linux/drivers/i3c/master/i3c-master-cdns.c
Christophe JAILLET 0fac32f24c i3c: master: Fix an error checking typo in 'cdns_i3c_master_probe()'
Fix a cut'n'paste typo.
Checking 'master->sysclk' is expected here.

Fixes: 603f2bee2c ("i3c: master: Add driver for Cadence IP")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
2019-01-07 14:18:17 +01:00

1667 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Cadence Design Systems Inc.
*
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#define DEV_ID 0x0
#define DEV_ID_I3C_MASTER 0x5034
#define CONF_STATUS0 0x4
#define CONF_STATUS0_CMDR_DEPTH(x) (4 << (((x) & GENMASK(31, 29)) >> 29))
#define CONF_STATUS0_ECC_CHK BIT(28)
#define CONF_STATUS0_INTEG_CHK BIT(27)
#define CONF_STATUS0_CSR_DAP_CHK BIT(26)
#define CONF_STATUS0_TRANS_TOUT_CHK BIT(25)
#define CONF_STATUS0_PROT_FAULTS_CHK BIT(24)
#define CONF_STATUS0_GPO_NUM(x) (((x) & GENMASK(23, 16)) >> 16)
#define CONF_STATUS0_GPI_NUM(x) (((x) & GENMASK(15, 8)) >> 8)
#define CONF_STATUS0_IBIR_DEPTH(x) (4 << (((x) & GENMASK(7, 6)) >> 7))
#define CONF_STATUS0_SUPPORTS_DDR BIT(5)
#define CONF_STATUS0_SEC_MASTER BIT(4)
#define CONF_STATUS0_DEVS_NUM(x) ((x) & GENMASK(3, 0))
#define CONF_STATUS1 0x8
#define CONF_STATUS1_IBI_HW_RES(x) ((((x) & GENMASK(31, 28)) >> 28) + 1)
#define CONF_STATUS1_CMD_DEPTH(x) (4 << (((x) & GENMASK(27, 26)) >> 26))
#define CONF_STATUS1_SLVDDR_RX_DEPTH(x) (8 << (((x) & GENMASK(25, 21)) >> 21))
#define CONF_STATUS1_SLVDDR_TX_DEPTH(x) (8 << (((x) & GENMASK(20, 16)) >> 16))
#define CONF_STATUS1_IBI_DEPTH(x) (2 << (((x) & GENMASK(12, 10)) >> 10))
#define CONF_STATUS1_RX_DEPTH(x) (8 << (((x) & GENMASK(9, 5)) >> 5))
#define CONF_STATUS1_TX_DEPTH(x) (8 << ((x) & GENMASK(4, 0)))
#define REV_ID 0xc
#define REV_ID_VID(id) (((id) & GENMASK(31, 20)) >> 20)
#define REV_ID_PID(id) (((id) & GENMASK(19, 8)) >> 8)
#define REV_ID_REV_MAJOR(id) (((id) & GENMASK(7, 4)) >> 4)
#define REV_ID_REV_MINOR(id) ((id) & GENMASK(3, 0))
#define CTRL 0x10
#define CTRL_DEV_EN BIT(31)
#define CTRL_HALT_EN BIT(30)
#define CTRL_MCS BIT(29)
#define CTRL_MCS_EN BIT(28)
#define CTRL_HJ_DISEC BIT(8)
#define CTRL_MST_ACK BIT(7)
#define CTRL_HJ_ACK BIT(6)
#define CTRL_HJ_INIT BIT(5)
#define CTRL_MST_INIT BIT(4)
#define CTRL_AHDR_OPT BIT(3)
#define CTRL_PURE_BUS_MODE 0
#define CTRL_MIXED_FAST_BUS_MODE 2
#define CTRL_MIXED_SLOW_BUS_MODE 3
#define CTRL_BUS_MODE_MASK GENMASK(1, 0)
#define PRESCL_CTRL0 0x14
#define PRESCL_CTRL0_I2C(x) ((x) << 16)
#define PRESCL_CTRL0_I3C(x) (x)
#define PRESCL_CTRL0_MAX GENMASK(9, 0)
#define PRESCL_CTRL1 0x18
#define PRESCL_CTRL1_PP_LOW_MASK GENMASK(15, 8)
#define PRESCL_CTRL1_PP_LOW(x) ((x) << 8)
#define PRESCL_CTRL1_OD_LOW_MASK GENMASK(7, 0)
#define PRESCL_CTRL1_OD_LOW(x) (x)
#define MST_IER 0x20
#define MST_IDR 0x24
#define MST_IMR 0x28
#define MST_ICR 0x2c
#define MST_ISR 0x30
#define MST_INT_HALTED BIT(18)
#define MST_INT_MR_DONE BIT(17)
#define MST_INT_IMM_COMP BIT(16)
#define MST_INT_TX_THR BIT(15)
#define MST_INT_TX_OVF BIT(14)
#define MST_INT_IBID_THR BIT(12)
#define MST_INT_IBID_UNF BIT(11)
#define MST_INT_IBIR_THR BIT(10)
#define MST_INT_IBIR_UNF BIT(9)
#define MST_INT_IBIR_OVF BIT(8)
#define MST_INT_RX_THR BIT(7)
#define MST_INT_RX_UNF BIT(6)
#define MST_INT_CMDD_EMP BIT(5)
#define MST_INT_CMDD_THR BIT(4)
#define MST_INT_CMDD_OVF BIT(3)
#define MST_INT_CMDR_THR BIT(2)
#define MST_INT_CMDR_UNF BIT(1)
#define MST_INT_CMDR_OVF BIT(0)
#define MST_STATUS0 0x34
#define MST_STATUS0_IDLE BIT(18)
#define MST_STATUS0_HALTED BIT(17)
#define MST_STATUS0_MASTER_MODE BIT(16)
#define MST_STATUS0_TX_FULL BIT(13)
#define MST_STATUS0_IBID_FULL BIT(12)
#define MST_STATUS0_IBIR_FULL BIT(11)
#define MST_STATUS0_RX_FULL BIT(10)
#define MST_STATUS0_CMDD_FULL BIT(9)
#define MST_STATUS0_CMDR_FULL BIT(8)
#define MST_STATUS0_TX_EMP BIT(5)
#define MST_STATUS0_IBID_EMP BIT(4)
#define MST_STATUS0_IBIR_EMP BIT(3)
#define MST_STATUS0_RX_EMP BIT(2)
#define MST_STATUS0_CMDD_EMP BIT(1)
#define MST_STATUS0_CMDR_EMP BIT(0)
#define CMDR 0x38
#define CMDR_NO_ERROR 0
#define CMDR_DDR_PREAMBLE_ERROR 1
#define CMDR_DDR_PARITY_ERROR 2
#define CMDR_DDR_RX_FIFO_OVF 3
#define CMDR_DDR_TX_FIFO_UNF 4
#define CMDR_M0_ERROR 5
#define CMDR_M1_ERROR 6
#define CMDR_M2_ERROR 7
#define CMDR_MST_ABORT 8
#define CMDR_NACK_RESP 9
#define CMDR_INVALID_DA 10
#define CMDR_DDR_DROPPED 11
#define CMDR_ERROR(x) (((x) & GENMASK(27, 24)) >> 24)
#define CMDR_XFER_BYTES(x) (((x) & GENMASK(19, 8)) >> 8)
#define CMDR_CMDID_HJACK_DISEC 0xfe
#define CMDR_CMDID_HJACK_ENTDAA 0xff
#define CMDR_CMDID(x) ((x) & GENMASK(7, 0))
#define IBIR 0x3c
#define IBIR_ACKED BIT(12)
#define IBIR_SLVID(x) (((x) & GENMASK(11, 8)) >> 8)
#define IBIR_ERROR BIT(7)
#define IBIR_XFER_BYTES(x) (((x) & GENMASK(6, 2)) >> 2)
#define IBIR_TYPE_IBI 0
#define IBIR_TYPE_HJ 1
#define IBIR_TYPE_MR 2
#define IBIR_TYPE(x) ((x) & GENMASK(1, 0))
#define SLV_IER 0x40
#define SLV_IDR 0x44
#define SLV_IMR 0x48
#define SLV_ICR 0x4c
#define SLV_ISR 0x50
#define SLV_INT_TM BIT(20)
#define SLV_INT_ERROR BIT(19)
#define SLV_INT_EVENT_UP BIT(18)
#define SLV_INT_HJ_DONE BIT(17)
#define SLV_INT_MR_DONE BIT(16)
#define SLV_INT_DA_UPD BIT(15)
#define SLV_INT_SDR_FAIL BIT(14)
#define SLV_INT_DDR_FAIL BIT(13)
#define SLV_INT_M_RD_ABORT BIT(12)
#define SLV_INT_DDR_RX_THR BIT(11)
#define SLV_INT_DDR_TX_THR BIT(10)
#define SLV_INT_SDR_RX_THR BIT(9)
#define SLV_INT_SDR_TX_THR BIT(8)
#define SLV_INT_DDR_RX_UNF BIT(7)
#define SLV_INT_DDR_TX_OVF BIT(6)
#define SLV_INT_SDR_RX_UNF BIT(5)
#define SLV_INT_SDR_TX_OVF BIT(4)
#define SLV_INT_DDR_RD_COMP BIT(3)
#define SLV_INT_DDR_WR_COMP BIT(2)
#define SLV_INT_SDR_RD_COMP BIT(1)
#define SLV_INT_SDR_WR_COMP BIT(0)
#define SLV_STATUS0 0x54
#define SLV_STATUS0_REG_ADDR(s) (((s) & GENMASK(23, 16)) >> 16)
#define SLV_STATUS0_XFRD_BYTES(s) ((s) & GENMASK(15, 0))
#define SLV_STATUS1 0x58
#define SLV_STATUS1_AS(s) (((s) & GENMASK(21, 20)) >> 20)
#define SLV_STATUS1_VEN_TM BIT(19)
#define SLV_STATUS1_HJ_DIS BIT(18)
#define SLV_STATUS1_MR_DIS BIT(17)
#define SLV_STATUS1_PROT_ERR BIT(16)
#define SLV_STATUS1_DA(x) (((s) & GENMASK(15, 9)) >> 9)
#define SLV_STATUS1_HAS_DA BIT(8)
#define SLV_STATUS1_DDR_RX_FULL BIT(7)
#define SLV_STATUS1_DDR_TX_FULL BIT(6)
#define SLV_STATUS1_DDR_RX_EMPTY BIT(5)
#define SLV_STATUS1_DDR_TX_EMPTY BIT(4)
#define SLV_STATUS1_SDR_RX_FULL BIT(3)
#define SLV_STATUS1_SDR_TX_FULL BIT(2)
#define SLV_STATUS1_SDR_RX_EMPTY BIT(1)
#define SLV_STATUS1_SDR_TX_EMPTY BIT(0)
#define CMD0_FIFO 0x60
#define CMD0_FIFO_IS_DDR BIT(31)
#define CMD0_FIFO_IS_CCC BIT(30)
#define CMD0_FIFO_BCH BIT(29)
#define XMIT_BURST_STATIC_SUBADDR 0
#define XMIT_SINGLE_INC_SUBADDR 1
#define XMIT_SINGLE_STATIC_SUBADDR 2
#define XMIT_BURST_WITHOUT_SUBADDR 3
#define CMD0_FIFO_PRIV_XMIT_MODE(m) ((m) << 27)
#define CMD0_FIFO_SBCA BIT(26)
#define CMD0_FIFO_RSBC BIT(25)
#define CMD0_FIFO_IS_10B BIT(24)
#define CMD0_FIFO_PL_LEN(l) ((l) << 12)
#define CMD0_FIFO_PL_LEN_MAX 4095
#define CMD0_FIFO_DEV_ADDR(a) ((a) << 1)
#define CMD0_FIFO_RNW BIT(0)
#define CMD1_FIFO 0x64
#define CMD1_FIFO_CMDID(id) ((id) << 24)
#define CMD1_FIFO_CSRADDR(a) (a)
#define CMD1_FIFO_CCC(id) (id)
#define TX_FIFO 0x68
#define IMD_CMD0 0x70
#define IMD_CMD0_PL_LEN(l) ((l) << 12)
#define IMD_CMD0_DEV_ADDR(a) ((a) << 1)
#define IMD_CMD0_RNW BIT(0)
#define IMD_CMD1 0x74
#define IMD_CMD1_CCC(id) (id)
#define IMD_DATA 0x78
#define RX_FIFO 0x80
#define IBI_DATA_FIFO 0x84
#define SLV_DDR_TX_FIFO 0x88
#define SLV_DDR_RX_FIFO 0x8c
#define CMD_IBI_THR_CTRL 0x90
#define IBIR_THR(t) ((t) << 24)
#define CMDR_THR(t) ((t) << 16)
#define IBI_THR(t) ((t) << 8)
#define CMD_THR(t) (t)
#define TX_RX_THR_CTRL 0x94
#define RX_THR(t) ((t) << 16)
#define TX_THR(t) (t)
#define SLV_DDR_TX_RX_THR_CTRL 0x98
#define SLV_DDR_RX_THR(t) ((t) << 16)
#define SLV_DDR_TX_THR(t) (t)
#define FLUSH_CTRL 0x9c
#define FLUSH_IBI_RESP BIT(23)
#define FLUSH_CMD_RESP BIT(22)
#define FLUSH_SLV_DDR_RX_FIFO BIT(22)
#define FLUSH_SLV_DDR_TX_FIFO BIT(21)
#define FLUSH_IMM_FIFO BIT(20)
#define FLUSH_IBI_FIFO BIT(19)
#define FLUSH_RX_FIFO BIT(18)
#define FLUSH_TX_FIFO BIT(17)
#define FLUSH_CMD_FIFO BIT(16)
#define TTO_PRESCL_CTRL0 0xb0
#define TTO_PRESCL_CTRL0_DIVB(x) ((x) << 16)
#define TTO_PRESCL_CTRL0_DIVA(x) (x)
#define TTO_PRESCL_CTRL1 0xb4
#define TTO_PRESCL_CTRL1_DIVB(x) ((x) << 16)
#define TTO_PRESCL_CTRL1_DIVA(x) (x)
#define DEVS_CTRL 0xb8
#define DEVS_CTRL_DEV_CLR_SHIFT 16
#define DEVS_CTRL_DEV_CLR_ALL GENMASK(31, 16)
#define DEVS_CTRL_DEV_CLR(dev) BIT(16 + (dev))
#define DEVS_CTRL_DEV_ACTIVE(dev) BIT(dev)
#define DEVS_CTRL_DEVS_ACTIVE_MASK GENMASK(15, 0)
#define MAX_DEVS 16
#define DEV_ID_RR0(d) (0xc0 + ((d) * 0x10))
#define DEV_ID_RR0_LVR_EXT_ADDR BIT(11)
#define DEV_ID_RR0_HDR_CAP BIT(10)
#define DEV_ID_RR0_IS_I3C BIT(9)
#define DEV_ID_RR0_DEV_ADDR_MASK (GENMASK(6, 0) | GENMASK(15, 13))
#define DEV_ID_RR0_SET_DEV_ADDR(a) (((a) & GENMASK(6, 0)) | \
(((a) & GENMASK(9, 7)) << 6))
#define DEV_ID_RR0_GET_DEV_ADDR(x) ((((x) >> 1) & GENMASK(6, 0)) | \
(((x) >> 6) & GENMASK(9, 7)))
#define DEV_ID_RR1(d) (0xc4 + ((d) * 0x10))
#define DEV_ID_RR1_PID_MSB(pid) (pid)
#define DEV_ID_RR2(d) (0xc8 + ((d) * 0x10))
#define DEV_ID_RR2_PID_LSB(pid) ((pid) << 16)
#define DEV_ID_RR2_BCR(bcr) ((bcr) << 8)
#define DEV_ID_RR2_DCR(dcr) (dcr)
#define DEV_ID_RR2_LVR(lvr) (lvr)
#define SIR_MAP(x) (0x180 + ((x) * 4))
#define SIR_MAP_DEV_REG(d) SIR_MAP((d) / 2)
#define SIR_MAP_DEV_SHIFT(d, fs) ((fs) + (((d) % 2) ? 16 : 0))
#define SIR_MAP_DEV_CONF_MASK(d) (GENMASK(15, 0) << (((d) % 2) ? 16 : 0))
#define SIR_MAP_DEV_CONF(d, c) ((c) << (((d) % 2) ? 16 : 0))
#define DEV_ROLE_SLAVE 0
#define DEV_ROLE_MASTER 1
#define SIR_MAP_DEV_ROLE(role) ((role) << 14)
#define SIR_MAP_DEV_SLOW BIT(13)
#define SIR_MAP_DEV_PL(l) ((l) << 8)
#define SIR_MAP_PL_MAX GENMASK(4, 0)
#define SIR_MAP_DEV_DA(a) ((a) << 1)
#define SIR_MAP_DEV_ACK BIT(0)
#define GPIR_WORD(x) (0x200 + ((x) * 4))
#define GPI_REG(val, id) \
(((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
#define GPOR_WORD(x) (0x220 + ((x) * 4))
#define GPO_REG(val, id) \
(((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
#define ASF_INT_STATUS 0x300
#define ASF_INT_RAW_STATUS 0x304
#define ASF_INT_MASK 0x308
#define ASF_INT_TEST 0x30c
#define ASF_INT_FATAL_SELECT 0x310
#define ASF_INTEGRITY_ERR BIT(6)
#define ASF_PROTOCOL_ERR BIT(5)
#define ASF_TRANS_TIMEOUT_ERR BIT(4)
#define ASF_CSR_ERR BIT(3)
#define ASF_DAP_ERR BIT(2)
#define ASF_SRAM_UNCORR_ERR BIT(1)
#define ASF_SRAM_CORR_ERR BIT(0)
#define ASF_SRAM_CORR_FAULT_STATUS 0x320
#define ASF_SRAM_UNCORR_FAULT_STATUS 0x324
#define ASF_SRAM_CORR_FAULT_INSTANCE(x) ((x) >> 24)
#define ASF_SRAM_CORR_FAULT_ADDR(x) ((x) & GENMASK(23, 0))
#define ASF_SRAM_FAULT_STATS 0x328
#define ASF_SRAM_FAULT_UNCORR_STATS(x) ((x) >> 16)
#define ASF_SRAM_FAULT_CORR_STATS(x) ((x) & GENMASK(15, 0))
#define ASF_TRANS_TOUT_CTRL 0x330
#define ASF_TRANS_TOUT_EN BIT(31)
#define ASF_TRANS_TOUT_VAL(x) (x)
#define ASF_TRANS_TOUT_FAULT_MASK 0x334
#define ASF_TRANS_TOUT_FAULT_STATUS 0x338
#define ASF_TRANS_TOUT_FAULT_APB BIT(3)
#define ASF_TRANS_TOUT_FAULT_SCL_LOW BIT(2)
#define ASF_TRANS_TOUT_FAULT_SCL_HIGH BIT(1)
#define ASF_TRANS_TOUT_FAULT_FSCL_HIGH BIT(0)
#define ASF_PROTO_FAULT_MASK 0x340
#define ASF_PROTO_FAULT_STATUS 0x344
#define ASF_PROTO_FAULT_SLVSDR_RD_ABORT BIT(31)
#define ASF_PROTO_FAULT_SLVDDR_FAIL BIT(30)
#define ASF_PROTO_FAULT_S(x) BIT(16 + (x))
#define ASF_PROTO_FAULT_MSTSDR_RD_ABORT BIT(15)
#define ASF_PROTO_FAULT_MSTDDR_FAIL BIT(14)
#define ASF_PROTO_FAULT_M(x) BIT(x)
struct cdns_i3c_master_caps {
u32 cmdfifodepth;
u32 cmdrfifodepth;
u32 txfifodepth;
u32 rxfifodepth;
u32 ibirfifodepth;
};
struct cdns_i3c_cmd {
u32 cmd0;
u32 cmd1;
u32 tx_len;
const void *tx_buf;
u32 rx_len;
void *rx_buf;
u32 error;
};
struct cdns_i3c_xfer {
struct list_head node;
struct completion comp;
int ret;
unsigned int ncmds;
struct cdns_i3c_cmd cmds[0];
};
struct cdns_i3c_master {
struct work_struct hj_work;
struct i3c_master_controller base;
u32 free_rr_slots;
unsigned int maxdevs;
struct {
unsigned int num_slots;
struct i3c_dev_desc **slots;
spinlock_t lock;
} ibi;
struct {
struct list_head list;
struct cdns_i3c_xfer *cur;
spinlock_t lock;
} xferqueue;
void __iomem *regs;
struct clk *sysclk;
struct clk *pclk;
struct cdns_i3c_master_caps caps;
unsigned long i3c_scl_lim;
};
static inline struct cdns_i3c_master *
to_cdns_i3c_master(struct i3c_master_controller *master)
{
return container_of(master, struct cdns_i3c_master, base);
}
static void cdns_i3c_master_wr_to_tx_fifo(struct cdns_i3c_master *master,
const u8 *bytes, int nbytes)
{
writesl(master->regs + TX_FIFO, bytes, nbytes / 4);
if (nbytes & 3) {
u32 tmp = 0;
memcpy(&tmp, bytes + (nbytes & ~3), nbytes & 3);
writesl(master->regs + TX_FIFO, &tmp, 1);
}
}
static void cdns_i3c_master_rd_from_rx_fifo(struct cdns_i3c_master *master,
u8 *bytes, int nbytes)
{
readsl(master->regs + RX_FIFO, bytes, nbytes / 4);
if (nbytes & 3) {
u32 tmp;
readsl(master->regs + RX_FIFO, &tmp, 1);
memcpy(bytes + (nbytes & ~3), &tmp, nbytes & 3);
}
}
static bool cdns_i3c_master_supports_ccc_cmd(struct i3c_master_controller *m,
const struct i3c_ccc_cmd *cmd)
{
if (cmd->ndests > 1)
return false;
switch (cmd->id) {
case I3C_CCC_ENEC(true):
case I3C_CCC_ENEC(false):
case I3C_CCC_DISEC(true):
case I3C_CCC_DISEC(false):
case I3C_CCC_ENTAS(0, true):
case I3C_CCC_ENTAS(0, false):
case I3C_CCC_RSTDAA(true):
case I3C_CCC_RSTDAA(false):
case I3C_CCC_ENTDAA:
case I3C_CCC_SETMWL(true):
case I3C_CCC_SETMWL(false):
case I3C_CCC_SETMRL(true):
case I3C_CCC_SETMRL(false):
case I3C_CCC_DEFSLVS:
case I3C_CCC_ENTHDR(0):
case I3C_CCC_SETDASA:
case I3C_CCC_SETNEWDA:
case I3C_CCC_GETMWL:
case I3C_CCC_GETMRL:
case I3C_CCC_GETPID:
case I3C_CCC_GETBCR:
case I3C_CCC_GETDCR:
case I3C_CCC_GETSTATUS:
case I3C_CCC_GETACCMST:
case I3C_CCC_GETMXDS:
case I3C_CCC_GETHDRCAP:
return true;
default:
break;
}
return false;
}
static int cdns_i3c_master_disable(struct cdns_i3c_master *master)
{
u32 status;
writel(readl(master->regs + CTRL) & ~CTRL_DEV_EN, master->regs + CTRL);
return readl_poll_timeout(master->regs + MST_STATUS0, status,
status & MST_STATUS0_IDLE, 10, 1000000);
}
static void cdns_i3c_master_enable(struct cdns_i3c_master *master)
{
writel(readl(master->regs + CTRL) | CTRL_DEV_EN, master->regs + CTRL);
}
static struct cdns_i3c_xfer *
cdns_i3c_master_alloc_xfer(struct cdns_i3c_master *master, unsigned int ncmds)
{
struct cdns_i3c_xfer *xfer;
xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
if (!xfer)
return NULL;
INIT_LIST_HEAD(&xfer->node);
xfer->ncmds = ncmds;
xfer->ret = -ETIMEDOUT;
return xfer;
}
static void cdns_i3c_master_free_xfer(struct cdns_i3c_xfer *xfer)
{
kfree(xfer);
}
static void cdns_i3c_master_start_xfer_locked(struct cdns_i3c_master *master)
{
struct cdns_i3c_xfer *xfer = master->xferqueue.cur;
unsigned int i;
if (!xfer)
return;
writel(MST_INT_CMDD_EMP, master->regs + MST_ICR);
for (i = 0; i < xfer->ncmds; i++) {
struct cdns_i3c_cmd *cmd = &xfer->cmds[i];
cdns_i3c_master_wr_to_tx_fifo(master, cmd->tx_buf,
cmd->tx_len);
}
for (i = 0; i < xfer->ncmds; i++) {
struct cdns_i3c_cmd *cmd = &xfer->cmds[i];
writel(cmd->cmd1 | CMD1_FIFO_CMDID(i),
master->regs + CMD1_FIFO);
writel(cmd->cmd0, master->regs + CMD0_FIFO);
}
writel(readl(master->regs + CTRL) | CTRL_MCS,
master->regs + CTRL);
writel(MST_INT_CMDD_EMP, master->regs + MST_IER);
}
static void cdns_i3c_master_end_xfer_locked(struct cdns_i3c_master *master,
u32 isr)
{
struct cdns_i3c_xfer *xfer = master->xferqueue.cur;
int i, ret = 0;
u32 status0;
if (!xfer)
return;
if (!(isr & MST_INT_CMDD_EMP))
return;
writel(MST_INT_CMDD_EMP, master->regs + MST_IDR);
for (status0 = readl(master->regs + MST_STATUS0);
!(status0 & MST_STATUS0_CMDR_EMP);
status0 = readl(master->regs + MST_STATUS0)) {
struct cdns_i3c_cmd *cmd;
u32 cmdr, rx_len, id;
cmdr = readl(master->regs + CMDR);
id = CMDR_CMDID(cmdr);
if (id == CMDR_CMDID_HJACK_DISEC ||
id == CMDR_CMDID_HJACK_ENTDAA ||
WARN_ON(id >= xfer->ncmds))
continue;
cmd = &xfer->cmds[CMDR_CMDID(cmdr)];
rx_len = min_t(u32, CMDR_XFER_BYTES(cmdr), cmd->rx_len);
cdns_i3c_master_rd_from_rx_fifo(master, cmd->rx_buf, rx_len);
cmd->error = CMDR_ERROR(cmdr);
}
for (i = 0; i < xfer->ncmds; i++) {
switch (xfer->cmds[i].error) {
case CMDR_NO_ERROR:
break;
case CMDR_DDR_PREAMBLE_ERROR:
case CMDR_DDR_PARITY_ERROR:
case CMDR_M0_ERROR:
case CMDR_M1_ERROR:
case CMDR_M2_ERROR:
case CMDR_MST_ABORT:
case CMDR_NACK_RESP:
case CMDR_DDR_DROPPED:
ret = -EIO;
break;
case CMDR_DDR_RX_FIFO_OVF:
case CMDR_DDR_TX_FIFO_UNF:
ret = -ENOSPC;
break;
case CMDR_INVALID_DA:
default:
ret = -EINVAL;
break;
}
}
xfer->ret = ret;
complete(&xfer->comp);
xfer = list_first_entry_or_null(&master->xferqueue.list,
struct cdns_i3c_xfer, node);
if (xfer)
list_del_init(&xfer->node);
master->xferqueue.cur = xfer;
cdns_i3c_master_start_xfer_locked(master);
}
static void cdns_i3c_master_queue_xfer(struct cdns_i3c_master *master,
struct cdns_i3c_xfer *xfer)
{
unsigned long flags;
init_completion(&xfer->comp);
spin_lock_irqsave(&master->xferqueue.lock, flags);
if (master->xferqueue.cur) {
list_add_tail(&xfer->node, &master->xferqueue.list);
} else {
master->xferqueue.cur = xfer;
cdns_i3c_master_start_xfer_locked(master);
}
spin_unlock_irqrestore(&master->xferqueue.lock, flags);
}
static void cdns_i3c_master_unqueue_xfer(struct cdns_i3c_master *master,
struct cdns_i3c_xfer *xfer)
{
unsigned long flags;
spin_lock_irqsave(&master->xferqueue.lock, flags);
if (master->xferqueue.cur == xfer) {
u32 status;
writel(readl(master->regs + CTRL) & ~CTRL_DEV_EN,
master->regs + CTRL);
readl_poll_timeout_atomic(master->regs + MST_STATUS0, status,
status & MST_STATUS0_IDLE, 10,
1000000);
master->xferqueue.cur = NULL;
writel(FLUSH_RX_FIFO | FLUSH_TX_FIFO | FLUSH_CMD_FIFO |
FLUSH_CMD_RESP,
master->regs + FLUSH_CTRL);
writel(MST_INT_CMDD_EMP, master->regs + MST_IDR);
writel(readl(master->regs + CTRL) | CTRL_DEV_EN,
master->regs + CTRL);
} else {
list_del_init(&xfer->node);
}
spin_unlock_irqrestore(&master->xferqueue.lock, flags);
}
static enum i3c_error_code cdns_i3c_cmd_get_err(struct cdns_i3c_cmd *cmd)
{
switch (cmd->error) {
case CMDR_M0_ERROR:
return I3C_ERROR_M0;
case CMDR_M1_ERROR:
return I3C_ERROR_M1;
case CMDR_M2_ERROR:
case CMDR_NACK_RESP:
return I3C_ERROR_M2;
default:
break;
}
return I3C_ERROR_UNKNOWN;
}
static int cdns_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
struct i3c_ccc_cmd *cmd)
{
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_xfer *xfer;
struct cdns_i3c_cmd *ccmd;
int ret;
xfer = cdns_i3c_master_alloc_xfer(master, 1);
if (!xfer)
return -ENOMEM;
ccmd = xfer->cmds;
ccmd->cmd1 = CMD1_FIFO_CCC(cmd->id);
ccmd->cmd0 = CMD0_FIFO_IS_CCC |
CMD0_FIFO_PL_LEN(cmd->dests[0].payload.len);
if (cmd->id & I3C_CCC_DIRECT)
ccmd->cmd0 |= CMD0_FIFO_DEV_ADDR(cmd->dests[0].addr);
if (cmd->rnw) {
ccmd->cmd0 |= CMD0_FIFO_RNW;
ccmd->rx_buf = cmd->dests[0].payload.data;
ccmd->rx_len = cmd->dests[0].payload.len;
} else {
ccmd->tx_buf = cmd->dests[0].payload.data;
ccmd->tx_len = cmd->dests[0].payload.len;
}
cdns_i3c_master_queue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
cdns_i3c_master_unqueue_xfer(master, xfer);
ret = xfer->ret;
cmd->err = cdns_i3c_cmd_get_err(&xfer->cmds[0]);
cdns_i3c_master_free_xfer(xfer);
return ret;
}
static int cdns_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
struct i3c_priv_xfer *xfers,
int nxfers)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
int txslots = 0, rxslots = 0, i, ret;
struct cdns_i3c_xfer *cdns_xfer;
for (i = 0; i < nxfers; i++) {
if (xfers[i].len > CMD0_FIFO_PL_LEN_MAX)
return -ENOTSUPP;
}
if (!nxfers)
return 0;
if (nxfers > master->caps.cmdfifodepth ||
nxfers > master->caps.cmdrfifodepth)
return -ENOTSUPP;
/*
* First make sure that all transactions (block of transfers separated
* by a STOP marker) fit in the FIFOs.
*/
for (i = 0; i < nxfers; i++) {
if (xfers[i].rnw)
rxslots += DIV_ROUND_UP(xfers[i].len, 4);
else
txslots += DIV_ROUND_UP(xfers[i].len, 4);
}
if (rxslots > master->caps.rxfifodepth ||
txslots > master->caps.txfifodepth)
return -ENOTSUPP;
cdns_xfer = cdns_i3c_master_alloc_xfer(master, nxfers);
if (!cdns_xfer)
return -ENOMEM;
for (i = 0; i < nxfers; i++) {
struct cdns_i3c_cmd *ccmd = &cdns_xfer->cmds[i];
u32 pl_len = xfers[i].len;
ccmd->cmd0 = CMD0_FIFO_DEV_ADDR(dev->info.dyn_addr) |
CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
if (xfers[i].rnw) {
ccmd->cmd0 |= CMD0_FIFO_RNW;
ccmd->rx_buf = xfers[i].data.in;
ccmd->rx_len = xfers[i].len;
pl_len++;
} else {
ccmd->tx_buf = xfers[i].data.out;
ccmd->tx_len = xfers[i].len;
}
ccmd->cmd0 |= CMD0_FIFO_PL_LEN(pl_len);
if (i < nxfers - 1)
ccmd->cmd0 |= CMD0_FIFO_RSBC;
if (!i)
ccmd->cmd0 |= CMD0_FIFO_BCH;
}
cdns_i3c_master_queue_xfer(master, cdns_xfer);
if (!wait_for_completion_timeout(&cdns_xfer->comp,
msecs_to_jiffies(1000)))
cdns_i3c_master_unqueue_xfer(master, cdns_xfer);
ret = cdns_xfer->ret;
for (i = 0; i < nxfers; i++)
xfers[i].err = cdns_i3c_cmd_get_err(&cdns_xfer->cmds[i]);
cdns_i3c_master_free_xfer(cdns_xfer);
return ret;
}
static int cdns_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
const struct i2c_msg *xfers, int nxfers)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
unsigned int nrxwords = 0, ntxwords = 0;
struct cdns_i3c_xfer *xfer;
int i, ret = 0;
if (nxfers > master->caps.cmdfifodepth)
return -ENOTSUPP;
for (i = 0; i < nxfers; i++) {
if (xfers[i].len > CMD0_FIFO_PL_LEN_MAX)
return -ENOTSUPP;
if (xfers[i].flags & I2C_M_RD)
nrxwords += DIV_ROUND_UP(xfers[i].len, 4);
else
ntxwords += DIV_ROUND_UP(xfers[i].len, 4);
}
if (ntxwords > master->caps.txfifodepth ||
nrxwords > master->caps.rxfifodepth)
return -ENOTSUPP;
xfer = cdns_i3c_master_alloc_xfer(master, nxfers);
if (!xfer)
return -ENOMEM;
for (i = 0; i < nxfers; i++) {
struct cdns_i3c_cmd *ccmd = &xfer->cmds[i];
ccmd->cmd0 = CMD0_FIFO_DEV_ADDR(xfers[i].addr) |
CMD0_FIFO_PL_LEN(xfers[i].len) |
CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
if (xfers[i].flags & I2C_M_TEN)
ccmd->cmd0 |= CMD0_FIFO_IS_10B;
if (xfers[i].flags & I2C_M_RD) {
ccmd->cmd0 |= CMD0_FIFO_RNW;
ccmd->rx_buf = xfers[i].buf;
ccmd->rx_len = xfers[i].len;
} else {
ccmd->tx_buf = xfers[i].buf;
ccmd->tx_len = xfers[i].len;
}
}
cdns_i3c_master_queue_xfer(master, xfer);
if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
cdns_i3c_master_unqueue_xfer(master, xfer);
ret = xfer->ret;
cdns_i3c_master_free_xfer(xfer);
return ret;
}
static u32 cdns_i3c_master_i2c_funcs(struct i3c_master_controller *m)
{
return I2C_FUNC_SMBUS_EMUL | I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR;
}
struct cdns_i3c_i2c_dev_data {
u16 id;
s16 ibi;
struct i3c_generic_ibi_pool *ibi_pool;
};
static u32 prepare_rr0_dev_address(u32 addr)
{
u32 ret = (addr << 1) & 0xff;
/* RR0[7:1] = addr[6:0] */
ret |= (addr & GENMASK(6, 0)) << 1;
/* RR0[15:13] = addr[9:7] */
ret |= (addr & GENMASK(9, 7)) << 6;
/* RR0[0] = ~XOR(addr[6:0]) */
if (!(hweight8(addr & 0x7f) & 1))
ret |= 1;
return ret;
}
static void cdns_i3c_master_upd_i3c_addr(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
u32 rr;
rr = prepare_rr0_dev_address(dev->info.dyn_addr ?
dev->info.dyn_addr :
dev->info.static_addr);
writel(DEV_ID_RR0_IS_I3C | rr, master->regs + DEV_ID_RR0(data->id));
}
static int cdns_i3c_master_get_rr_slot(struct cdns_i3c_master *master,
u8 dyn_addr)
{
u32 activedevs, rr;
int i;
if (!dyn_addr) {
if (!master->free_rr_slots)
return -ENOSPC;
return ffs(master->free_rr_slots) - 1;
}
activedevs = readl(master->regs + DEVS_CTRL) &
DEVS_CTRL_DEVS_ACTIVE_MASK;
for (i = 1; i <= master->maxdevs; i++) {
if (!(BIT(i) & activedevs))
continue;
rr = readl(master->regs + DEV_ID_RR0(i));
if (!(rr & DEV_ID_RR0_IS_I3C) ||
DEV_ID_RR0_GET_DEV_ADDR(rr) != dyn_addr)
continue;
return i;
}
return -EINVAL;
}
static int cdns_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
u8 old_dyn_addr)
{
cdns_i3c_master_upd_i3c_addr(dev);
return 0;
}
static int cdns_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data;
int slot;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
slot = cdns_i3c_master_get_rr_slot(master, dev->info.dyn_addr);
if (slot < 0) {
kfree(data);
return slot;
}
data->ibi = -1;
data->id = slot;
i3c_dev_set_master_data(dev, data);
master->free_rr_slots &= ~BIT(slot);
if (!dev->info.dyn_addr) {
cdns_i3c_master_upd_i3c_addr(dev);
writel(readl(master->regs + DEVS_CTRL) |
DEVS_CTRL_DEV_ACTIVE(data->id),
master->regs + DEVS_CTRL);
}
return 0;
}
static void cdns_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
writel(readl(master->regs + DEVS_CTRL) |
DEVS_CTRL_DEV_CLR(data->id),
master->regs + DEVS_CTRL);
i3c_dev_set_master_data(dev, NULL);
master->free_rr_slots |= BIT(data->id);
kfree(data);
}
static int cdns_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data;
int slot;
slot = cdns_i3c_master_get_rr_slot(master, 0);
if (slot < 0)
return slot;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->id = slot;
master->free_rr_slots &= ~BIT(slot);
i2c_dev_set_master_data(dev, data);
writel(prepare_rr0_dev_address(dev->boardinfo->base.addr) |
(dev->boardinfo->base.flags & I2C_CLIENT_TEN ?
DEV_ID_RR0_LVR_EXT_ADDR : 0),
master->regs + DEV_ID_RR0(data->id));
writel(dev->boardinfo->lvr, master->regs + DEV_ID_RR2(data->id));
writel(readl(master->regs + DEVS_CTRL) |
DEVS_CTRL_DEV_ACTIVE(data->id),
master->regs + DEVS_CTRL);
return 0;
}
static void cdns_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
{
struct i3c_master_controller *m = i2c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
writel(readl(master->regs + DEVS_CTRL) |
DEVS_CTRL_DEV_CLR(data->id),
master->regs + DEVS_CTRL);
master->free_rr_slots |= BIT(data->id);
i2c_dev_set_master_data(dev, NULL);
kfree(data);
}
static void cdns_i3c_master_bus_cleanup(struct i3c_master_controller *m)
{
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
cdns_i3c_master_disable(master);
}
static void cdns_i3c_master_dev_rr_to_info(struct cdns_i3c_master *master,
unsigned int slot,
struct i3c_device_info *info)
{
u32 rr;
memset(info, 0, sizeof(*info));
rr = readl(master->regs + DEV_ID_RR0(slot));
info->dyn_addr = DEV_ID_RR0_GET_DEV_ADDR(rr);
rr = readl(master->regs + DEV_ID_RR2(slot));
info->dcr = rr;
info->bcr = rr >> 8;
info->pid = rr >> 16;
info->pid |= (u64)readl(master->regs + DEV_ID_RR1(slot)) << 16;
}
static void cdns_i3c_master_upd_i3c_scl_lim(struct cdns_i3c_master *master)
{
struct i3c_master_controller *m = &master->base;
unsigned long i3c_lim_period, pres_step, ncycles;
struct i3c_bus *bus = i3c_master_get_bus(m);
unsigned long new_i3c_scl_lim = 0;
struct i3c_dev_desc *dev;
u32 prescl1, ctrl;
i3c_bus_for_each_i3cdev(bus, dev) {
unsigned long max_fscl;
max_fscl = max(I3C_CCC_MAX_SDR_FSCL(dev->info.max_read_ds),
I3C_CCC_MAX_SDR_FSCL(dev->info.max_write_ds));
switch (max_fscl) {
case I3C_SDR1_FSCL_8MHZ:
max_fscl = 8000000;
break;
case I3C_SDR2_FSCL_6MHZ:
max_fscl = 6000000;
break;
case I3C_SDR3_FSCL_4MHZ:
max_fscl = 4000000;
break;
case I3C_SDR4_FSCL_2MHZ:
max_fscl = 2000000;
break;
case I3C_SDR0_FSCL_MAX:
default:
max_fscl = 0;
break;
}
if (max_fscl &&
(new_i3c_scl_lim > max_fscl || !new_i3c_scl_lim))
new_i3c_scl_lim = max_fscl;
}
/* Only update PRESCL_CTRL1 if the I3C SCL limitation has changed. */
if (new_i3c_scl_lim == master->i3c_scl_lim)
return;
master->i3c_scl_lim = new_i3c_scl_lim;
if (!new_i3c_scl_lim)
return;
pres_step = 1000000000UL / (bus->scl_rate.i3c * 4);
/* Configure PP_LOW to meet I3C slave limitations. */
prescl1 = readl(master->regs + PRESCL_CTRL1) &
~PRESCL_CTRL1_PP_LOW_MASK;
ctrl = readl(master->regs + CTRL);
i3c_lim_period = DIV_ROUND_UP(1000000000, master->i3c_scl_lim);
ncycles = DIV_ROUND_UP(i3c_lim_period, pres_step);
if (ncycles < 4)
ncycles = 0;
else
ncycles -= 4;
prescl1 |= PRESCL_CTRL1_PP_LOW(ncycles);
/* Disable I3C master before updating PRESCL_CTRL1. */
if (ctrl & CTRL_DEV_EN)
cdns_i3c_master_disable(master);
writel(prescl1, master->regs + PRESCL_CTRL1);
if (ctrl & CTRL_DEV_EN)
cdns_i3c_master_enable(master);
}
static int cdns_i3c_master_do_daa(struct i3c_master_controller *m)
{
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
u32 olddevs, newdevs;
int ret, slot;
u8 addrs[MAX_DEVS] = { };
u8 last_addr = 0;
olddevs = readl(master->regs + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
/* Prepare RR slots before launching DAA. */
for (slot = 1; slot <= master->maxdevs; slot++) {
if (olddevs & BIT(slot))
continue;
ret = i3c_master_get_free_addr(m, last_addr + 1);
if (ret < 0)
return -ENOSPC;
last_addr = ret;
addrs[slot] = last_addr;
writel(prepare_rr0_dev_address(last_addr) | DEV_ID_RR0_IS_I3C,
master->regs + DEV_ID_RR0(slot));
writel(0, master->regs + DEV_ID_RR1(slot));
writel(0, master->regs + DEV_ID_RR2(slot));
}
ret = i3c_master_entdaa_locked(&master->base);
if (ret && ret != I3C_ERROR_M2)
return ret;
newdevs = readl(master->regs + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
newdevs &= ~olddevs;
/*
* Clear all retaining registers filled during DAA. We already
* have the addressed assigned to them in the addrs array.
*/
for (slot = 1; slot <= master->maxdevs; slot++) {
if (newdevs & BIT(slot))
i3c_master_add_i3c_dev_locked(m, addrs[slot]);
}
/*
* Clear slots that ended up not being used. Can be caused by I3C
* device creation failure or when the I3C device was already known
* by the system but with a different address (in this case the device
* already has a slot and does not need a new one).
*/
writel(readl(master->regs + DEVS_CTRL) |
master->free_rr_slots << DEVS_CTRL_DEV_CLR_SHIFT,
master->regs + DEVS_CTRL);
i3c_master_defslvs_locked(&master->base);
cdns_i3c_master_upd_i3c_scl_lim(master);
/* Unmask Hot-Join and Mastership request interrupts. */
i3c_master_enec_locked(m, I3C_BROADCAST_ADDR,
I3C_CCC_EVENT_HJ | I3C_CCC_EVENT_MR);
return 0;
}
static int cdns_i3c_master_bus_init(struct i3c_master_controller *m)
{
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
unsigned long pres_step, sysclk_rate, max_i2cfreq;
struct i3c_bus *bus = i3c_master_get_bus(m);
u32 ctrl, prescl0, prescl1, pres, low;
struct i3c_device_info info = { };
int ret, ncycles;
switch (bus->mode) {
case I3C_BUS_MODE_PURE:
ctrl = CTRL_PURE_BUS_MODE;
break;
case I3C_BUS_MODE_MIXED_FAST:
ctrl = CTRL_MIXED_FAST_BUS_MODE;
break;
case I3C_BUS_MODE_MIXED_SLOW:
ctrl = CTRL_MIXED_SLOW_BUS_MODE;
break;
default:
return -EINVAL;
}
sysclk_rate = clk_get_rate(master->sysclk);
if (!sysclk_rate)
return -EINVAL;
pres = DIV_ROUND_UP(sysclk_rate, (bus->scl_rate.i3c * 4)) - 1;
if (pres > PRESCL_CTRL0_MAX)
return -ERANGE;
bus->scl_rate.i3c = sysclk_rate / ((pres + 1) * 4);
prescl0 = PRESCL_CTRL0_I3C(pres);
low = ((I3C_BUS_TLOW_OD_MIN_NS * sysclk_rate) / (pres + 1)) - 2;
prescl1 = PRESCL_CTRL1_OD_LOW(low);
max_i2cfreq = bus->scl_rate.i2c;
pres = (sysclk_rate / (max_i2cfreq * 5)) - 1;
if (pres > PRESCL_CTRL0_MAX)
return -ERANGE;
bus->scl_rate.i2c = sysclk_rate / ((pres + 1) * 5);
prescl0 |= PRESCL_CTRL0_I2C(pres);
writel(prescl0, master->regs + PRESCL_CTRL0);
/* Calculate OD and PP low. */
pres_step = 1000000000 / (bus->scl_rate.i3c * 4);
ncycles = DIV_ROUND_UP(I3C_BUS_TLOW_OD_MIN_NS, pres_step) - 2;
if (ncycles < 0)
ncycles = 0;
prescl1 = PRESCL_CTRL1_OD_LOW(ncycles);
writel(prescl1, master->regs + PRESCL_CTRL1);
/* Get an address for the master. */
ret = i3c_master_get_free_addr(m, 0);
if (ret < 0)
return ret;
writel(prepare_rr0_dev_address(ret) | DEV_ID_RR0_IS_I3C,
master->regs + DEV_ID_RR0(0));
cdns_i3c_master_dev_rr_to_info(master, 0, &info);
if (info.bcr & I3C_BCR_HDR_CAP)
info.hdr_cap = I3C_CCC_HDR_MODE(I3C_HDR_DDR);
ret = i3c_master_set_info(&master->base, &info);
if (ret)
return ret;
/*
* Enable Hot-Join, and, when a Hot-Join request happens, disable all
* events coming from this device.
*
* We will issue ENTDAA afterwards from the threaded IRQ handler.
*/
ctrl |= CTRL_HJ_ACK | CTRL_HJ_DISEC | CTRL_HALT_EN | CTRL_MCS_EN;
writel(ctrl, master->regs + CTRL);
cdns_i3c_master_enable(master);
return 0;
}
static void cdns_i3c_master_handle_ibi(struct cdns_i3c_master *master,
u32 ibir)
{
struct cdns_i3c_i2c_dev_data *data;
bool data_consumed = false;
struct i3c_ibi_slot *slot;
u32 id = IBIR_SLVID(ibir);
struct i3c_dev_desc *dev;
size_t nbytes;
u8 *buf;
/*
* FIXME: maybe we should report the FIFO OVF errors to the upper
* layer.
*/
if (id >= master->ibi.num_slots || (ibir & IBIR_ERROR))
goto out;
dev = master->ibi.slots[id];
spin_lock(&master->ibi.lock);
data = i3c_dev_get_master_data(dev);
slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
if (!slot)
goto out_unlock;
buf = slot->data;
nbytes = IBIR_XFER_BYTES(ibir);
readsl(master->regs + IBI_DATA_FIFO, buf, nbytes / 4);
if (nbytes % 3) {
u32 tmp = __raw_readl(master->regs + IBI_DATA_FIFO);
memcpy(buf + (nbytes & ~3), &tmp, nbytes & 3);
}
slot->len = min_t(unsigned int, IBIR_XFER_BYTES(ibir),
dev->ibi->max_payload_len);
i3c_master_queue_ibi(dev, slot);
data_consumed = true;
out_unlock:
spin_unlock(&master->ibi.lock);
out:
/* Consume data from the FIFO if it's not been done already. */
if (!data_consumed) {
int i;
for (i = 0; i < IBIR_XFER_BYTES(ibir); i += 4)
readl(master->regs + IBI_DATA_FIFO);
}
}
static void cnds_i3c_master_demux_ibis(struct cdns_i3c_master *master)
{
u32 status0;
writel(MST_INT_IBIR_THR, master->regs + MST_ICR);
for (status0 = readl(master->regs + MST_STATUS0);
!(status0 & MST_STATUS0_IBIR_EMP);
status0 = readl(master->regs + MST_STATUS0)) {
u32 ibir = readl(master->regs + IBIR);
switch (IBIR_TYPE(ibir)) {
case IBIR_TYPE_IBI:
cdns_i3c_master_handle_ibi(master, ibir);
break;
case IBIR_TYPE_HJ:
WARN_ON(IBIR_XFER_BYTES(ibir) || (ibir & IBIR_ERROR));
queue_work(master->base.wq, &master->hj_work);
break;
case IBIR_TYPE_MR:
WARN_ON(IBIR_XFER_BYTES(ibir) || (ibir & IBIR_ERROR));
default:
break;
}
}
}
static irqreturn_t cdns_i3c_master_interrupt(int irq, void *data)
{
struct cdns_i3c_master *master = data;
u32 status;
status = readl(master->regs + MST_ISR);
if (!(status & readl(master->regs + MST_IMR)))
return IRQ_NONE;
spin_lock(&master->xferqueue.lock);
cdns_i3c_master_end_xfer_locked(master, status);
spin_unlock(&master->xferqueue.lock);
if (status & MST_INT_IBIR_THR)
cnds_i3c_master_demux_ibis(master);
return IRQ_HANDLED;
}
static int cdns_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
u32 sirmap;
int ret;
ret = i3c_master_disec_locked(m, dev->info.dyn_addr,
I3C_CCC_EVENT_SIR);
if (ret)
return ret;
spin_lock_irqsave(&master->ibi.lock, flags);
sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi));
sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi);
sirmap |= SIR_MAP_DEV_CONF(data->ibi,
SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR));
writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi));
spin_unlock_irqrestore(&master->ibi.lock, flags);
return ret;
}
static int cdns_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
u32 sircfg, sirmap;
int ret;
spin_lock_irqsave(&master->ibi.lock, flags);
sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi));
sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi);
sircfg = SIR_MAP_DEV_ROLE(dev->info.bcr >> 6) |
SIR_MAP_DEV_DA(dev->info.dyn_addr) |
SIR_MAP_DEV_PL(dev->info.max_ibi_len) |
SIR_MAP_DEV_ACK;
if (dev->info.bcr & I3C_BCR_MAX_DATA_SPEED_LIM)
sircfg |= SIR_MAP_DEV_SLOW;
sirmap |= SIR_MAP_DEV_CONF(data->ibi, sircfg);
writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi));
spin_unlock_irqrestore(&master->ibi.lock, flags);
ret = i3c_master_enec_locked(m, dev->info.dyn_addr,
I3C_CCC_EVENT_SIR);
if (ret) {
spin_lock_irqsave(&master->ibi.lock, flags);
sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi));
sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi);
sirmap |= SIR_MAP_DEV_CONF(data->ibi,
SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR));
writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi));
spin_unlock_irqrestore(&master->ibi.lock, flags);
}
return ret;
}
static int cdns_i3c_master_request_ibi(struct i3c_dev_desc *dev,
const struct i3c_ibi_setup *req)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
unsigned int i;
data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
if (IS_ERR(data->ibi_pool))
return PTR_ERR(data->ibi_pool);
spin_lock_irqsave(&master->ibi.lock, flags);
for (i = 0; i < master->ibi.num_slots; i++) {
if (!master->ibi.slots[i]) {
data->ibi = i;
master->ibi.slots[i] = dev;
break;
}
}
spin_unlock_irqrestore(&master->ibi.lock, flags);
if (i < master->ibi.num_slots)
return 0;
i3c_generic_ibi_free_pool(data->ibi_pool);
data->ibi_pool = NULL;
return -ENOSPC;
}
static void cdns_i3c_master_free_ibi(struct i3c_dev_desc *dev)
{
struct i3c_master_controller *m = i3c_dev_get_master(dev);
struct cdns_i3c_master *master = to_cdns_i3c_master(m);
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
unsigned long flags;
spin_lock_irqsave(&master->ibi.lock, flags);
master->ibi.slots[data->ibi] = NULL;
data->ibi = -1;
spin_unlock_irqrestore(&master->ibi.lock, flags);
i3c_generic_ibi_free_pool(data->ibi_pool);
}
static void cdns_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
struct i3c_ibi_slot *slot)
{
struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
}
static const struct i3c_master_controller_ops cdns_i3c_master_ops = {
.bus_init = cdns_i3c_master_bus_init,
.bus_cleanup = cdns_i3c_master_bus_cleanup,
.do_daa = cdns_i3c_master_do_daa,
.attach_i3c_dev = cdns_i3c_master_attach_i3c_dev,
.reattach_i3c_dev = cdns_i3c_master_reattach_i3c_dev,
.detach_i3c_dev = cdns_i3c_master_detach_i3c_dev,
.attach_i2c_dev = cdns_i3c_master_attach_i2c_dev,
.detach_i2c_dev = cdns_i3c_master_detach_i2c_dev,
.supports_ccc_cmd = cdns_i3c_master_supports_ccc_cmd,
.send_ccc_cmd = cdns_i3c_master_send_ccc_cmd,
.priv_xfers = cdns_i3c_master_priv_xfers,
.i2c_xfers = cdns_i3c_master_i2c_xfers,
.i2c_funcs = cdns_i3c_master_i2c_funcs,
.enable_ibi = cdns_i3c_master_enable_ibi,
.disable_ibi = cdns_i3c_master_disable_ibi,
.request_ibi = cdns_i3c_master_request_ibi,
.free_ibi = cdns_i3c_master_free_ibi,
.recycle_ibi_slot = cdns_i3c_master_recycle_ibi_slot,
};
static void cdns_i3c_master_hj(struct work_struct *work)
{
struct cdns_i3c_master *master = container_of(work,
struct cdns_i3c_master,
hj_work);
i3c_master_do_daa(&master->base);
}
static int cdns_i3c_master_probe(struct platform_device *pdev)
{
struct cdns_i3c_master *master;
struct resource *res;
int ret, irq;
u32 val;
master = devm_kzalloc(&pdev->dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
master->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(master->regs))
return PTR_ERR(master->regs);
master->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(master->pclk))
return PTR_ERR(master->pclk);
master->sysclk = devm_clk_get(&pdev->dev, "sysclk");
if (IS_ERR(master->sysclk))
return PTR_ERR(master->sysclk);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = clk_prepare_enable(master->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(master->sysclk);
if (ret)
goto err_disable_pclk;
if (readl(master->regs + DEV_ID) != DEV_ID_I3C_MASTER) {
ret = -EINVAL;
goto err_disable_sysclk;
}
spin_lock_init(&master->xferqueue.lock);
INIT_LIST_HEAD(&master->xferqueue.list);
INIT_WORK(&master->hj_work, cdns_i3c_master_hj);
writel(0xffffffff, master->regs + MST_IDR);
writel(0xffffffff, master->regs + SLV_IDR);
ret = devm_request_irq(&pdev->dev, irq, cdns_i3c_master_interrupt, 0,
dev_name(&pdev->dev), master);
if (ret)
goto err_disable_sysclk;
platform_set_drvdata(pdev, master);
val = readl(master->regs + CONF_STATUS0);
/* Device ID0 is reserved to describe this master. */
master->maxdevs = CONF_STATUS0_DEVS_NUM(val);
master->free_rr_slots = GENMASK(master->maxdevs, 1);
val = readl(master->regs + CONF_STATUS1);
master->caps.cmdfifodepth = CONF_STATUS1_CMD_DEPTH(val);
master->caps.rxfifodepth = CONF_STATUS1_RX_DEPTH(val);
master->caps.txfifodepth = CONF_STATUS1_TX_DEPTH(val);
master->caps.ibirfifodepth = CONF_STATUS0_IBIR_DEPTH(val);
master->caps.cmdrfifodepth = CONF_STATUS0_CMDR_DEPTH(val);
spin_lock_init(&master->ibi.lock);
master->ibi.num_slots = CONF_STATUS1_IBI_HW_RES(val);
master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
sizeof(*master->ibi.slots),
GFP_KERNEL);
if (!master->ibi.slots)
goto err_disable_sysclk;
writel(IBIR_THR(1), master->regs + CMD_IBI_THR_CTRL);
writel(MST_INT_IBIR_THR, master->regs + MST_IER);
writel(DEVS_CTRL_DEV_CLR_ALL, master->regs + DEVS_CTRL);
ret = i3c_master_register(&master->base, &pdev->dev,
&cdns_i3c_master_ops, false);
if (ret)
goto err_disable_sysclk;
return 0;
err_disable_sysclk:
clk_disable_unprepare(master->sysclk);
err_disable_pclk:
clk_disable_unprepare(master->pclk);
return ret;
}
static int cdns_i3c_master_remove(struct platform_device *pdev)
{
struct cdns_i3c_master *master = platform_get_drvdata(pdev);
int ret;
ret = i3c_master_unregister(&master->base);
if (ret)
return ret;
clk_disable_unprepare(master->sysclk);
clk_disable_unprepare(master->pclk);
return 0;
}
static const struct of_device_id cdns_i3c_master_of_ids[] = {
{ .compatible = "cdns,i3c-master" },
{ /* sentinel */ },
};
static struct platform_driver cdns_i3c_master = {
.probe = cdns_i3c_master_probe,
.remove = cdns_i3c_master_remove,
.driver = {
.name = "cdns-i3c-master",
.of_match_table = cdns_i3c_master_of_ids,
},
};
module_platform_driver(cdns_i3c_master);
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@bootlin.com>");
MODULE_DESCRIPTION("Cadence I3C master driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:cdns-i3c-master");