linux/drivers/block/umem.c
Christoph Hellwig 309dca309f block: store a block_device pointer in struct bio
Replace the gendisk pointer in struct bio with a pointer to the newly
improved struct block device.  From that the gendisk can be trivially
accessed with an extra indirection, but it also allows to directly
look up all information related to partition remapping.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-01-24 18:17:20 -07:00

1128 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
*
* (C) 2001 San Mehat <nettwerk@valinux.com>
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
*
* This driver for the Micro Memory PCI Memory Module with Battery Backup
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
*
* This driver provides a standard block device interface for Micro Memory(tm)
* PCI based RAM boards.
* 10/05/01: Phap Nguyen - Rebuilt the driver
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
* - use stand disk partitioning (so fdisk works).
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
* - incorporate into main kernel
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
* - use spin_lock_bh instead of _irq
* - Never block on make_request. queue
* bh's instead.
* - unregister umem from devfs at mod unload
* - Change version to 2.3
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
* 15May2002:NeilBrown - convert to bio for 2.5
* 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
* - a sequence of writes that cover the card, and
* - set initialised bit then.
*/
#undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/gfp.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include "umem.h"
#include <linux/uaccess.h>
#include <asm/io.h>
#define MM_MAXCARDS 4
#define MM_RAHEAD 2 /* two sectors */
#define MM_BLKSIZE 1024 /* 1k blocks */
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
/*
* Version Information
*/
#define DRIVER_NAME "umem"
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
static int debug;
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug bitmask");
static int pci_read_cmd = 0x0C; /* Read Multiple */
module_param(pci_read_cmd, int, 0);
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
module_param(pci_write_cmd, int, 0);
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
static int pci_cmds;
static int major_nr;
#include <linux/blkdev.h>
#include <linux/blkpg.h>
struct cardinfo {
struct pci_dev *dev;
unsigned char __iomem *csr_remap;
unsigned int mm_size; /* size in kbytes */
unsigned int init_size; /* initial segment, in sectors,
* that we know to
* have been written
*/
struct bio *bio, *currentbio, **biotail;
struct bvec_iter current_iter;
struct request_queue *queue;
struct mm_page {
dma_addr_t page_dma;
struct mm_dma_desc *desc;
int cnt, headcnt;
struct bio *bio, **biotail;
struct bvec_iter iter;
} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
int Active, Ready;
struct tasklet_struct tasklet;
unsigned int dma_status;
struct {
int good;
int warned;
unsigned long last_change;
} battery[2];
spinlock_t lock;
int check_batteries;
int flags;
};
static struct cardinfo cards[MM_MAXCARDS];
static struct timer_list battery_timer;
static int num_cards;
static struct gendisk *mm_gendisk[MM_MAXCARDS];
static void check_batteries(struct cardinfo *card);
static int get_userbit(struct cardinfo *card, int bit)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
return led & bit;
}
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state)
led |= bit;
else
led &= ~bit;
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
return 0;
}
/*
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
*/
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state == LED_FLIP)
led ^= (1<<shift);
else {
led &= ~(0x03 << shift);
led |= (state << shift);
}
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
}
#ifdef MM_DIAG
static void dump_regs(struct cardinfo *card)
{
unsigned char *p;
int i, i1;
p = card->csr_remap;
for (i = 0; i < 8; i++) {
printk(KERN_DEBUG "%p ", p);
for (i1 = 0; i1 < 16; i1++)
printk("%02x ", *p++);
printk("\n");
}
}
#endif
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
if (dmastat & DMASCR_ANY_ERR)
printk(KERN_CONT "ANY_ERR ");
if (dmastat & DMASCR_MBE_ERR)
printk(KERN_CONT "MBE_ERR ");
if (dmastat & DMASCR_PARITY_ERR_REP)
printk(KERN_CONT "PARITY_ERR_REP ");
if (dmastat & DMASCR_PARITY_ERR_DET)
printk(KERN_CONT "PARITY_ERR_DET ");
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
printk(KERN_CONT "SYSTEM_ERR_SIG ");
if (dmastat & DMASCR_TARGET_ABT)
printk(KERN_CONT "TARGET_ABT ");
if (dmastat & DMASCR_MASTER_ABT)
printk(KERN_CONT "MASTER_ABT ");
if (dmastat & DMASCR_CHAIN_COMPLETE)
printk(KERN_CONT "CHAIN_COMPLETE ");
if (dmastat & DMASCR_DMA_COMPLETE)
printk(KERN_CONT "DMA_COMPLETE ");
printk("\n");
}
/*
* Theory of request handling
*
* Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
* We have two pages of mm_dma_desc, holding about 64 descriptors
* each. These are allocated at init time.
* One page is "Ready" and is either full, or can have request added.
* The other page might be "Active", which DMA is happening on it.
*
* Whenever IO on the active page completes, the Ready page is activated
* and the ex-Active page is clean out and made Ready.
* Otherwise the Ready page is only activated when it becomes full.
*
* If a request arrives while both pages a full, it is queued, and b_rdev is
* overloaded to record whether it was a read or a write.
*
* The interrupt handler only polls the device to clear the interrupt.
* The processing of the result is done in a tasklet.
*/
static void mm_start_io(struct cardinfo *card)
{
/* we have the lock, we know there is
* no IO active, and we know that card->Active
* is set
*/
struct mm_dma_desc *desc;
struct mm_page *page;
int offset;
/* make the last descriptor end the chain */
page = &card->mm_pages[card->Active];
pr_debug("start_io: %d %d->%d\n",
card->Active, page->headcnt, page->cnt - 1);
desc = &page->desc[page->cnt-1];
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
desc->sem_control_bits = desc->control_bits;
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_ON);
desc = &page->desc[page->headcnt];
writel(0, card->csr_remap + DMA_PCI_ADDR);
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
offset = ((char *)desc) - ((char *)page->desc);
writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
card->csr_remap + DMA_DESCRIPTOR_ADDR);
/* Force the value to u64 before shifting otherwise >> 32 is undefined C
* and on some ports will do nothing ! */
writel(cpu_to_le32(((u64)page->page_dma)>>32),
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
/* Go, go, go */
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
card->csr_remap + DMA_STATUS_CTRL);
}
static int add_bio(struct cardinfo *card);
static void activate(struct cardinfo *card)
{
/* if No page is Active, and Ready is
* not empty, then switch Ready page
* to active and start IO.
* Then add any bh's that are available to Ready
*/
do {
while (add_bio(card))
;
if (card->Active == -1 &&
card->mm_pages[card->Ready].cnt > 0) {
card->Active = card->Ready;
card->Ready = 1-card->Ready;
mm_start_io(card);
}
} while (card->Active == -1 && add_bio(card));
}
static inline void reset_page(struct mm_page *page)
{
page->cnt = 0;
page->headcnt = 0;
page->bio = NULL;
page->biotail = &page->bio;
}
/*
* If there is room on Ready page, take
* one bh off list and add it.
* return 1 if there was room, else 0.
*/
static int add_bio(struct cardinfo *card)
{
struct mm_page *p;
struct mm_dma_desc *desc;
dma_addr_t dma_handle;
int offset;
struct bio *bio;
struct bio_vec vec;
bio = card->currentbio;
if (!bio && card->bio) {
card->currentbio = card->bio;
card->current_iter = card->bio->bi_iter;
card->bio = card->bio->bi_next;
if (card->bio == NULL)
card->biotail = &card->bio;
card->currentbio->bi_next = NULL;
return 1;
}
if (!bio)
return 0;
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
return 0;
vec = bio_iter_iovec(bio, card->current_iter);
dma_handle = dma_map_page(&card->dev->dev,
vec.bv_page,
vec.bv_offset,
vec.bv_len,
bio_op(bio) == REQ_OP_READ ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
p = &card->mm_pages[card->Ready];
desc = &p->desc[p->cnt];
p->cnt++;
if (p->bio == NULL)
p->iter = card->current_iter;
if ((p->biotail) != &bio->bi_next) {
*(p->biotail) = bio;
p->biotail = &(bio->bi_next);
bio->bi_next = NULL;
}
desc->data_dma_handle = dma_handle;
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
desc->transfer_size = cpu_to_le32(vec.bv_len);
offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
desc->zero1 = desc->zero2 = 0;
offset = (((char *)(desc+1)) - ((char *)p->desc));
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
DMASCR_PARITY_INT_EN|
DMASCR_CHAIN_EN |
DMASCR_SEM_EN |
pci_cmds);
if (bio_op(bio) == REQ_OP_WRITE)
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
desc->sem_control_bits = desc->control_bits;
bio_advance_iter(bio, &card->current_iter, vec.bv_len);
if (!card->current_iter.bi_size)
card->currentbio = NULL;
return 1;
}
static void process_page(unsigned long data)
{
/* check if any of the requests in the page are DMA_COMPLETE,
* and deal with them appropriately.
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
* dma must have hit an error on that descriptor, so use dma_status
* instead and assume that all following descriptors must be re-tried.
*/
struct mm_page *page;
struct bio *return_bio = NULL;
struct cardinfo *card = (struct cardinfo *)data;
unsigned int dma_status = card->dma_status;
spin_lock(&card->lock);
if (card->Active < 0)
goto out_unlock;
page = &card->mm_pages[card->Active];
while (page->headcnt < page->cnt) {
struct bio *bio = page->bio;
struct mm_dma_desc *desc = &page->desc[page->headcnt];
int control = le32_to_cpu(desc->sem_control_bits);
int last = 0;
struct bio_vec vec;
if (!(control & DMASCR_DMA_COMPLETE)) {
control = dma_status;
last = 1;
}
page->headcnt++;
vec = bio_iter_iovec(bio, page->iter);
bio_advance_iter(bio, &page->iter, vec.bv_len);
if (!page->iter.bi_size) {
page->bio = bio->bi_next;
if (page->bio)
page->iter = page->bio->bi_iter;
}
dma_unmap_page(&card->dev->dev, desc->data_dma_handle,
vec.bv_len,
(control & DMASCR_TRANSFER_READ) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (control & DMASCR_HARD_ERROR) {
/* error */
bio->bi_status = BLK_STS_IOERR;
dev_printk(KERN_WARNING, &card->dev->dev,
"I/O error on sector %d/%d\n",
le32_to_cpu(desc->local_addr)>>9,
le32_to_cpu(desc->transfer_size));
dump_dmastat(card, control);
} else if (op_is_write(bio_op(bio)) &&
le32_to_cpu(desc->local_addr) >> 9 ==
card->init_size) {
card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
if (card->init_size >> 1 >= card->mm_size) {
dev_printk(KERN_INFO, &card->dev->dev,
"memory now initialised\n");
set_userbit(card, MEMORY_INITIALIZED, 1);
}
}
if (bio != page->bio) {
bio->bi_next = return_bio;
return_bio = bio;
}
if (last)
break;
}
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_OFF);
if (card->check_batteries) {
card->check_batteries = 0;
check_batteries(card);
}
if (page->headcnt >= page->cnt) {
reset_page(page);
card->Active = -1;
activate(card);
} else {
/* haven't finished with this one yet */
pr_debug("do some more\n");
mm_start_io(card);
}
out_unlock:
spin_unlock(&card->lock);
while (return_bio) {
struct bio *bio = return_bio;
return_bio = bio->bi_next;
bio->bi_next = NULL;
bio_endio(bio);
}
}
static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
struct cardinfo *card = cb->data;
spin_lock_irq(&card->lock);
activate(card);
spin_unlock_irq(&card->lock);
kfree(cb);
}
static int mm_check_plugged(struct cardinfo *card)
{
return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
}
static blk_qc_t mm_submit_bio(struct bio *bio)
{
struct cardinfo *card = bio->bi_bdev->bd_disk->private_data;
pr_debug("mm_make_request %llu %u\n",
(unsigned long long)bio->bi_iter.bi_sector,
bio->bi_iter.bi_size);
blk_queue_split(&bio);
spin_lock_irq(&card->lock);
*card->biotail = bio;
bio->bi_next = NULL;
card->biotail = &bio->bi_next;
if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
activate(card);
spin_unlock_irq(&card->lock);
return BLK_QC_T_NONE;
}
static irqreturn_t mm_interrupt(int irq, void *__card)
{
struct cardinfo *card = (struct cardinfo *) __card;
unsigned int dma_status;
unsigned short cfg_status;
HW_TRACE(0x30);
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
/* interrupt wasn't for me ... */
return IRQ_NONE;
}
/* clear COMPLETION interrupts */
if (card->flags & UM_FLAG_NO_BYTE_STATUS)
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
card->csr_remap + DMA_STATUS_CTRL);
else
writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
card->csr_remap + DMA_STATUS_CTRL + 2);
/* log errors and clear interrupt status */
if (dma_status & DMASCR_ANY_ERR) {
unsigned int data_log1, data_log2;
unsigned int addr_log1, addr_log2;
unsigned char stat, count, syndrome, check;
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
data_log1 = le32_to_cpu(readl(card->csr_remap +
ERROR_DATA_LOG));
data_log2 = le32_to_cpu(readl(card->csr_remap +
ERROR_DATA_LOG + 4));
addr_log1 = le32_to_cpu(readl(card->csr_remap +
ERROR_ADDR_LOG));
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
count = readb(card->csr_remap + ERROR_COUNT);
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
check = readb(card->csr_remap + ERROR_CHECK);
dump_dmastat(card, dma_status);
if (stat & 0x01)
dev_printk(KERN_ERR, &card->dev->dev,
"Memory access error detected (err count %d)\n",
count);
if (stat & 0x02)
dev_printk(KERN_ERR, &card->dev->dev,
"Multi-bit EDC error\n");
dev_printk(KERN_ERR, &card->dev->dev,
"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
addr_log2, addr_log1, data_log2, data_log1);
dev_printk(KERN_ERR, &card->dev->dev,
"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
check, syndrome);
writeb(0, card->csr_remap + ERROR_COUNT);
}
if (dma_status & DMASCR_PARITY_ERR_REP) {
dev_printk(KERN_ERR, &card->dev->dev,
"PARITY ERROR REPORTED\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_PARITY_ERR_DET) {
dev_printk(KERN_ERR, &card->dev->dev,
"PARITY ERROR DETECTED\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_TARGET_ABT) {
dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_MASTER_ABT) {
dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
/* and process the DMA descriptors */
card->dma_status = dma_status;
tasklet_schedule(&card->tasklet);
HW_TRACE(0x36);
return IRQ_HANDLED;
}
/*
* If both batteries are good, no LED
* If either battery has been warned, solid LED
* If both batteries are bad, flash the LED quickly
* If either battery is bad, flash the LED semi quickly
*/
static void set_fault_to_battery_status(struct cardinfo *card)
{
if (card->battery[0].good && card->battery[1].good)
set_led(card, LED_FAULT, LED_OFF);
else if (card->battery[0].warned || card->battery[1].warned)
set_led(card, LED_FAULT, LED_ON);
else if (!card->battery[0].good && !card->battery[1].good)
set_led(card, LED_FAULT, LED_FLASH_7_0);
else
set_led(card, LED_FAULT, LED_FLASH_3_5);
}
static void init_battery_timer(void);
static int check_battery(struct cardinfo *card, int battery, int status)
{
if (status != card->battery[battery].good) {
card->battery[battery].good = !card->battery[battery].good;
card->battery[battery].last_change = jiffies;
if (card->battery[battery].good) {
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d now good\n", battery + 1);
card->battery[battery].warned = 0;
} else
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d now FAILED\n", battery + 1);
return 1;
} else if (!card->battery[battery].good &&
!card->battery[battery].warned &&
time_after_eq(jiffies, card->battery[battery].last_change +
(HZ * 60 * 60 * 5))) {
dev_printk(KERN_ERR, &card->dev->dev,
"Battery %d still FAILED after 5 hours\n", battery + 1);
card->battery[battery].warned = 1;
return 1;
}
return 0;
}
static void check_batteries(struct cardinfo *card)
{
/* NOTE: this must *never* be called while the card
* is doing (bus-to-card) DMA, or you will need the
* reset switch
*/
unsigned char status;
int ret1, ret2;
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
if (debug & DEBUG_BATTERY_POLLING)
dev_printk(KERN_DEBUG, &card->dev->dev,
"checking battery status, 1 = %s, 2 = %s\n",
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
if (ret1 || ret2)
set_fault_to_battery_status(card);
}
static void check_all_batteries(struct timer_list *unused)
{
int i;
for (i = 0; i < num_cards; i++)
if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
struct cardinfo *card = &cards[i];
spin_lock_bh(&card->lock);
if (card->Active >= 0)
card->check_batteries = 1;
else
check_batteries(card);
spin_unlock_bh(&card->lock);
}
init_battery_timer();
}
static void init_battery_timer(void)
{
timer_setup(&battery_timer, check_all_batteries, 0);
battery_timer.expires = jiffies + (HZ * 60);
add_timer(&battery_timer);
}
static void del_battery_timer(void)
{
del_timer(&battery_timer);
}
/*
* Note no locks taken out here. In a worst case scenario, we could drop
* a chunk of system memory. But that should never happen, since validation
* happens at open or mount time, when locks are held.
*
* That's crap, since doing that while some partitions are opened
* or mounted will give you really nasty results.
*/
static int mm_revalidate(struct gendisk *disk)
{
struct cardinfo *card = disk->private_data;
set_capacity(disk, card->mm_size << 1);
return 0;
}
static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct cardinfo *card = bdev->bd_disk->private_data;
int size = card->mm_size * (1024 / MM_HARDSECT);
/*
* get geometry: we have to fake one... trim the size to a
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
* whatever cylinders.
*/
geo->heads = 64;
geo->sectors = 32;
geo->cylinders = size / (geo->heads * geo->sectors);
return 0;
}
static const struct block_device_operations mm_fops = {
.owner = THIS_MODULE,
.submit_bio = mm_submit_bio,
.getgeo = mm_getgeo,
.revalidate_disk = mm_revalidate,
};
static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret;
struct cardinfo *card = &cards[num_cards];
unsigned char mem_present;
unsigned char batt_status;
unsigned int saved_bar, data;
unsigned long csr_base;
unsigned long csr_len;
int magic_number;
static int printed_version;
if (!printed_version++)
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
ret = pci_enable_device(dev);
if (ret)
return ret;
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
pci_set_master(dev);
card->dev = dev;
csr_base = pci_resource_start(dev, 0);
csr_len = pci_resource_len(dev, 0);
if (!csr_base || !csr_len)
return -ENODEV;
dev_printk(KERN_INFO, &dev->dev,
"Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
if (dma_set_mask(&dev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) {
dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
return -ENOMEM;
}
ret = pci_request_regions(dev, DRIVER_NAME);
if (ret) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to request memory region\n");
goto failed_req_csr;
}
card->csr_remap = ioremap(csr_base, csr_len);
if (!card->csr_remap) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to remap memory region\n");
ret = -ENOMEM;
goto failed_remap_csr;
}
dev_printk(KERN_INFO, &card->dev->dev,
"CSR 0x%08lx -> 0x%p (0x%lx)\n",
csr_base, card->csr_remap, csr_len);
switch (card->dev->device) {
case 0x5415:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
magic_number = 0x59;
break;
case 0x5425:
card->flags |= UM_FLAG_NO_BYTE_STATUS;
magic_number = 0x5C;
break;
case 0x6155:
card->flags |= UM_FLAG_NO_BYTE_STATUS |
UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
magic_number = 0x99;
break;
default:
magic_number = 0x100;
break;
}
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
ret = -ENOMEM;
goto failed_magic;
}
card->mm_pages[0].desc = dma_alloc_coherent(&card->dev->dev,
PAGE_SIZE * 2, &card->mm_pages[0].page_dma, GFP_KERNEL);
card->mm_pages[1].desc = dma_alloc_coherent(&card->dev->dev,
PAGE_SIZE * 2, &card->mm_pages[1].page_dma, GFP_KERNEL);
if (card->mm_pages[0].desc == NULL ||
card->mm_pages[1].desc == NULL) {
dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
goto failed_alloc;
}
reset_page(&card->mm_pages[0]);
reset_page(&card->mm_pages[1]);
card->Ready = 0; /* page 0 is ready */
card->Active = -1; /* no page is active */
card->bio = NULL;
card->biotail = &card->bio;
spin_lock_init(&card->lock);
card->queue = blk_alloc_queue(NUMA_NO_NODE);
if (!card->queue)
goto failed_alloc;
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
card->check_batteries = 0;
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
switch (mem_present) {
case MEM_128_MB:
card->mm_size = 1024 * 128;
break;
case MEM_256_MB:
card->mm_size = 1024 * 256;
break;
case MEM_512_MB:
card->mm_size = 1024 * 512;
break;
case MEM_1_GB:
card->mm_size = 1024 * 1024;
break;
case MEM_2_GB:
card->mm_size = 1024 * 2048;
break;
default:
card->mm_size = 0;
break;
}
/* Clear the LED's we control */
set_led(card, LED_REMOVE, LED_OFF);
set_led(card, LED_FAULT, LED_OFF);
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
card->battery[0].last_change = card->battery[1].last_change = jiffies;
if (card->flags & UM_FLAG_NO_BATT)
dev_printk(KERN_INFO, &card->dev->dev,
"Size %d KB\n", card->mm_size);
else {
dev_printk(KERN_INFO, &card->dev->dev,
"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
card->mm_size,
batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
card->battery[0].good ? "OK" : "FAILURE",
batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
card->battery[1].good ? "OK" : "FAILURE");
set_fault_to_battery_status(card);
}
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
data = 0xffffffff;
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
data &= 0xfffffff0;
data = ~data;
data += 1;
if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
card)) {
dev_printk(KERN_ERR, &card->dev->dev,
"Unable to allocate IRQ\n");
ret = -ENODEV;
goto failed_req_irq;
}
dev_printk(KERN_INFO, &card->dev->dev,
"Window size %d bytes, IRQ %d\n", data, dev->irq);
pci_set_drvdata(dev, card);
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
pci_write_cmd = 0x07; /* then Memory Write command */
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
unsigned short cfg_command;
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
}
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
num_cards++;
if (!get_userbit(card, MEMORY_INITIALIZED)) {
dev_printk(KERN_INFO, &card->dev->dev,
"memory NOT initialized. Consider over-writing whole device.\n");
card->init_size = 0;
} else {
dev_printk(KERN_INFO, &card->dev->dev,
"memory already initialized\n");
card->init_size = card->mm_size;
}
/* Enable ECC */
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
return 0;
failed_req_irq:
failed_alloc:
if (card->mm_pages[0].desc)
dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
failed_magic:
iounmap(card->csr_remap);
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
return ret;
}
static void mm_pci_remove(struct pci_dev *dev)
{
struct cardinfo *card = pci_get_drvdata(dev);
tasklet_kill(&card->tasklet);
free_irq(dev->irq, card);
iounmap(card->csr_remap);
if (card->mm_pages[0].desc)
dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
dma_free_coherent(&card->dev->dev, PAGE_SIZE * 2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
blk_cleanup_queue(card->queue);
pci_release_regions(dev);
pci_disable_device(dev);
}
static const struct pci_device_id mm_pci_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
{PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
{
.vendor = 0x8086,
.device = 0xB555,
.subvendor = 0x1332,
.subdevice = 0x5460,
.class = 0x050000,
.class_mask = 0,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
static struct pci_driver mm_pci_driver = {
.name = DRIVER_NAME,
.id_table = mm_pci_ids,
.probe = mm_pci_probe,
.remove = mm_pci_remove,
};
static int __init mm_init(void)
{
int retval, i;
int err;
retval = pci_register_driver(&mm_pci_driver);
if (retval)
return -ENOMEM;
err = major_nr = register_blkdev(0, DRIVER_NAME);
if (err < 0) {
pci_unregister_driver(&mm_pci_driver);
return -EIO;
}
for (i = 0; i < num_cards; i++) {
mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
if (!mm_gendisk[i])
goto out;
}
for (i = 0; i < num_cards; i++) {
struct gendisk *disk = mm_gendisk[i];
sprintf(disk->disk_name, "umem%c", 'a'+i);
spin_lock_init(&cards[i].lock);
disk->major = major_nr;
disk->first_minor = i << MM_SHIFT;
disk->fops = &mm_fops;
disk->private_data = &cards[i];
disk->queue = cards[i].queue;
set_capacity(disk, cards[i].mm_size << 1);
add_disk(disk);
}
init_battery_timer();
printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
return 0;
out:
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, DRIVER_NAME);
while (i--)
put_disk(mm_gendisk[i]);
return -ENOMEM;
}
static void __exit mm_cleanup(void)
{
int i;
del_battery_timer();
for (i = 0; i < num_cards ; i++) {
del_gendisk(mm_gendisk[i]);
put_disk(mm_gendisk[i]);
}
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, DRIVER_NAME);
}
module_init(mm_init);
module_exit(mm_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");