linux/fs/ecryptfs/inode.c
Christian Brauner 39f60c1cce
fs: port xattr to mnt_idmap
Convert to struct mnt_idmap.

Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.

Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.

Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.

Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19 09:24:28 +01:00

1220 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2004 Erez Zadok
* Copyright (C) 2001-2004 Stony Brook University
* Copyright (C) 2004-2007 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompsion <mcthomps@us.ibm.com>
*/
#include <linux/file.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/dcache.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/fs_stack.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include <linux/fileattr.h>
#include <asm/unaligned.h>
#include "ecryptfs_kernel.h"
static int lock_parent(struct dentry *dentry,
struct dentry **lower_dentry,
struct inode **lower_dir)
{
struct dentry *lower_dir_dentry;
lower_dir_dentry = ecryptfs_dentry_to_lower(dentry->d_parent);
*lower_dir = d_inode(lower_dir_dentry);
*lower_dentry = ecryptfs_dentry_to_lower(dentry);
inode_lock_nested(*lower_dir, I_MUTEX_PARENT);
return (*lower_dentry)->d_parent == lower_dir_dentry ? 0 : -EINVAL;
}
static int ecryptfs_inode_test(struct inode *inode, void *lower_inode)
{
return ecryptfs_inode_to_lower(inode) == lower_inode;
}
static int ecryptfs_inode_set(struct inode *inode, void *opaque)
{
struct inode *lower_inode = opaque;
ecryptfs_set_inode_lower(inode, lower_inode);
fsstack_copy_attr_all(inode, lower_inode);
/* i_size will be overwritten for encrypted regular files */
fsstack_copy_inode_size(inode, lower_inode);
inode->i_ino = lower_inode->i_ino;
inode->i_mapping->a_ops = &ecryptfs_aops;
if (S_ISLNK(inode->i_mode))
inode->i_op = &ecryptfs_symlink_iops;
else if (S_ISDIR(inode->i_mode))
inode->i_op = &ecryptfs_dir_iops;
else
inode->i_op = &ecryptfs_main_iops;
if (S_ISDIR(inode->i_mode))
inode->i_fop = &ecryptfs_dir_fops;
else if (special_file(inode->i_mode))
init_special_inode(inode, inode->i_mode, inode->i_rdev);
else
inode->i_fop = &ecryptfs_main_fops;
return 0;
}
static struct inode *__ecryptfs_get_inode(struct inode *lower_inode,
struct super_block *sb)
{
struct inode *inode;
if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb))
return ERR_PTR(-EXDEV);
if (!igrab(lower_inode))
return ERR_PTR(-ESTALE);
inode = iget5_locked(sb, (unsigned long)lower_inode,
ecryptfs_inode_test, ecryptfs_inode_set,
lower_inode);
if (!inode) {
iput(lower_inode);
return ERR_PTR(-EACCES);
}
if (!(inode->i_state & I_NEW))
iput(lower_inode);
return inode;
}
struct inode *ecryptfs_get_inode(struct inode *lower_inode,
struct super_block *sb)
{
struct inode *inode = __ecryptfs_get_inode(lower_inode, sb);
if (!IS_ERR(inode) && (inode->i_state & I_NEW))
unlock_new_inode(inode);
return inode;
}
/**
* ecryptfs_interpose
* @lower_dentry: Existing dentry in the lower filesystem
* @dentry: ecryptfs' dentry
* @sb: ecryptfs's super_block
*
* Interposes upper and lower dentries.
*
* Returns zero on success; non-zero otherwise
*/
static int ecryptfs_interpose(struct dentry *lower_dentry,
struct dentry *dentry, struct super_block *sb)
{
struct inode *inode = ecryptfs_get_inode(d_inode(lower_dentry), sb);
if (IS_ERR(inode))
return PTR_ERR(inode);
d_instantiate(dentry, inode);
return 0;
}
static int ecryptfs_do_unlink(struct inode *dir, struct dentry *dentry,
struct inode *inode)
{
struct dentry *lower_dentry;
struct inode *lower_dir;
int rc;
rc = lock_parent(dentry, &lower_dentry, &lower_dir);
dget(lower_dentry); // don't even try to make the lower negative
if (!rc) {
if (d_unhashed(lower_dentry))
rc = -EINVAL;
else
rc = vfs_unlink(&nop_mnt_idmap, lower_dir, lower_dentry,
NULL);
}
if (rc) {
printk(KERN_ERR "Error in vfs_unlink; rc = [%d]\n", rc);
goto out_unlock;
}
fsstack_copy_attr_times(dir, lower_dir);
set_nlink(inode, ecryptfs_inode_to_lower(inode)->i_nlink);
inode->i_ctime = dir->i_ctime;
out_unlock:
dput(lower_dentry);
inode_unlock(lower_dir);
if (!rc)
d_drop(dentry);
return rc;
}
/**
* ecryptfs_do_create
* @directory_inode: inode of the new file's dentry's parent in ecryptfs
* @ecryptfs_dentry: New file's dentry in ecryptfs
* @mode: The mode of the new file
*
* Creates the underlying file and the eCryptfs inode which will link to
* it. It will also update the eCryptfs directory inode to mimic the
* stat of the lower directory inode.
*
* Returns the new eCryptfs inode on success; an ERR_PTR on error condition
*/
static struct inode *
ecryptfs_do_create(struct inode *directory_inode,
struct dentry *ecryptfs_dentry, umode_t mode)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_dir;
struct inode *inode;
rc = lock_parent(ecryptfs_dentry, &lower_dentry, &lower_dir);
if (!rc)
rc = vfs_create(&nop_mnt_idmap, lower_dir,
lower_dentry, mode, true);
if (rc) {
printk(KERN_ERR "%s: Failure to create dentry in lower fs; "
"rc = [%d]\n", __func__, rc);
inode = ERR_PTR(rc);
goto out_lock;
}
inode = __ecryptfs_get_inode(d_inode(lower_dentry),
directory_inode->i_sb);
if (IS_ERR(inode)) {
vfs_unlink(&nop_mnt_idmap, lower_dir, lower_dentry, NULL);
goto out_lock;
}
fsstack_copy_attr_times(directory_inode, lower_dir);
fsstack_copy_inode_size(directory_inode, lower_dir);
out_lock:
inode_unlock(lower_dir);
return inode;
}
/*
* ecryptfs_initialize_file
*
* Cause the file to be changed from a basic empty file to an ecryptfs
* file with a header and first data page.
*
* Returns zero on success
*/
int ecryptfs_initialize_file(struct dentry *ecryptfs_dentry,
struct inode *ecryptfs_inode)
{
struct ecryptfs_crypt_stat *crypt_stat =
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
int rc = 0;
if (S_ISDIR(ecryptfs_inode->i_mode)) {
ecryptfs_printk(KERN_DEBUG, "This is a directory\n");
crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED);
goto out;
}
ecryptfs_printk(KERN_DEBUG, "Initializing crypto context\n");
rc = ecryptfs_new_file_context(ecryptfs_inode);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error creating new file "
"context; rc = [%d]\n", rc);
goto out;
}
rc = ecryptfs_get_lower_file(ecryptfs_dentry, ecryptfs_inode);
if (rc) {
printk(KERN_ERR "%s: Error attempting to initialize "
"the lower file for the dentry with name "
"[%pd]; rc = [%d]\n", __func__,
ecryptfs_dentry, rc);
goto out;
}
rc = ecryptfs_write_metadata(ecryptfs_dentry, ecryptfs_inode);
if (rc)
printk(KERN_ERR "Error writing headers; rc = [%d]\n", rc);
ecryptfs_put_lower_file(ecryptfs_inode);
out:
return rc;
}
/*
* ecryptfs_create
* @mode: The mode of the new file.
*
* Creates a new file.
*
* Returns zero on success; non-zero on error condition
*/
static int
ecryptfs_create(struct mnt_idmap *idmap,
struct inode *directory_inode, struct dentry *ecryptfs_dentry,
umode_t mode, bool excl)
{
struct inode *ecryptfs_inode;
int rc;
ecryptfs_inode = ecryptfs_do_create(directory_inode, ecryptfs_dentry,
mode);
if (IS_ERR(ecryptfs_inode)) {
ecryptfs_printk(KERN_WARNING, "Failed to create file in"
"lower filesystem\n");
rc = PTR_ERR(ecryptfs_inode);
goto out;
}
/* At this point, a file exists on "disk"; we need to make sure
* that this on disk file is prepared to be an ecryptfs file */
rc = ecryptfs_initialize_file(ecryptfs_dentry, ecryptfs_inode);
if (rc) {
ecryptfs_do_unlink(directory_inode, ecryptfs_dentry,
ecryptfs_inode);
iget_failed(ecryptfs_inode);
goto out;
}
d_instantiate_new(ecryptfs_dentry, ecryptfs_inode);
out:
return rc;
}
static int ecryptfs_i_size_read(struct dentry *dentry, struct inode *inode)
{
struct ecryptfs_crypt_stat *crypt_stat;
int rc;
rc = ecryptfs_get_lower_file(dentry, inode);
if (rc) {
printk(KERN_ERR "%s: Error attempting to initialize "
"the lower file for the dentry with name "
"[%pd]; rc = [%d]\n", __func__,
dentry, rc);
return rc;
}
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
/* TODO: lock for crypt_stat comparison */
if (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED))
ecryptfs_set_default_sizes(crypt_stat);
rc = ecryptfs_read_and_validate_header_region(inode);
ecryptfs_put_lower_file(inode);
if (rc) {
rc = ecryptfs_read_and_validate_xattr_region(dentry, inode);
if (!rc)
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
}
/* Must return 0 to allow non-eCryptfs files to be looked up, too */
return 0;
}
/*
* ecryptfs_lookup_interpose - Dentry interposition for a lookup
*/
static struct dentry *ecryptfs_lookup_interpose(struct dentry *dentry,
struct dentry *lower_dentry)
{
const struct path *path = ecryptfs_dentry_to_lower_path(dentry->d_parent);
struct inode *inode, *lower_inode;
struct ecryptfs_dentry_info *dentry_info;
int rc = 0;
dentry_info = kmem_cache_alloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
if (!dentry_info) {
dput(lower_dentry);
return ERR_PTR(-ENOMEM);
}
fsstack_copy_attr_atime(d_inode(dentry->d_parent),
d_inode(path->dentry));
BUG_ON(!d_count(lower_dentry));
ecryptfs_set_dentry_private(dentry, dentry_info);
dentry_info->lower_path.mnt = mntget(path->mnt);
dentry_info->lower_path.dentry = lower_dentry;
/*
* negative dentry can go positive under us here - its parent is not
* locked. That's OK and that could happen just as we return from
* ecryptfs_lookup() anyway. Just need to be careful and fetch
* ->d_inode only once - it's not stable here.
*/
lower_inode = READ_ONCE(lower_dentry->d_inode);
if (!lower_inode) {
/* We want to add because we couldn't find in lower */
d_add(dentry, NULL);
return NULL;
}
inode = __ecryptfs_get_inode(lower_inode, dentry->d_sb);
if (IS_ERR(inode)) {
printk(KERN_ERR "%s: Error interposing; rc = [%ld]\n",
__func__, PTR_ERR(inode));
return ERR_CAST(inode);
}
if (S_ISREG(inode->i_mode)) {
rc = ecryptfs_i_size_read(dentry, inode);
if (rc) {
make_bad_inode(inode);
return ERR_PTR(rc);
}
}
if (inode->i_state & I_NEW)
unlock_new_inode(inode);
return d_splice_alias(inode, dentry);
}
/**
* ecryptfs_lookup
* @ecryptfs_dir_inode: The eCryptfs directory inode
* @ecryptfs_dentry: The eCryptfs dentry that we are looking up
* @flags: lookup flags
*
* Find a file on disk. If the file does not exist, then we'll add it to the
* dentry cache and continue on to read it from the disk.
*/
static struct dentry *ecryptfs_lookup(struct inode *ecryptfs_dir_inode,
struct dentry *ecryptfs_dentry,
unsigned int flags)
{
char *encrypted_and_encoded_name = NULL;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
struct dentry *lower_dir_dentry, *lower_dentry;
const char *name = ecryptfs_dentry->d_name.name;
size_t len = ecryptfs_dentry->d_name.len;
struct dentry *res;
int rc = 0;
lower_dir_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry->d_parent);
mount_crypt_stat = &ecryptfs_superblock_to_private(
ecryptfs_dentry->d_sb)->mount_crypt_stat;
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
rc = ecryptfs_encrypt_and_encode_filename(
&encrypted_and_encoded_name, &len,
mount_crypt_stat, name, len);
if (rc) {
printk(KERN_ERR "%s: Error attempting to encrypt and encode "
"filename; rc = [%d]\n", __func__, rc);
return ERR_PTR(rc);
}
name = encrypted_and_encoded_name;
}
lower_dentry = lookup_one_len_unlocked(name, lower_dir_dentry, len);
if (IS_ERR(lower_dentry)) {
ecryptfs_printk(KERN_DEBUG, "%s: lookup_one_len() returned "
"[%ld] on lower_dentry = [%s]\n", __func__,
PTR_ERR(lower_dentry),
name);
res = ERR_CAST(lower_dentry);
} else {
res = ecryptfs_lookup_interpose(ecryptfs_dentry, lower_dentry);
}
kfree(encrypted_and_encoded_name);
return res;
}
static int ecryptfs_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
struct dentry *lower_old_dentry;
struct dentry *lower_new_dentry;
struct inode *lower_dir;
u64 file_size_save;
int rc;
file_size_save = i_size_read(d_inode(old_dentry));
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
rc = lock_parent(new_dentry, &lower_new_dentry, &lower_dir);
if (!rc)
rc = vfs_link(lower_old_dentry, &nop_mnt_idmap, lower_dir,
lower_new_dentry, NULL);
if (rc || d_really_is_negative(lower_new_dentry))
goto out_lock;
rc = ecryptfs_interpose(lower_new_dentry, new_dentry, dir->i_sb);
if (rc)
goto out_lock;
fsstack_copy_attr_times(dir, lower_dir);
fsstack_copy_inode_size(dir, lower_dir);
set_nlink(d_inode(old_dentry),
ecryptfs_inode_to_lower(d_inode(old_dentry))->i_nlink);
i_size_write(d_inode(new_dentry), file_size_save);
out_lock:
inode_unlock(lower_dir);
return rc;
}
static int ecryptfs_unlink(struct inode *dir, struct dentry *dentry)
{
return ecryptfs_do_unlink(dir, dentry, d_inode(dentry));
}
static int ecryptfs_symlink(struct mnt_idmap *idmap,
struct inode *dir, struct dentry *dentry,
const char *symname)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_dir;
char *encoded_symname;
size_t encoded_symlen;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat = NULL;
rc = lock_parent(dentry, &lower_dentry, &lower_dir);
if (rc)
goto out_lock;
mount_crypt_stat = &ecryptfs_superblock_to_private(
dir->i_sb)->mount_crypt_stat;
rc = ecryptfs_encrypt_and_encode_filename(&encoded_symname,
&encoded_symlen,
mount_crypt_stat, symname,
strlen(symname));
if (rc)
goto out_lock;
rc = vfs_symlink(&nop_mnt_idmap, lower_dir, lower_dentry,
encoded_symname);
kfree(encoded_symname);
if (rc || d_really_is_negative(lower_dentry))
goto out_lock;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
if (rc)
goto out_lock;
fsstack_copy_attr_times(dir, lower_dir);
fsstack_copy_inode_size(dir, lower_dir);
out_lock:
inode_unlock(lower_dir);
if (d_really_is_negative(dentry))
d_drop(dentry);
return rc;
}
static int ecryptfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_dir;
rc = lock_parent(dentry, &lower_dentry, &lower_dir);
if (!rc)
rc = vfs_mkdir(&nop_mnt_idmap, lower_dir,
lower_dentry, mode);
if (rc || d_really_is_negative(lower_dentry))
goto out;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
if (rc)
goto out;
fsstack_copy_attr_times(dir, lower_dir);
fsstack_copy_inode_size(dir, lower_dir);
set_nlink(dir, lower_dir->i_nlink);
out:
inode_unlock(lower_dir);
if (d_really_is_negative(dentry))
d_drop(dentry);
return rc;
}
static int ecryptfs_rmdir(struct inode *dir, struct dentry *dentry)
{
struct dentry *lower_dentry;
struct inode *lower_dir;
int rc;
rc = lock_parent(dentry, &lower_dentry, &lower_dir);
dget(lower_dentry); // don't even try to make the lower negative
if (!rc) {
if (d_unhashed(lower_dentry))
rc = -EINVAL;
else
rc = vfs_rmdir(&nop_mnt_idmap, lower_dir, lower_dentry);
}
if (!rc) {
clear_nlink(d_inode(dentry));
fsstack_copy_attr_times(dir, lower_dir);
set_nlink(dir, lower_dir->i_nlink);
}
dput(lower_dentry);
inode_unlock(lower_dir);
if (!rc)
d_drop(dentry);
return rc;
}
static int
ecryptfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t dev)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_dir;
rc = lock_parent(dentry, &lower_dentry, &lower_dir);
if (!rc)
rc = vfs_mknod(&nop_mnt_idmap, lower_dir,
lower_dentry, mode, dev);
if (rc || d_really_is_negative(lower_dentry))
goto out;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb);
if (rc)
goto out;
fsstack_copy_attr_times(dir, lower_dir);
fsstack_copy_inode_size(dir, lower_dir);
out:
inode_unlock(lower_dir);
if (d_really_is_negative(dentry))
d_drop(dentry);
return rc;
}
static int
ecryptfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
struct dentry *old_dentry, struct inode *new_dir,
struct dentry *new_dentry, unsigned int flags)
{
int rc;
struct dentry *lower_old_dentry;
struct dentry *lower_new_dentry;
struct dentry *lower_old_dir_dentry;
struct dentry *lower_new_dir_dentry;
struct dentry *trap;
struct inode *target_inode;
struct renamedata rd = {};
if (flags)
return -EINVAL;
lower_old_dir_dentry = ecryptfs_dentry_to_lower(old_dentry->d_parent);
lower_new_dir_dentry = ecryptfs_dentry_to_lower(new_dentry->d_parent);
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry);
target_inode = d_inode(new_dentry);
trap = lock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
dget(lower_new_dentry);
rc = -EINVAL;
if (lower_old_dentry->d_parent != lower_old_dir_dentry)
goto out_lock;
if (lower_new_dentry->d_parent != lower_new_dir_dentry)
goto out_lock;
if (d_unhashed(lower_old_dentry) || d_unhashed(lower_new_dentry))
goto out_lock;
/* source should not be ancestor of target */
if (trap == lower_old_dentry)
goto out_lock;
/* target should not be ancestor of source */
if (trap == lower_new_dentry) {
rc = -ENOTEMPTY;
goto out_lock;
}
rd.old_mnt_idmap = &nop_mnt_idmap;
rd.old_dir = d_inode(lower_old_dir_dentry);
rd.old_dentry = lower_old_dentry;
rd.new_mnt_idmap = &nop_mnt_idmap;
rd.new_dir = d_inode(lower_new_dir_dentry);
rd.new_dentry = lower_new_dentry;
rc = vfs_rename(&rd);
if (rc)
goto out_lock;
if (target_inode)
fsstack_copy_attr_all(target_inode,
ecryptfs_inode_to_lower(target_inode));
fsstack_copy_attr_all(new_dir, d_inode(lower_new_dir_dentry));
if (new_dir != old_dir)
fsstack_copy_attr_all(old_dir, d_inode(lower_old_dir_dentry));
out_lock:
dput(lower_new_dentry);
unlock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
return rc;
}
static char *ecryptfs_readlink_lower(struct dentry *dentry, size_t *bufsiz)
{
DEFINE_DELAYED_CALL(done);
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
const char *link;
char *buf;
int rc;
link = vfs_get_link(lower_dentry, &done);
if (IS_ERR(link))
return ERR_CAST(link);
rc = ecryptfs_decode_and_decrypt_filename(&buf, bufsiz, dentry->d_sb,
link, strlen(link));
do_delayed_call(&done);
if (rc)
return ERR_PTR(rc);
return buf;
}
static const char *ecryptfs_get_link(struct dentry *dentry,
struct inode *inode,
struct delayed_call *done)
{
size_t len;
char *buf;
if (!dentry)
return ERR_PTR(-ECHILD);
buf = ecryptfs_readlink_lower(dentry, &len);
if (IS_ERR(buf))
return buf;
fsstack_copy_attr_atime(d_inode(dentry),
d_inode(ecryptfs_dentry_to_lower(dentry)));
buf[len] = '\0';
set_delayed_call(done, kfree_link, buf);
return buf;
}
/**
* upper_size_to_lower_size
* @crypt_stat: Crypt_stat associated with file
* @upper_size: Size of the upper file
*
* Calculate the required size of the lower file based on the
* specified size of the upper file. This calculation is based on the
* number of headers in the underlying file and the extent size.
*
* Returns Calculated size of the lower file.
*/
static loff_t
upper_size_to_lower_size(struct ecryptfs_crypt_stat *crypt_stat,
loff_t upper_size)
{
loff_t lower_size;
lower_size = ecryptfs_lower_header_size(crypt_stat);
if (upper_size != 0) {
loff_t num_extents;
num_extents = upper_size >> crypt_stat->extent_shift;
if (upper_size & ~crypt_stat->extent_mask)
num_extents++;
lower_size += (num_extents * crypt_stat->extent_size);
}
return lower_size;
}
/**
* truncate_upper
* @dentry: The ecryptfs layer dentry
* @ia: Address of the ecryptfs inode's attributes
* @lower_ia: Address of the lower inode's attributes
*
* Function to handle truncations modifying the size of the file. Note
* that the file sizes are interpolated. When expanding, we are simply
* writing strings of 0's out. When truncating, we truncate the upper
* inode and update the lower_ia according to the page index
* interpolations. If ATTR_SIZE is set in lower_ia->ia_valid upon return,
* the caller must use lower_ia in a call to notify_change() to perform
* the truncation of the lower inode.
*
* Returns zero on success; non-zero otherwise
*/
static int truncate_upper(struct dentry *dentry, struct iattr *ia,
struct iattr *lower_ia)
{
int rc = 0;
struct inode *inode = d_inode(dentry);
struct ecryptfs_crypt_stat *crypt_stat;
loff_t i_size = i_size_read(inode);
loff_t lower_size_before_truncate;
loff_t lower_size_after_truncate;
if (unlikely((ia->ia_size == i_size))) {
lower_ia->ia_valid &= ~ATTR_SIZE;
return 0;
}
rc = ecryptfs_get_lower_file(dentry, inode);
if (rc)
return rc;
crypt_stat = &ecryptfs_inode_to_private(d_inode(dentry))->crypt_stat;
/* Switch on growing or shrinking file */
if (ia->ia_size > i_size) {
char zero[] = { 0x00 };
lower_ia->ia_valid &= ~ATTR_SIZE;
/* Write a single 0 at the last position of the file;
* this triggers code that will fill in 0's throughout
* the intermediate portion of the previous end of the
* file and the new and of the file */
rc = ecryptfs_write(inode, zero,
(ia->ia_size - 1), 1);
} else { /* ia->ia_size < i_size_read(inode) */
/* We're chopping off all the pages down to the page
* in which ia->ia_size is located. Fill in the end of
* that page from (ia->ia_size & ~PAGE_MASK) to
* PAGE_SIZE with zeros. */
size_t num_zeros = (PAGE_SIZE
- (ia->ia_size & ~PAGE_MASK));
if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
truncate_setsize(inode, ia->ia_size);
lower_ia->ia_size = ia->ia_size;
lower_ia->ia_valid |= ATTR_SIZE;
goto out;
}
if (num_zeros) {
char *zeros_virt;
zeros_virt = kzalloc(num_zeros, GFP_KERNEL);
if (!zeros_virt) {
rc = -ENOMEM;
goto out;
}
rc = ecryptfs_write(inode, zeros_virt,
ia->ia_size, num_zeros);
kfree(zeros_virt);
if (rc) {
printk(KERN_ERR "Error attempting to zero out "
"the remainder of the end page on "
"reducing truncate; rc = [%d]\n", rc);
goto out;
}
}
truncate_setsize(inode, ia->ia_size);
rc = ecryptfs_write_inode_size_to_metadata(inode);
if (rc) {
printk(KERN_ERR "Problem with "
"ecryptfs_write_inode_size_to_metadata; "
"rc = [%d]\n", rc);
goto out;
}
/* We are reducing the size of the ecryptfs file, and need to
* know if we need to reduce the size of the lower file. */
lower_size_before_truncate =
upper_size_to_lower_size(crypt_stat, i_size);
lower_size_after_truncate =
upper_size_to_lower_size(crypt_stat, ia->ia_size);
if (lower_size_after_truncate < lower_size_before_truncate) {
lower_ia->ia_size = lower_size_after_truncate;
lower_ia->ia_valid |= ATTR_SIZE;
} else
lower_ia->ia_valid &= ~ATTR_SIZE;
}
out:
ecryptfs_put_lower_file(inode);
return rc;
}
static int ecryptfs_inode_newsize_ok(struct inode *inode, loff_t offset)
{
struct ecryptfs_crypt_stat *crypt_stat;
loff_t lower_oldsize, lower_newsize;
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
lower_oldsize = upper_size_to_lower_size(crypt_stat,
i_size_read(inode));
lower_newsize = upper_size_to_lower_size(crypt_stat, offset);
if (lower_newsize > lower_oldsize) {
/*
* The eCryptfs inode and the new *lower* size are mixed here
* because we may not have the lower i_mutex held and/or it may
* not be appropriate to call inode_newsize_ok() with inodes
* from other filesystems.
*/
return inode_newsize_ok(inode, lower_newsize);
}
return 0;
}
/**
* ecryptfs_truncate
* @dentry: The ecryptfs layer dentry
* @new_length: The length to expand the file to
*
* Simple function that handles the truncation of an eCryptfs inode and
* its corresponding lower inode.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_truncate(struct dentry *dentry, loff_t new_length)
{
struct iattr ia = { .ia_valid = ATTR_SIZE, .ia_size = new_length };
struct iattr lower_ia = { .ia_valid = 0 };
int rc;
rc = ecryptfs_inode_newsize_ok(d_inode(dentry), new_length);
if (rc)
return rc;
rc = truncate_upper(dentry, &ia, &lower_ia);
if (!rc && lower_ia.ia_valid & ATTR_SIZE) {
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
inode_lock(d_inode(lower_dentry));
rc = notify_change(&nop_mnt_idmap, lower_dentry,
&lower_ia, NULL);
inode_unlock(d_inode(lower_dentry));
}
return rc;
}
static int
ecryptfs_permission(struct mnt_idmap *idmap, struct inode *inode,
int mask)
{
return inode_permission(&nop_mnt_idmap,
ecryptfs_inode_to_lower(inode), mask);
}
/**
* ecryptfs_setattr
* @idmap: idmap of the target mount
* @dentry: dentry handle to the inode to modify
* @ia: Structure with flags of what to change and values
*
* Updates the metadata of an inode. If the update is to the size
* i.e. truncation, then ecryptfs_truncate will handle the size modification
* of both the ecryptfs inode and the lower inode.
*
* All other metadata changes will be passed right to the lower filesystem,
* and we will just update our inode to look like the lower.
*/
static int ecryptfs_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *ia)
{
int rc = 0;
struct dentry *lower_dentry;
struct iattr lower_ia;
struct inode *inode;
struct inode *lower_inode;
struct ecryptfs_crypt_stat *crypt_stat;
crypt_stat = &ecryptfs_inode_to_private(d_inode(dentry))->crypt_stat;
if (!(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)) {
rc = ecryptfs_init_crypt_stat(crypt_stat);
if (rc)
return rc;
}
inode = d_inode(dentry);
lower_inode = ecryptfs_inode_to_lower(inode);
lower_dentry = ecryptfs_dentry_to_lower(dentry);
mutex_lock(&crypt_stat->cs_mutex);
if (d_is_dir(dentry))
crypt_stat->flags &= ~(ECRYPTFS_ENCRYPTED);
else if (d_is_reg(dentry)
&& (!(crypt_stat->flags & ECRYPTFS_POLICY_APPLIED)
|| !(crypt_stat->flags & ECRYPTFS_KEY_VALID))) {
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
mount_crypt_stat = &ecryptfs_superblock_to_private(
dentry->d_sb)->mount_crypt_stat;
rc = ecryptfs_get_lower_file(dentry, inode);
if (rc) {
mutex_unlock(&crypt_stat->cs_mutex);
goto out;
}
rc = ecryptfs_read_metadata(dentry);
ecryptfs_put_lower_file(inode);
if (rc) {
if (!(mount_crypt_stat->flags
& ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)) {
rc = -EIO;
printk(KERN_WARNING "Either the lower file "
"is not in a valid eCryptfs format, "
"or the key could not be retrieved. "
"Plaintext passthrough mode is not "
"enabled; returning -EIO\n");
mutex_unlock(&crypt_stat->cs_mutex);
goto out;
}
rc = 0;
crypt_stat->flags &= ~(ECRYPTFS_I_SIZE_INITIALIZED
| ECRYPTFS_ENCRYPTED);
}
}
mutex_unlock(&crypt_stat->cs_mutex);
rc = setattr_prepare(&nop_mnt_idmap, dentry, ia);
if (rc)
goto out;
if (ia->ia_valid & ATTR_SIZE) {
rc = ecryptfs_inode_newsize_ok(inode, ia->ia_size);
if (rc)
goto out;
}
memcpy(&lower_ia, ia, sizeof(lower_ia));
if (ia->ia_valid & ATTR_FILE)
lower_ia.ia_file = ecryptfs_file_to_lower(ia->ia_file);
if (ia->ia_valid & ATTR_SIZE) {
rc = truncate_upper(dentry, ia, &lower_ia);
if (rc < 0)
goto out;
}
/*
* mode change is for clearing setuid/setgid bits. Allow lower fs
* to interpret this in its own way.
*/
if (lower_ia.ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
lower_ia.ia_valid &= ~ATTR_MODE;
inode_lock(d_inode(lower_dentry));
rc = notify_change(&nop_mnt_idmap, lower_dentry, &lower_ia, NULL);
inode_unlock(d_inode(lower_dentry));
out:
fsstack_copy_attr_all(inode, lower_inode);
return rc;
}
static int ecryptfs_getattr_link(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int flags)
{
struct dentry *dentry = path->dentry;
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
int rc = 0;
mount_crypt_stat = &ecryptfs_superblock_to_private(
dentry->d_sb)->mount_crypt_stat;
generic_fillattr(&nop_mnt_idmap, d_inode(dentry), stat);
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
char *target;
size_t targetsiz;
target = ecryptfs_readlink_lower(dentry, &targetsiz);
if (!IS_ERR(target)) {
kfree(target);
stat->size = targetsiz;
} else {
rc = PTR_ERR(target);
}
}
return rc;
}
static int ecryptfs_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int flags)
{
struct dentry *dentry = path->dentry;
struct kstat lower_stat;
int rc;
rc = vfs_getattr(ecryptfs_dentry_to_lower_path(dentry), &lower_stat,
request_mask, flags);
if (!rc) {
fsstack_copy_attr_all(d_inode(dentry),
ecryptfs_inode_to_lower(d_inode(dentry)));
generic_fillattr(&nop_mnt_idmap, d_inode(dentry), stat);
stat->blocks = lower_stat.blocks;
}
return rc;
}
int
ecryptfs_setxattr(struct dentry *dentry, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_inode;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
lower_inode = d_inode(lower_dentry);
if (!(lower_inode->i_opflags & IOP_XATTR)) {
rc = -EOPNOTSUPP;
goto out;
}
inode_lock(lower_inode);
rc = __vfs_setxattr_locked(&nop_mnt_idmap, lower_dentry, name, value, size, flags, NULL);
inode_unlock(lower_inode);
if (!rc && inode)
fsstack_copy_attr_all(inode, lower_inode);
out:
return rc;
}
ssize_t
ecryptfs_getxattr_lower(struct dentry *lower_dentry, struct inode *lower_inode,
const char *name, void *value, size_t size)
{
int rc;
if (!(lower_inode->i_opflags & IOP_XATTR)) {
rc = -EOPNOTSUPP;
goto out;
}
inode_lock(lower_inode);
rc = __vfs_getxattr(lower_dentry, lower_inode, name, value, size);
inode_unlock(lower_inode);
out:
return rc;
}
static ssize_t
ecryptfs_getxattr(struct dentry *dentry, struct inode *inode,
const char *name, void *value, size_t size)
{
return ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
ecryptfs_inode_to_lower(inode),
name, value, size);
}
static ssize_t
ecryptfs_listxattr(struct dentry *dentry, char *list, size_t size)
{
int rc = 0;
struct dentry *lower_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!d_inode(lower_dentry)->i_op->listxattr) {
rc = -EOPNOTSUPP;
goto out;
}
inode_lock(d_inode(lower_dentry));
rc = d_inode(lower_dentry)->i_op->listxattr(lower_dentry, list, size);
inode_unlock(d_inode(lower_dentry));
out:
return rc;
}
static int ecryptfs_removexattr(struct dentry *dentry, struct inode *inode,
const char *name)
{
int rc;
struct dentry *lower_dentry;
struct inode *lower_inode;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
lower_inode = ecryptfs_inode_to_lower(inode);
if (!(lower_inode->i_opflags & IOP_XATTR)) {
rc = -EOPNOTSUPP;
goto out;
}
inode_lock(lower_inode);
rc = __vfs_removexattr(&nop_mnt_idmap, lower_dentry, name);
inode_unlock(lower_inode);
out:
return rc;
}
static int ecryptfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
return vfs_fileattr_get(ecryptfs_dentry_to_lower(dentry), fa);
}
static int ecryptfs_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
int rc;
rc = vfs_fileattr_set(&nop_mnt_idmap, lower_dentry, fa);
fsstack_copy_attr_all(d_inode(dentry), d_inode(lower_dentry));
return rc;
}
static struct posix_acl *ecryptfs_get_acl(struct mnt_idmap *idmap,
struct dentry *dentry, int type)
{
return vfs_get_acl(idmap, ecryptfs_dentry_to_lower(dentry),
posix_acl_xattr_name(type));
}
static int ecryptfs_set_acl(struct mnt_idmap *idmap,
struct dentry *dentry, struct posix_acl *acl,
int type)
{
int rc;
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
struct inode *lower_inode = d_inode(lower_dentry);
rc = vfs_set_acl(&nop_mnt_idmap, lower_dentry,
posix_acl_xattr_name(type), acl);
if (!rc)
fsstack_copy_attr_all(d_inode(dentry), lower_inode);
return rc;
}
const struct inode_operations ecryptfs_symlink_iops = {
.get_link = ecryptfs_get_link,
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.getattr = ecryptfs_getattr_link,
.listxattr = ecryptfs_listxattr,
};
const struct inode_operations ecryptfs_dir_iops = {
.create = ecryptfs_create,
.lookup = ecryptfs_lookup,
.link = ecryptfs_link,
.unlink = ecryptfs_unlink,
.symlink = ecryptfs_symlink,
.mkdir = ecryptfs_mkdir,
.rmdir = ecryptfs_rmdir,
.mknod = ecryptfs_mknod,
.rename = ecryptfs_rename,
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.listxattr = ecryptfs_listxattr,
.fileattr_get = ecryptfs_fileattr_get,
.fileattr_set = ecryptfs_fileattr_set,
.get_acl = ecryptfs_get_acl,
.set_acl = ecryptfs_set_acl,
};
const struct inode_operations ecryptfs_main_iops = {
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.getattr = ecryptfs_getattr,
.listxattr = ecryptfs_listxattr,
.fileattr_get = ecryptfs_fileattr_get,
.fileattr_set = ecryptfs_fileattr_set,
.get_acl = ecryptfs_get_acl,
.set_acl = ecryptfs_set_acl,
};
static int ecryptfs_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return ecryptfs_getxattr(dentry, inode, name, buffer, size);
}
static int ecryptfs_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *dentry, struct inode *inode,
const char *name, const void *value, size_t size,
int flags)
{
if (value)
return ecryptfs_setxattr(dentry, inode, name, value, size, flags);
else {
BUG_ON(flags != XATTR_REPLACE);
return ecryptfs_removexattr(dentry, inode, name);
}
}
static const struct xattr_handler ecryptfs_xattr_handler = {
.prefix = "", /* match anything */
.get = ecryptfs_xattr_get,
.set = ecryptfs_xattr_set,
};
const struct xattr_handler *ecryptfs_xattr_handlers[] = {
#ifdef CONFIG_FS_POSIX_ACL
&posix_acl_access_xattr_handler,
&posix_acl_default_xattr_handler,
#endif
&ecryptfs_xattr_handler,
NULL
};