp2);
cnt++;
}
lpfc_sli_release_iocbq(phba, iocb);
pring->missbufcnt = cnt;
return cnt;
}
lpfc_sli_ringpostbuf_put(phba, pring, mp1);
if (mp2)
lpfc_sli_ringpostbuf_put(phba, pring, mp2);
}
pring->missbufcnt = 0;
return 0;
}
/**
* lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring
* @phba: pointer to lpfc hba data structure.
*
* This routine posts initial receive IOCB buffers to the ELS ring. The
* current number of initial IOCB buffers specified by LPFC_BUF_RING0 is
* set to 64 IOCBs.
*
* Return codes
* 0 - success (currently always success)
**/
static int
lpfc_post_rcv_buf(struct lpfc_hba *phba)
{
struct lpfc_sli *psli = &phba->sli;
/* Ring 0, ELS / CT buffers */
lpfc_post_buffer(phba, &psli->ring[LPFC_ELS_RING], LPFC_BUF_RING0);
/* Ring 2 - FCP no buffers needed */
return 0;
}
#define S(N,V) (((V)<<(N))|((V)>>(32-(N))))
/**
* lpfc_sha_init - Set up initial array of hash table entries
* @HashResultPointer: pointer to an array as hash table.
*
* This routine sets up the initial values to the array of hash table entries
* for the LC HBAs.
**/
static void
lpfc_sha_init(uint32_t * HashResultPointer)
{
HashResultPointer[0] = 0x67452301;
HashResultPointer[1] = 0xEFCDAB89;
HashResultPointer[2] = 0x98BADCFE;
HashResultPointer[3] = 0x10325476;
HashResultPointer[4] = 0xC3D2E1F0;
}
/**
* lpfc_sha_iterate - Iterate initial hash table with the working hash table
* @HashResultPointer: pointer to an initial/result hash table.
* @HashWorkingPointer: pointer to an working hash table.
*
* This routine iterates an initial hash table pointed by @HashResultPointer
* with the values from the working hash table pointeed by @HashWorkingPointer.
* The results are putting back to the initial hash table, returned through
* the @HashResultPointer as the result hash table.
**/
static void
lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer)
{
int t;
uint32_t TEMP;
uint32_t A, B, C, D, E;
t = 16;
do {
HashWorkingPointer[t] =
S(1,
HashWorkingPointer[t - 3] ^ HashWorkingPointer[t -
8] ^
HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]);
} while (++t <= 79);
t = 0;
A = HashResultPointer[0];
B = HashResultPointer[1];
C = HashResultPointer[2];
D = HashResultPointer[3];
E = HashResultPointer[4];
do {
if (t < 20) {
TEMP = ((B & C) | ((~B) & D)) + 0x5A827999;
} else if (t < 40) {
TEMP = (B ^ C ^ D) + 0x6ED9EBA1;
} else if (t < 60) {
TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC;
} else {
TEMP = (B ^ C ^ D) + 0xCA62C1D6;
}
TEMP += S(5, A) + E + HashWorkingPointer[t];
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
} while (++t <= 79);
HashResultPointer[0] += A;
HashResultPointer[1] += B;
HashResultPointer[2] += C;
HashResultPointer[3] += D;
HashResultPointer[4] += E;
}
/**
* lpfc_challenge_key - Create challenge key based on WWPN of the HBA
* @RandomChallenge: pointer to the entry of host challenge random number array.
* @HashWorking: pointer to the entry of the working hash array.
*
* This routine calculates the working hash array referred by @HashWorking
* from the challenge random numbers associated with the host, referred by
* @RandomChallenge. The result is put into the entry of the working hash
* array and returned by reference through @HashWorking.
**/
static void
lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking)
{
*HashWorking = (*RandomChallenge ^ *HashWorking);
}
/**
* lpfc_hba_init - Perform special handling for LC HBA initialization
* @phba: pointer to lpfc hba data structure.
* @hbainit: pointer to an array of unsigned 32-bit integers.
*
* This routine performs the special handling for LC HBA initialization.
**/
void
lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit)
{
int t;
uint32_t *HashWorking;
uint32_t *pwwnn = (uint32_t *) phba->wwnn;
HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL);
if (!HashWorking)
return;
HashWorking[0] = HashWorking[78] = *pwwnn++;
HashWorking[1] = HashWorking[79] = *pwwnn;
for (t = 0; t < 7; t++)
lpfc_challenge_key(phba->RandomData + t, HashWorking + t);
lpfc_sha_init(hbainit);
lpfc_sha_iterate(hbainit, HashWorking);
kfree(HashWorking);
}
/**
* lpfc_cleanup - Performs vport cleanups before deleting a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine performs the necessary cleanups before deleting the @vport.
* It invokes the discovery state machine to perform necessary state
* transitions and to release the ndlps associated with the @vport. Note,
* the physical port is treated as @vport 0.
**/
void
lpfc_cleanup(struct lpfc_vport *vport)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_nodelist *ndlp, *next_ndlp;
int i = 0;
if (phba->link_state > LPFC_LINK_DOWN)
lpfc_port_link_failure(vport);
list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp)) {
ndlp = lpfc_enable_node(vport, ndlp,
NLP_STE_UNUSED_NODE);
if (!ndlp)
continue;
spin_lock_irq(&phba->ndlp_lock);
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
/* Trigger the release of the ndlp memory */
lpfc_nlp_put(ndlp);
continue;
}
spin_lock_irq(&phba->ndlp_lock);
if (NLP_CHK_FREE_REQ(ndlp)) {
/* The ndlp should not be in memory free mode already */
spin_unlock_irq(&phba->ndlp_lock);
continue;
} else
/* Indicate request for freeing ndlp memory */
NLP_SET_FREE_REQ(ndlp);
spin_unlock_irq(&phba->ndlp_lock);
if (vport->port_type != LPFC_PHYSICAL_PORT &&
ndlp->nlp_DID == Fabric_DID) {
/* Just free up ndlp with Fabric_DID for vports */
lpfc_nlp_put(ndlp);
continue;
}
if (ndlp->nlp_type & NLP_FABRIC)
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RECOVERY);
lpfc_disc_state_machine(vport, ndlp, NULL,
NLP_EVT_DEVICE_RM);
}
/* At this point, ALL ndlp's should be gone
* because of the previous NLP_EVT_DEVICE_RM.
* Lets wait for this to happen, if needed.
*/
while (!list_empty(&vport->fc_nodes)) {
if (i++ > 3000) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY,
"0233 Nodelist not empty\n");
list_for_each_entry_safe(ndlp, next_ndlp,
&vport->fc_nodes, nlp_listp) {
lpfc_printf_vlog(ndlp->vport, KERN_ERR,
LOG_NODE,
"0282 did:x%x ndlp:x%p "
"usgmap:x%x refcnt:%d\n",
ndlp->nlp_DID, (void *)ndlp,
ndlp->nlp_usg_map,
atomic_read(
&ndlp->kref.refcount));
}
break;
}
/* Wait for any activity on ndlps to settle */
msleep(10);
}
return;
}
/**
* lpfc_stop_vport_timers - Stop all the timers associated with a vport
* @vport: pointer to a virtual N_Port data structure.
*
* This routine stops all the timers associated with a @vport. This function
* is invoked before disabling or deleting a @vport. Note that the physical
* port is treated as @vport 0.
**/
void
lpfc_stop_vport_timers(struct lpfc_vport *vport)
{
del_timer_sync(&vport->els_tmofunc);
del_timer_sync(&vport->fc_fdmitmo);
lpfc_can_disctmo(vport);
return;
}
/**
* lpfc_stop_phba_timers - Stop all the timers associated with an HBA
* @phba: pointer to lpfc hba data structure.
*
* This routine stops all the timers associated with a HBA. This function is
* invoked before either putting a HBA offline or unloading the driver.
**/
static void
lpfc_stop_phba_timers(struct lpfc_hba *phba)
{
del_timer_sync(&phba->fcp_poll_timer);
lpfc_stop_vport_timers(phba->pport);
del_timer_sync(&phba->sli.mbox_tmo);
del_timer_sync(&phba->fabric_block_timer);
phba->hb_outstanding = 0;
del_timer_sync(&phba->hb_tmofunc);
del_timer_sync(&phba->eratt_poll);
return;
}
/**
* lpfc_block_mgmt_io - Mark a HBA's management interface as blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as blocked. Once the HBA's
* management interface is marked as blocked, all the user space access to
* the HBA, whether they are from sysfs interface or libdfc interface will
* all be blocked. The HBA is set to block the management interface when the
* driver prepares the HBA interface for online or offline.
**/
static void
lpfc_block_mgmt_io(struct lpfc_hba * phba)
{
unsigned long iflag;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_online - Initialize and bring a HBA online
* @phba: pointer to lpfc hba data structure.
*
* This routine initializes the HBA and brings a HBA online. During this
* process, the management interface is blocked to prevent user space access
* to the HBA interfering with the driver initialization.
*
* Return codes
* 0 - successful
* 1 - failed
**/
int
lpfc_online(struct lpfc_hba *phba)
{
struct lpfc_vport *vport;
struct lpfc_vport **vports;
int i;
if (!phba)
return 0;
vport = phba->pport;
if (!(vport->fc_flag & FC_OFFLINE_MODE))
return 0;
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0458 Bring Adapter online\n");
lpfc_block_mgmt_io(phba);
if (!lpfc_sli_queue_setup(phba)) {
lpfc_unblock_mgmt_io(phba);
return 1;
}
if (lpfc_sli_hba_setup(phba)) { /* Initialize the HBA */
lpfc_unblock_mgmt_io(phba);
return 1;
}
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
struct Scsi_Host *shost;
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->fc_flag &= ~FC_OFFLINE_MODE;
if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED)
vports[i]->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
spin_unlock_irq(shost->host_lock);
}
lpfc_destroy_vport_work_array(phba, vports);
lpfc_unblock_mgmt_io(phba);
return 0;
}
/**
* lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked
* @phba: pointer to lpfc hba data structure.
*
* This routine marks a HBA's management interface as not blocked. Once the
* HBA's management interface is marked as not blocked, all the user space
* access to the HBA, whether they are from sysfs interface or libdfc
* interface will be allowed. The HBA is set to block the management interface
* when the driver prepares the HBA interface for online or offline and then
* set to unblock the management interface afterwards.
**/
void
lpfc_unblock_mgmt_io(struct lpfc_hba * phba)
{
unsigned long iflag;
spin_lock_irqsave(&phba->hbalock, iflag);
phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO;
spin_unlock_irqrestore(&phba->hbalock, iflag);
}
/**
* lpfc_offline_prep - Prepare a HBA to be brought offline
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to prepare a HBA to be brought offline. It performs
* unregistration login to all the nodes on all vports and flushes the mailbox
* queue to make it ready to be brought offline.
**/
void
lpfc_offline_prep(struct lpfc_hba * phba)
{
struct lpfc_vport *vport = phba->pport;
struct lpfc_nodelist *ndlp, *next_ndlp;
struct lpfc_vport **vports;
int i;
if (vport->fc_flag & FC_OFFLINE_MODE)
return;
lpfc_block_mgmt_io(phba);
lpfc_linkdown(phba);
/* Issue an unreg_login to all nodes on all vports */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL) {
for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
struct Scsi_Host *shost;
if (vports[i]->load_flag & FC_UNLOADING)
continue;
shost = lpfc_shost_from_vport(vports[i]);
list_for_each_entry_safe(ndlp, next_ndlp,
&vports[i]->fc_nodes,
nlp_listp) {
if (!NLP_CHK_NODE_ACT(ndlp))
continue;
if (ndlp->nlp_state == NLP_STE_UNUSED_NODE)
continue;
if (ndlp->nlp_type & NLP_FABRIC) {
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RECOVERY);
lpfc_disc_state_machine(vports[i], ndlp,
NULL, NLP_EVT_DEVICE_RM);
}
spin_lock_irq(shost->host_lock);
ndlp->nlp_flag &= ~NLP_NPR_ADISC;
spin_unlock_irq(shost->host_lock);
lpfc_unreg_rpi(vports[i], ndlp);
}
}
}
lpfc_destroy_vport_work_array(phba, vports);
lpfc_sli_flush_mbox_queue(phba);
}
/**
* lpfc_offline - Bring a HBA offline
* @phba: pointer to lpfc hba data structure.
*
* This routine actually brings a HBA offline. It stops all the timers
* associated with the HBA, brings down the SLI layer, and eventually
* marks the HBA as in offline state for the upper layer protocol.
**/
void
lpfc_offline(struct lpfc_hba *phba)
{
struct Scsi_Host *shost;
struct lpfc_vport **vports;
int i;
if (phba->pport->fc_flag & FC_OFFLINE_MODE)
return;
/* stop all timers associated with this hba */
lpfc_stop_phba_timers(phba);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++)
lpfc_stop_vport_timers(vports[i]);
lpfc_destroy_vport_work_array(phba, vports);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0460 Bring Adapter offline\n");
/* Bring down the SLI Layer and cleanup. The HBA is offline
now. */
lpfc_sli_hba_down(phba);
spin_lock_irq(&phba->hbalock);
phba->work_ha = 0;
spin_unlock_irq(&phba->hbalock);
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
shost = lpfc_shost_from_vport(vports[i]);
spin_lock_irq(shost->host_lock);
vports[i]->work_port_events = 0;
vports[i]->fc_flag |= FC_OFFLINE_MODE;
spin_unlock_irq(shost->host_lock);
}
lpfc_destroy_vport_work_array(phba, vports);
}
/**
* lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists
* @phba: pointer to lpfc hba data structure.
*
* This routine is to free all the SCSI buffers and IOCBs from the driver
* list back to kernel. It is called from lpfc_pci_remove_one to free
* the internal resources before the device is removed from the system.
*
* Return codes
* 0 - successful (for now, it always returns 0)
**/
static int
lpfc_scsi_free(struct lpfc_hba *phba)
{
struct lpfc_scsi_buf *sb, *sb_next;
struct lpfc_iocbq *io, *io_next;
spin_lock_irq(&phba->hbalock);
/* Release all the lpfc_scsi_bufs maintained by this host. */
list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list, list) {
list_del(&sb->list);
pci_pool_free(phba->lpfc_scsi_dma_buf_pool, sb->data,
sb->dma_handle);
kfree(sb);
phba->total_scsi_bufs--;
}
/* Release all the lpfc_iocbq entries maintained by this host. */
list_for_each_entry_safe(io, io_next, &phba->lpfc_iocb_list, list) {
list_del(&io->list);
kfree(io);
phba->total_iocbq_bufs--;
}
spin_unlock_irq(&phba->hbalock);
return 0;
}
/**
* lpfc_create_port - Create an FC port
* @phba: pointer to lpfc hba data structure.
* @instance: a unique integer ID to this FC port.
* @dev: pointer to the device data structure.
*
* This routine creates a FC port for the upper layer protocol. The FC port
* can be created on top of either a physical port or a virtual port provided
* by the HBA. This routine also allocates a SCSI host data structure (shost)
* and associates the FC port created before adding the shost into the SCSI
* layer.
*
* Return codes
* @vport - pointer to the virtual N_Port data structure.
* NULL - port create failed.
**/
struct lpfc_vport *
lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev)
{
struct lpfc_vport *vport;
struct Scsi_Host *shost;
int error = 0;
if (dev != &phba->pcidev->dev)
shost = scsi_host_alloc(&lpfc_vport_template,
sizeof(struct lpfc_vport));
else
shost = scsi_host_alloc(&lpfc_template,
sizeof(struct lpfc_vport));
if (!shost)
goto out;
vport = (struct lpfc_vport *) shost->hostdata;
vport->phba = phba;
vport->load_flag |= FC_LOADING;
vport->fc_flag |= FC_VPORT_NEEDS_REG_VPI;
vport->fc_rscn_flush = 0;
lpfc_get_vport_cfgparam(vport);
shost->unique_id = instance;
shost->max_id = LPFC_MAX_TARGET;
shost->max_lun = vport->cfg_max_luns;
shost->this_id = -1;
shost->max_cmd_len = 16;
/*
* Set initial can_queue value since 0 is no longer supported and
* scsi_add_host will fail. This will be adjusted later based on the
* max xri value determined in hba setup.
*/
shost->can_queue = phba->cfg_hba_queue_depth - 10;
if (dev != &phba->pcidev->dev) {
shost->transportt = lpfc_vport_transport_template;
vport->port_type = LPFC_NPIV_PORT;
} else {
shost->transportt = lpfc_transport_template;
vport->port_type = LPFC_PHYSICAL_PORT;
}
/* Initialize all internally managed lists. */
INIT_LIST_HEAD(&vport->fc_nodes);
spin_lock_init(&vport->work_port_lock);
init_timer(&vport->fc_disctmo);
vport->fc_disctmo.function = lpfc_disc_timeout;
vport->fc_disctmo.data = (unsigned long)vport;
init_timer(&vport->fc_fdmitmo);
vport->fc_fdmitmo.function = lpfc_fdmi_tmo;
vport->fc_fdmitmo.data = (unsigned long)vport;
init_timer(&vport->els_tmofunc);
vport->els_tmofunc.function = lpfc_els_timeout;
vport->els_tmofunc.data = (unsigned long)vport;
error = scsi_add_host(shost, dev);
if (error)
goto out_put_shost;
spin_lock_irq(&phba->hbalock);
list_add_tail(&vport->listentry, &phba->port_list);
spin_unlock_irq(&phba->hbalock);
return vport;
out_put_shost:
scsi_host_put(shost);
out:
return NULL;
}
/**
* destroy_port - destroy an FC port
* @vport: pointer to an lpfc virtual N_Port data structure.
*
* This routine destroys a FC port from the upper layer protocol. All the
* resources associated with the port are released.
**/
void
destroy_port(struct lpfc_vport *vport)
{
struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
struct lpfc_hba *phba = vport->phba;
lpfc_debugfs_terminate(vport);
fc_remove_host(shost);
scsi_remove_host(shost);
spin_lock_irq(&phba->hbalock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->hbalock);
lpfc_cleanup(vport);
return;
}
/**
* lpfc_get_instance - Get a unique integer ID
*
* This routine allocates a unique integer ID from lpfc_hba_index pool. It
* uses the kernel idr facility to perform the task.
*
* Return codes:
* instance - a unique integer ID allocated as the new instance.
* -1 - lpfc get instance failed.
**/
int
lpfc_get_instance(void)
{
int instance = 0;
/* Assign an unused number */
if (!idr_pre_get(&lpfc_hba_index, GFP_KERNEL))
return -1;
if (idr_get_new(&lpfc_hba_index, NULL, &instance))
return -1;
return instance;
}
/**
* lpfc_scan_finished - method for SCSI layer to detect whether scan is done
* @shost: pointer to SCSI host data structure.
* @time: elapsed time of the scan in jiffies.
*
* This routine is called by the SCSI layer with a SCSI host to determine
* whether the scan host is finished.
*
* Note: there is no scan_start function as adapter initialization will have
* asynchronously kicked off the link initialization.
*
* Return codes
* 0 - SCSI host scan is not over yet.
* 1 - SCSI host scan is over.
**/
int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
int stat = 0;
spin_lock_irq(shost->host_lock);
if (vport->load_flag & FC_UNLOADING) {
stat = 1;
goto finished;
}
if (time >= 30 * HZ) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0461 Scanning longer than 30 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (time >= 15 * HZ && phba->link_state <= LPFC_LINK_DOWN) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0465 Link down longer than 15 "
"seconds. Continuing initialization\n");
stat = 1;
goto finished;
}
if (vport->port_state != LPFC_VPORT_READY)
goto finished;
if (vport->num_disc_nodes || vport->fc_prli_sent)
goto finished;
if (vport->fc_map_cnt == 0 && time < 2 * HZ)
goto finished;
if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0)
goto finished;
stat = 1;
finished:
spin_unlock_irq(shost->host_lock);
return stat;
}
/**
* lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port
* @shost: pointer to SCSI host data structure.
*
* This routine initializes a given SCSI host attributes on a FC port. The
* SCSI host can be either on top of a physical port or a virtual port.
**/
void lpfc_host_attrib_init(struct Scsi_Host *shost)
{
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_hba *phba = vport->phba;
/*
* Set fixed host attributes. Must done after lpfc_sli_hba_setup().
*/
fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
fc_host_supported_classes(shost) = FC_COS_CLASS3;
memset(fc_host_supported_fc4s(shost), 0,
sizeof(fc_host_supported_fc4s(shost)));
fc_host_supported_fc4s(shost)[2] = 1;
fc_host_supported_fc4s(shost)[7] = 1;
lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost),
sizeof fc_host_symbolic_name(shost));
fc_host_supported_speeds(shost) = 0;
if (phba->lmt & LMT_10Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT;
if (phba->lmt & LMT_8Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT;
if (phba->lmt & LMT_4Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT;
if (phba->lmt & LMT_2Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT;
if (phba->lmt & LMT_1Gb)
fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT;
fc_host_maxframe_size(shost) =
(((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) |
(uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb;
/* This value is also unchanging */
memset(fc_host_active_fc4s(shost), 0,
sizeof(fc_host_active_fc4s(shost)));
fc_host_active_fc4s(shost)[2] = 1;
fc_host_active_fc4s(shost)[7] = 1;
fc_host_max_npiv_vports(shost) = phba->max_vpi;
spin_lock_irq(shost->host_lock);
vport->load_flag &= ~FC_LOADING;
spin_unlock_irq(shost->host_lock);
}
/**
* lpfc_enable_msix - Enable MSI-X interrupt mode
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI-X interrupt vectors. The kernel
* function pci_enable_msix() is called to enable the MSI-X vectors. Note that
* pci_enable_msix(), once invoked, enables either all or nothing, depending
* on the current availability of PCI vector resources. The device driver is
* responsible for calling the individual request_irq() to register each MSI-X
* vector with a interrupt handler, which is done in this function. Note that
* later when device is unloading, the driver should always call free_irq()
* on all MSI-X vectors it has done request_irq() on before calling
* pci_disable_msix(). Failure to do so results in a BUG_ON() and a device
* will be left with MSI-X enabled and leaks its vectors.
*
* Return codes
* 0 - sucessful
* other values - error
**/
static int
lpfc_enable_msix(struct lpfc_hba *phba)
{
int rc, i;
LPFC_MBOXQ_t *pmb;
/* Set up MSI-X multi-message vectors */
for (i = 0; i < LPFC_MSIX_VECTORS; i++)
phba->msix_entries[i].entry = i;
/* Configure MSI-X capability structure */
rc = pci_enable_msix(phba->pcidev, phba->msix_entries,
ARRAY_SIZE(phba->msix_entries));
if (rc) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0420 PCI enable MSI-X failed (%d)\n", rc);
goto msi_fail_out;
} else
for (i = 0; i < LPFC_MSIX_VECTORS; i++)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0477 MSI-X entry[%d]: vector=x%x "
"message=%d\n", i,
phba->msix_entries[i].vector,
phba->msix_entries[i].entry);
/*
* Assign MSI-X vectors to interrupt handlers
*/
/* vector-0 is associated to slow-path handler */
rc = request_irq(phba->msix_entries[0].vector, &lpfc_sp_intr_handler,
IRQF_SHARED, LPFC_SP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0421 MSI-X slow-path request_irq failed "
"(%d)\n", rc);
goto msi_fail_out;
}
/* vector-1 is associated to fast-path handler */
rc = request_irq(phba->msix_entries[1].vector, &lpfc_fp_intr_handler,
IRQF_SHARED, LPFC_FP_DRIVER_HANDLER_NAME, phba);
if (rc) {
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0429 MSI-X fast-path request_irq failed "
"(%d)\n", rc);
goto irq_fail_out;
}
/*
* Configure HBA MSI-X attention conditions to messages
*/
pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
if (!pmb) {
rc = -ENOMEM;
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0474 Unable to allocate memory for issuing "
"MBOX_CONFIG_MSI command\n");
goto mem_fail_out;
}
rc = lpfc_config_msi(phba, pmb);
if (rc)
goto mbx_fail_out;
rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
if (rc != MBX_SUCCESS) {
lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
"0351 Config MSI mailbox command failed, "
"mbxCmd x%x, mbxStatus x%x\n",
pmb->mb.mbxCommand, pmb->mb.mbxStatus);
goto mbx_fail_out;
}
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
return rc;
mbx_fail_out:
/* Free memory allocated for mailbox command */
mempool_free(pmb, phba->mbox_mem_pool);
mem_fail_out:
/* free the irq already requested */
free_irq(phba->msix_entries[1].vector, phba);
irq_fail_out:
/* free the irq already requested */
free_irq(phba->msix_entries[0].vector, phba);
msi_fail_out:
/* Unconfigure MSI-X capability structure */
pci_disable_msix(phba->pcidev);
return rc;
}
/**
* lpfc_disable_msix - Disable MSI-X interrupt mode
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to release the MSI-X vectors and then disable the
* MSI-X interrupt mode.
**/
static void
lpfc_disable_msix(struct lpfc_hba *phba)
{
int i;
/* Free up MSI-X multi-message vectors */
for (i = 0; i < LPFC_MSIX_VECTORS; i++)
free_irq(phba->msix_entries[i].vector, phba);
/* Disable MSI-X */
pci_disable_msix(phba->pcidev);
}
/**
* lpfc_enable_msi - Enable MSI interrupt mode
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable the MSI interrupt mode. The kernel
* function pci_enable_msi() is called to enable the MSI vector. The
* device driver is responsible for calling the request_irq() to register
* MSI vector with a interrupt the handler, which is done in this function.
*
* Return codes
* 0 - sucessful
* other values - error
*/
static int
lpfc_enable_msi(struct lpfc_hba *phba)
{
int rc;
rc = pci_enable_msi(phba->pcidev);
if (!rc)
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0462 PCI enable MSI mode success.\n");
else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0471 PCI enable MSI mode failed (%d)\n", rc);
return rc;
}
rc = request_irq(phba->pcidev->irq, lpfc_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (rc) {
pci_disable_msi(phba->pcidev);
lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
"0478 MSI request_irq failed (%d)\n", rc);
}
return rc;
}
/**
* lpfc_disable_msi - Disable MSI interrupt mode
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable the MSI interrupt mode. The driver
* calls free_irq() on MSI vector it has done request_irq() on before
* calling pci_disable_msi(). Failure to do so results in a BUG_ON() and
* a device will be left with MSI enabled and leaks its vector.
*/
static void
lpfc_disable_msi(struct lpfc_hba *phba)
{
free_irq(phba->pcidev->irq, phba);
pci_disable_msi(phba->pcidev);
return;
}
/**
* lpfc_log_intr_mode - Log the active interrupt mode
* @phba: pointer to lpfc hba data structure.
* @intr_mode: active interrupt mode adopted.
*
* This routine it invoked to log the currently used active interrupt mode
* to the device.
*/
static void
lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode)
{
switch (intr_mode) {
case 0:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0470 Enable INTx interrupt mode.\n");
break;
case 1:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0481 Enabled MSI interrupt mode.\n");
break;
case 2:
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0480 Enabled MSI-X interrupt mode.\n");
break;
default:
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0482 Illegal interrupt mode.\n");
break;
}
return;
}
static void
lpfc_stop_port(struct lpfc_hba *phba)
{
/* Clear all interrupt enable conditions */
writel(0, phba->HCregaddr);
readl(phba->HCregaddr); /* flush */
/* Clear all pending interrupts */
writel(0xffffffff, phba->HAregaddr);
readl(phba->HAregaddr); /* flush */
/* Reset some HBA SLI setup states */
lpfc_stop_phba_timers(phba);
phba->pport->work_port_events = 0;
return;
}
/**
* lpfc_enable_intr - Enable device interrupt
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to enable device interrupt and associate driver's
* interrupt handler(s) to interrupt vector(s). Depends on the interrupt
* mode configured to the driver, the driver will try to fallback from the
* configured interrupt mode to an interrupt mode which is supported by the
* platform, kernel, and device in the order of: MSI-X -> MSI -> IRQ.
*
* Return codes
* 0 - sucessful
* other values - error
**/
static uint32_t
lpfc_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode)
{
uint32_t intr_mode = LPFC_INTR_ERROR;
int retval;
if (cfg_mode == 2) {
/* Need to issue conf_port mbox cmd before conf_msi mbox cmd */
retval = lpfc_sli_config_port(phba, 3);
if (!retval) {
/* Now, try to enable MSI-X interrupt mode */
retval = lpfc_enable_msix(phba);
if (!retval) {
/* Indicate initialization to MSI-X mode */
phba->intr_type = MSIX;
intr_mode = 2;
}
}
}
/* Fallback to MSI if MSI-X initialization failed */
if (cfg_mode >= 1 && phba->intr_type == NONE) {
retval = lpfc_enable_msi(phba);
if (!retval) {
/* Indicate initialization to MSI mode */
phba->intr_type = MSI;
intr_mode = 1;
}
}
/* Fallback to INTx if both MSI-X/MSI initalization failed */
if (phba->intr_type == NONE) {
retval = request_irq(phba->pcidev->irq, lpfc_intr_handler,
IRQF_SHARED, LPFC_DRIVER_NAME, phba);
if (!retval) {
/* Indicate initialization to INTx mode */
phba->intr_type = INTx;
intr_mode = 0;
}
}
return intr_mode;
}
/**
* lpfc_disable_intr - Disable device interrupt
* @phba: pointer to lpfc hba data structure.
*
* This routine is invoked to disable device interrupt and disassociate the
* driver's interrupt handler(s) from interrupt vector(s). Depending on the
* interrupt mode, the driver will release the interrupt vector(s) for the
* message signaled interrupt.
**/
static void
lpfc_disable_intr(struct lpfc_hba *phba)
{
/* Disable the currently initialized interrupt mode */
if (phba->intr_type == MSIX)
lpfc_disable_msix(phba);
else if (phba->intr_type == MSI)
lpfc_disable_msi(phba);
else if (phba->intr_type == INTx)
free_irq(phba->pcidev->irq, phba);
/* Reset interrupt management states */
phba->intr_type = NONE;
phba->sli.slistat.sli_intr = 0;
return;
}
/**
* lpfc_pci_probe_one - lpfc PCI probe func to register device to PCI subsystem
* @pdev: pointer to PCI device
* @pid: pointer to PCI device identifier
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA is presented in PCI bus, the kernel PCI subsystem looks at
* PCI device-specific information of the device and driver to see if the
* driver state that it can support this kind of device. If the match is
* successful, the driver core invokes this routine. If this routine
* determines it can claim the HBA, it does all the initialization that it
* needs to do to handle the HBA properly.
*
* Return code
* 0 - driver can claim the device
* negative value - driver can not claim the device
**/
static int __devinit
lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
{
struct lpfc_vport *vport = NULL;
struct lpfc_hba *phba;
struct lpfc_sli *psli;
struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL;
struct Scsi_Host *shost = NULL;
void *ptr;
unsigned long bar0map_len, bar2map_len;
int error = -ENODEV, retval;
int i, hbq_count;
uint16_t iotag;
uint32_t cfg_mode, intr_mode;
int bars = pci_select_bars(pdev, IORESOURCE_MEM);
struct lpfc_adapter_event_header adapter_event;
if (pci_enable_device_mem(pdev))
goto out;
if (pci_request_selected_regions(pdev, bars, LPFC_DRIVER_NAME))
goto out_disable_device;
phba = kzalloc(sizeof (struct lpfc_hba), GFP_KERNEL);
if (!phba)
goto out_release_regions;
atomic_set(&phba->fast_event_count, 0);
spin_lock_init(&phba->hbalock);
/* Initialize ndlp management spinlock */
spin_lock_init(&phba->ndlp_lock);
phba->pcidev = pdev;
/* Assign an unused board number */
if ((phba->brd_no = lpfc_get_instance()) < 0)
goto out_free_phba;
INIT_LIST_HEAD(&phba->port_list);
init_waitqueue_head(&phba->wait_4_mlo_m_q);
/*
* Get all the module params for configuring this host and then
* establish the host.
*/
lpfc_get_cfgparam(phba);
phba->max_vpi = LPFC_MAX_VPI;
/* Initialize timers used by driver */
init_timer(&phba->hb_tmofunc);
phba->hb_tmofunc.function = lpfc_hb_timeout;
phba->hb_tmofunc.data = (unsigned long)phba;
psli = &phba->sli;
init_timer(&psli->mbox_tmo);
psli->mbox_tmo.function = lpfc_mbox_timeout;
psli->mbox_tmo.data = (unsigned long) phba;
init_timer(&phba->fcp_poll_timer);
phba->fcp_poll_timer.function = lpfc_poll_timeout;
phba->fcp_poll_timer.data = (unsigned long) phba;
init_timer(&phba->fabric_block_timer);
phba->fabric_block_timer.function = lpfc_fabric_block_timeout;
phba->fabric_block_timer.data = (unsigned long) phba;
init_timer(&phba->eratt_poll);
phba->eratt_poll.function = lpfc_poll_eratt;
phba->eratt_poll.data = (unsigned long) phba;
pci_set_master(pdev);
pci_save_state(pdev);
pci_try_set_mwi(pdev);
if (pci_set_dma_mask(phba->pcidev, DMA_BIT_MASK(64)) != 0)
if (pci_set_dma_mask(phba->pcidev, DMA_BIT_MASK(32)) != 0)
goto out_idr_remove;
/*
* Get the bus address of Bar0 and Bar2 and the number of bytes
* required by each mapping.
*/
phba->pci_bar0_map = pci_resource_start(phba->pcidev, 0);
bar0map_len = pci_resource_len(phba->pcidev, 0);
phba->pci_bar2_map = pci_resource_start(phba->pcidev, 2);
bar2map_len = pci_resource_len(phba->pcidev, 2);
/* Map HBA SLIM to a kernel virtual address. */
phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len);
if (!phba->slim_memmap_p) {
error = -ENODEV;
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for SLIM memory.\n");
goto out_idr_remove;
}
/* Map HBA Control Registers to a kernel virtual address. */
phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len);
if (!phba->ctrl_regs_memmap_p) {
error = -ENODEV;
dev_printk(KERN_ERR, &pdev->dev,
"ioremap failed for HBA control registers.\n");
goto out_iounmap_slim;
}
/* Allocate memory for SLI-2 structures */
phba->slim2p.virt = dma_alloc_coherent(&phba->pcidev->dev,
SLI2_SLIM_SIZE,
&phba->slim2p.phys,
GFP_KERNEL);
if (!phba->slim2p.virt)
goto out_iounmap;
memset(phba->slim2p.virt, 0, SLI2_SLIM_SIZE);
phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx);
phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb));
phba->IOCBs = (phba->slim2p.virt +
offsetof(struct lpfc_sli2_slim, IOCBs));
phba->hbqslimp.virt = dma_alloc_coherent(&phba->pcidev->dev,
lpfc_sli_hbq_size(),
&phba->hbqslimp.phys,
GFP_KERNEL);
if (!phba->hbqslimp.virt)
goto out_free_slim;
hbq_count = lpfc_sli_hbq_count();
ptr = phba->hbqslimp.virt;
for (i = 0; i < hbq_count; ++i) {
phba->hbqs[i].hbq_virt = ptr;
INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list);
ptr += (lpfc_hbq_defs[i]->entry_count *
sizeof(struct lpfc_hbq_entry));
}
phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc;
phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free;
memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size());
INIT_LIST_HEAD(&phba->hbqbuf_in_list);
/* Initialize the SLI Layer to run with lpfc HBAs. */
lpfc_sli_setup(phba);
lpfc_sli_queue_setup(phba);
retval = lpfc_mem_alloc(phba);
if (retval) {
error = retval;
goto out_free_hbqslimp;
}
/* Initialize and populate the iocb list per host. */
INIT_LIST_HEAD(&phba->lpfc_iocb_list);
for (i = 0; i < LPFC_IOCB_LIST_CNT; i++) {
iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL);
if (iocbq_entry == NULL) {
printk(KERN_ERR "%s: only allocated %d iocbs of "
"expected %d count. Unloading driver.\n",
__func__, i, LPFC_IOCB_LIST_CNT);
error = -ENOMEM;
goto out_free_iocbq;
}
iotag = lpfc_sli_next_iotag(phba, iocbq_entry);
if (iotag == 0) {
kfree (iocbq_entry);
printk(KERN_ERR "%s: failed to allocate IOTAG. "
"Unloading driver.\n",
__func__);
error = -ENOMEM;
goto out_free_iocbq;
}
spin_lock_irq(&phba->hbalock);
list_add(&iocbq_entry->list, &phba->lpfc_iocb_list);
phba->total_iocbq_bufs++;
spin_unlock_irq(&phba->hbalock);
}
/* Initialize HBA structure */
phba->fc_edtov = FF_DEF_EDTOV;
phba->fc_ratov = FF_DEF_RATOV;
phba->fc_altov = FF_DEF_ALTOV;
phba->fc_arbtov = FF_DEF_ARBTOV;
INIT_LIST_HEAD(&phba->work_list);
phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT);
phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4));
/* Initialize the wait queue head for the kernel thread */
init_waitqueue_head(&phba->work_waitq);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
goto out_free_iocbq;
}
/* Initialize the list of scsi buffers used by driver for scsi IO. */
spin_lock_init(&phba->scsi_buf_list_lock);
INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list);
/* Initialize list of fabric iocbs */
INIT_LIST_HEAD(&phba->fabric_iocb_list);
/* Initialize list to save ELS buffers */
INIT_LIST_HEAD(&phba->elsbuf);
vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev);
if (!vport)
goto out_kthread_stop;
shost = lpfc_shost_from_vport(vport);
phba->pport = vport;
lpfc_debugfs_initialize(vport);
pci_set_drvdata(pdev, shost);
phba->MBslimaddr = phba->slim_memmap_p;
phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET;
phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET;
phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET;
phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET;
/* Configure sysfs attributes */
if (lpfc_alloc_sysfs_attr(vport)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1476 Failed to allocate sysfs attr\n");
error = -ENOMEM;
goto out_destroy_port;
}
cfg_mode = phba->cfg_use_msi;
while (true) {
/* Configure and enable interrupt */
intr_mode = lpfc_enable_intr(phba, cfg_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0426 Failed to enable interrupt.\n");
goto out_free_sysfs_attr;
}
/* HBA SLI setup */
if (lpfc_sli_hba_setup(phba)) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"1477 Failed to set up hba\n");
error = -ENODEV;
goto out_remove_device;
}
/* Wait 50ms for the interrupts of previous mailbox commands */
msleep(50);
/* Check active interrupts received */
if (phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) {
/* Log the current active interrupt mode */
phba->intr_mode = intr_mode;
lpfc_log_intr_mode(phba, intr_mode);
break;
} else {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0451 Configure interrupt mode (%d) "
"failed active interrupt test.\n",
intr_mode);
if (intr_mode == 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0479 Failed to enable "
"interrupt.\n");
error = -ENODEV;
goto out_remove_device;
}
/* Stop HBA SLI setups */
lpfc_stop_port(phba);
/* Disable the current interrupt mode */
lpfc_disable_intr(phba);
/* Try next level of interrupt mode */
cfg_mode = --intr_mode;
}
}
/*
* hba setup may have changed the hba_queue_depth so we need to adjust
* the value of can_queue.
*/
shost->can_queue = phba->cfg_hba_queue_depth - 10;
if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
if (lpfc_prot_mask && lpfc_prot_guard) {
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"1478 Registering BlockGuard with the "
"SCSI layer\n");
scsi_host_set_prot(shost, lpfc_prot_mask);
scsi_host_set_guard(shost, lpfc_prot_guard);
}
}
if (!_dump_buf_data) {
int pagecnt = 10;
while (pagecnt) {
spin_lock_init(&_dump_buf_lock);
_dump_buf_data =
(char *) __get_free_pages(GFP_KERNEL, pagecnt);
if (_dump_buf_data) {
printk(KERN_ERR "BLKGRD allocated %d pages for "
"_dump_buf_data at 0x%p\n",
(1 << pagecnt), _dump_buf_data);
_dump_buf_data_order = pagecnt;
memset(_dump_buf_data, 0, ((1 << PAGE_SHIFT)
<< pagecnt));
break;
} else {
--pagecnt;
}
}
if (!_dump_buf_data_order)
printk(KERN_ERR "BLKGRD ERROR unable to allocate "
"memory for hexdump\n");
} else {
printk(KERN_ERR "BLKGRD already allocated _dump_buf_data=0x%p"
"\n", _dump_buf_data);
}
if (!_dump_buf_dif) {
int pagecnt = 10;
while (pagecnt) {
_dump_buf_dif =
(char *) __get_free_pages(GFP_KERNEL, pagecnt);
if (_dump_buf_dif) {
printk(KERN_ERR "BLKGRD allocated %d pages for "
"_dump_buf_dif at 0x%p\n",
(1 << pagecnt), _dump_buf_dif);
_dump_buf_dif_order = pagecnt;
memset(_dump_buf_dif, 0, ((1 << PAGE_SHIFT)
<< pagecnt));
break;
} else {
--pagecnt;
}
}
if (!_dump_buf_dif_order)
printk(KERN_ERR "BLKGRD ERROR unable to allocate "
"memory for hexdump\n");
} else {
printk(KERN_ERR "BLKGRD already allocated _dump_buf_dif=0x%p\n",
_dump_buf_dif);
}
lpfc_host_attrib_init(shost);
if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
spin_lock_irq(shost->host_lock);
lpfc_poll_start_timer(phba);
spin_unlock_irq(shost->host_lock);
}
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0428 Perform SCSI scan\n");
/* Send board arrival event to upper layer */
adapter_event.event_type = FC_REG_ADAPTER_EVENT;
adapter_event.subcategory = LPFC_EVENT_ARRIVAL;
fc_host_post_vendor_event(shost, fc_get_event_number(),
sizeof(adapter_event),
(char *) &adapter_event,
LPFC_NL_VENDOR_ID);
return 0;
out_remove_device:
spin_lock_irq(shost->host_lock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(shost->host_lock);
lpfc_stop_phba_timers(phba);
phba->pport->work_port_events = 0;
lpfc_disable_intr(phba);
lpfc_sli_hba_down(phba);
lpfc_sli_brdrestart(phba);
out_free_sysfs_attr:
lpfc_free_sysfs_attr(vport);
out_destroy_port:
destroy_port(vport);
out_kthread_stop:
kthread_stop(phba->worker_thread);
out_free_iocbq:
list_for_each_entry_safe(iocbq_entry, iocbq_next,
&phba->lpfc_iocb_list, list) {
kfree(iocbq_entry);
phba->total_iocbq_bufs--;
}
lpfc_mem_free(phba);
out_free_hbqslimp:
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
out_free_slim:
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
out_iounmap:
iounmap(phba->ctrl_regs_memmap_p);
out_iounmap_slim:
iounmap(phba->slim_memmap_p);
out_idr_remove:
idr_remove(&lpfc_hba_index, phba->brd_no);
out_free_phba:
kfree(phba);
out_release_regions:
pci_release_selected_regions(pdev, bars);
out_disable_device:
pci_disable_device(pdev);
out:
pci_set_drvdata(pdev, NULL);
if (shost)
scsi_host_put(shost);
return error;
}
/**
* lpfc_pci_remove_one - lpfc PCI func to unregister device from PCI subsystem
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem. When an
* Emulex HBA is removed from PCI bus, it performs all the necessary cleanup
* for the HBA device to be removed from the PCI subsystem properly.
**/
static void __devexit
lpfc_pci_remove_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
struct lpfc_vport **vports;
struct lpfc_hba *phba = vport->phba;
int i;
int bars = pci_select_bars(pdev, IORESOURCE_MEM);
spin_lock_irq(&phba->hbalock);
vport->load_flag |= FC_UNLOADING;
spin_unlock_irq(&phba->hbalock);
lpfc_free_sysfs_attr(vport);
/* Release all the vports against this physical port */
vports = lpfc_create_vport_work_array(phba);
if (vports != NULL)
for (i = 1; i <= phba->max_vpi && vports[i] != NULL; i++)
fc_vport_terminate(vports[i]->fc_vport);
lpfc_destroy_vport_work_array(phba, vports);
/* Remove FC host and then SCSI host with the physical port */
fc_remove_host(shost);
scsi_remove_host(shost);
lpfc_cleanup(vport);
/*
* Bring down the SLI Layer. This step disable all interrupts,
* clears the rings, discards all mailbox commands, and resets
* the HBA.
*/
/* HBA interrupt will be diabled after this call */
lpfc_sli_hba_down(phba);
/* Stop kthread signal shall trigger work_done one more time */
kthread_stop(phba->worker_thread);
/* Final cleanup of txcmplq and reset the HBA */
lpfc_sli_brdrestart(phba);
lpfc_stop_phba_timers(phba);
spin_lock_irq(&phba->hbalock);
list_del_init(&vport->listentry);
spin_unlock_irq(&phba->hbalock);
lpfc_debugfs_terminate(vport);
/* Disable interrupt */
lpfc_disable_intr(phba);
pci_set_drvdata(pdev, NULL);
scsi_host_put(shost);
/*
* Call scsi_free before mem_free since scsi bufs are released to their
* corresponding pools here.
*/
lpfc_scsi_free(phba);
lpfc_mem_free(phba);
dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(),
phba->hbqslimp.virt, phba->hbqslimp.phys);
/* Free resources associated with SLI2 interface */
dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE,
phba->slim2p.virt, phba->slim2p.phys);
/* unmap adapter SLIM and Control Registers */
iounmap(phba->ctrl_regs_memmap_p);
iounmap(phba->slim_memmap_p);
idr_remove(&lpfc_hba_index, phba->brd_no);
kfree(phba);
pci_release_selected_regions(pdev, bars);
pci_disable_device(pdev);
}
/**
* lpfc_pci_suspend_one - lpfc PCI func to suspend device for power management
* @pdev: pointer to PCI device
* @msg: power management message
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it quiesces the
* device by stopping the driver's worker thread for the device, turning off
* device's interrupt and DMA, and bring the device offline. Note that as the
* driver implements the minimum PM requirements to a power-aware driver's PM
* support for suspend/resume -- all the possible PM messages (SUSPEND,
* HIBERNATE, FREEZE) to the suspend() method call will be treated as SUSPEND
* and the driver will fully reinitialize its device during resume() method
* call, the driver will set device to PCI_D3hot state in PCI config space
* instead of setting it according to the @msg provided by the PM.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_suspend_one(struct pci_dev *pdev, pm_message_t msg)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0473 PCI device Power Management suspend.\n");
/* Bring down the device */
lpfc_offline_prep(phba);
lpfc_offline(phba);
kthread_stop(phba->worker_thread);
/* Disable interrupt from device */
lpfc_disable_intr(phba);
/* Save device state to PCI config space */
pci_save_state(pdev);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
/**
* lpfc_pci_resume_one - lpfc PCI func to resume device for power management
* @pdev: pointer to PCI device
*
* This routine is to be registered to the kernel's PCI subsystem to support
* system Power Management (PM). When PM invokes this method, it restores
* the device's PCI config space state and fully reinitializes the device
* and brings it online. Note that as the driver implements the minimum PM
* requirements to a power-aware driver's PM for suspend/resume -- all
* the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend()
* method call will be treated as SUSPEND and the driver will fully
* reinitialize its device during resume() method call, the device will be
* set to PCI_D0 directly in PCI config space before restoring the state.
*
* Return code
* 0 - driver suspended the device
* Error otherwise
**/
static int
lpfc_pci_resume_one(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
uint32_t intr_mode;
int error;
lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
"0452 PCI device Power Management resume.\n");
/* Restore device state from PCI config space */
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
/* Startup the kernel thread for this host adapter. */
phba->worker_thread = kthread_run(lpfc_do_work, phba,
"lpfc_worker_%d", phba->brd_no);
if (IS_ERR(phba->worker_thread)) {
error = PTR_ERR(phba->worker_thread);
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0434 PM resume failed to start worker "
"thread: error=x%x.\n", error);
return error;
}
/* Configure and enable interrupt */
intr_mode = lpfc_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0430 PM resume Failed to enable interrupt\n");
return -EIO;
} else
phba->intr_mode = intr_mode;
/* Restart HBA and bring it online */
lpfc_sli_brdrestart(phba);
lpfc_online(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return 0;
}
/**
* lpfc_io_error_detected - Driver method for handling PCI I/O error detected
* @pdev: pointer to PCI device.
* @state: the current PCI connection state.
*
* This routine is registered to the PCI subsystem for error handling. This
* function is called by the PCI subsystem after a PCI bus error affecting
* this device has been detected. When this function is invoked, it will
* need to stop all the I/Os and interrupt(s) to the device. Once that is
* done, it will return PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to
* perform proper recovery as desired.
*
* Return codes
* PCI_ERS_RESULT_NEED_RESET - need to reset before recovery
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
**/
static pci_ers_result_t lpfc_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
struct lpfc_sli_ring *pring;
if (state == pci_channel_io_perm_failure) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0472 PCI channel I/O permanent failure\n");
/* Block all SCSI devices' I/Os on the host */
lpfc_scsi_dev_block(phba);
/* Clean up all driver's outstanding SCSI I/Os */
lpfc_sli_flush_fcp_rings(phba);
return PCI_ERS_RESULT_DISCONNECT;
}
pci_disable_device(pdev);
/*
* There may be I/Os dropped by the firmware.
* Error iocb (I/O) on txcmplq and let the SCSI layer
* retry it after re-establishing link.
*/
pring = &psli->ring[psli->fcp_ring];
lpfc_sli_abort_iocb_ring(phba, pring);
/* Disable interrupt */
lpfc_disable_intr(phba);
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* lpfc_io_slot_reset - Restart a PCI device from scratch
* @pdev: pointer to PCI device.
*
* This routine is registered to the PCI subsystem for error handling. This is
* called after PCI bus has been reset to restart the PCI card from scratch,
* as if from a cold-boot. During the PCI subsystem error recovery, after the
* driver returns PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform
* proper error recovery and then call this routine before calling the .resume
* method to recover the device. This function will initialize the HBA device,
* enable the interrupt, but it will just put the HBA to offline state without
* passing any I/O traffic.
*
* Return codes
* PCI_ERS_RESULT_RECOVERED - the device has been recovered
* PCI_ERS_RESULT_DISCONNECT - device could not be recovered
*/
static pci_ers_result_t lpfc_io_slot_reset(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
struct lpfc_sli *psli = &phba->sli;
uint32_t intr_mode;
dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n");
if (pci_enable_device_mem(pdev)) {
printk(KERN_ERR "lpfc: Cannot re-enable "
"PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_restore_state(pdev);
if (pdev->is_busmaster)
pci_set_master(pdev);
spin_lock_irq(&phba->hbalock);
psli->sli_flag &= ~LPFC_SLI2_ACTIVE;
spin_unlock_irq(&phba->hbalock);
/* Configure and enable interrupt */
intr_mode = lpfc_enable_intr(phba, phba->intr_mode);
if (intr_mode == LPFC_INTR_ERROR) {
lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
"0427 Cannot re-enable interrupt after "
"slot reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
} else
phba->intr_mode = intr_mode;
/* Take device offline; this will perform cleanup */
lpfc_offline(phba);
lpfc_sli_brdrestart(phba);
/* Log the current active interrupt mode */
lpfc_log_intr_mode(phba, phba->intr_mode);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* lpfc_io_resume - Resume PCI I/O operation
* @pdev: pointer to PCI device
*
* This routine is registered to the PCI subsystem for error handling. It is
* called when kernel error recovery tells the lpfc driver that it is ok to
* resume normal PCI operation after PCI bus error recovery. After this call,
* traffic can start to flow from this device again.
*/
static void lpfc_io_resume(struct pci_dev *pdev)
{
struct Scsi_Host *shost = pci_get_drvdata(pdev);
struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba;
lpfc_online(phba);
}
static struct pci_device_id lpfc_id_table[] = {
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_VIPER,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_FIREFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_THOR,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_PEGASUS,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_CENTAUR,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_DRAGONFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SUPERFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_RFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_PFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_NEPTUNE,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_NEPTUNE_SCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_NEPTUNE_DCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_HELIOS,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_HELIOS_SCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_HELIOS_DCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_BMID,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_BSMB,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_ZEPHYR,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_HORNET,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_ZEPHYR_SCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_ZEPHYR_DCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_ZMID,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_ZSMB,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_TFLY,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_LP101,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_LP10000S,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_LP11000S,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_LPE11000S,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT_MID,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT_SMB,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT_DCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT_SCSP,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_SAT_S,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_PROTEUS_VF,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_PROTEUS_PF,
PCI_ANY_ID, PCI_ANY_ID, },
{PCI_VENDOR_ID_EMULEX, PCI_DEVICE_ID_PROTEUS_S,
PCI_ANY_ID, PCI_ANY_ID, },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, lpfc_id_table);
static struct pci_error_handlers lpfc_err_handler = {
.error_detected = lpfc_io_error_detected,
.slot_reset = lpfc_io_slot_reset,
.resume = lpfc_io_resume,
};
static struct pci_driver lpfc_driver = {
.name = LPFC_DRIVER_NAME,
.id_table = lpfc_id_table,
.probe = lpfc_pci_probe_one,
.remove = __devexit_p(lpfc_pci_remove_one),
.suspend = lpfc_pci_suspend_one,
.resume = lpfc_pci_resume_one,
.err_handler = &lpfc_err_handler,
};
/**
* lpfc_init - lpfc module initialization routine
*
* This routine is to be invoked when the lpfc module is loaded into the
* kernel. The special kernel macro module_init() is used to indicate the
* role of this routine to the kernel as lpfc module entry point.
*
* Return codes
* 0 - successful
* -ENOMEM - FC attach transport failed
* all others - failed
*/
static int __init
lpfc_init(void)
{
int error = 0;
printk(LPFC_MODULE_DESC "\n");
printk(LPFC_COPYRIGHT "\n");
if (lpfc_enable_npiv) {
lpfc_transport_functions.vport_create = lpfc_vport_create;
lpfc_transport_functions.vport_delete = lpfc_vport_delete;
}
lpfc_transport_template =
fc_attach_transport(&lpfc_transport_functions);
if (lpfc_transport_template == NULL)
return -ENOMEM;
if (lpfc_enable_npiv) {
lpfc_vport_transport_template =
fc_attach_transport(&lpfc_vport_transport_functions);
if (lpfc_vport_transport_template == NULL) {
fc_release_transport(lpfc_transport_template);
return -ENOMEM;
}
}
error = pci_register_driver(&lpfc_driver);
if (error) {
fc_release_transport(lpfc_transport_template);
if (lpfc_enable_npiv)
fc_release_transport(lpfc_vport_transport_template);
}
return error;
}
/**
* lpfc_exit - lpfc module removal routine
*
* This routine is invoked when the lpfc module is removed from the kernel.
* The special kernel macro module_exit() is used to indicate the role of
* this routine to the kernel as lpfc module exit point.
*/
static void __exit
lpfc_exit(void)
{
pci_unregister_driver(&lpfc_driver);
fc_release_transport(lpfc_transport_template);
if (lpfc_enable_npiv)
fc_release_transport(lpfc_vport_transport_template);
if (_dump_buf_data) {
printk(KERN_ERR "BLKGRD freeing %lu pages for _dump_buf_data "
"at 0x%p\n",
(1L << _dump_buf_data_order), _dump_buf_data);
free_pages((unsigned long)_dump_buf_data, _dump_buf_data_order);
}
if (_dump_buf_dif) {
printk(KERN_ERR "BLKGRD freeing %lu pages for _dump_buf_dif "
"at 0x%p\n",
(1L << _dump_buf_dif_order), _dump_buf_dif);
free_pages((unsigned long)_dump_buf_dif, _dump_buf_dif_order);
}
}
module_init(lpfc_init);
module_exit(lpfc_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION(LPFC_MODULE_DESC);
MODULE_AUTHOR("Emulex Corporation - tech.support@emulex.com");
MODULE_VERSION("0:" LPFC_DRIVER_VERSION);