mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 21:38:32 +08:00
296990deb3
Andrei Vagin pointed out that time to executue propagate_umount can go
non-linear (and take a ludicrious amount of time) when the mount
propogation trees of the mounts to be unmunted by a lazy unmount
overlap.
Make the walk of the mount propagation trees nearly linear by
remembering which mounts have already been visited, allowing
subsequent walks to detect when walking a mount propgation tree or a
subtree of a mount propgation tree would be duplicate work and to skip
them entirely.
Walk the list of mounts whose propgatation trees need to be traversed
from the mount highest in the mount tree to mounts lower in the mount
tree so that odds are higher that the code will walk the largest trees
first, allowing later tree walks to be skipped entirely.
Add cleanup_umount_visitation to remover the code's memory of which
mounts have been visited.
Add the functions last_slave and skip_propagation_subtree to allow
skipping appropriate parts of the mount propagation tree without
needing to change the logic of the rest of the code.
A script to generate overlapping mount propagation trees:
$ cat runs.h
set -e
mount -t tmpfs zdtm /mnt
mkdir -p /mnt/1 /mnt/2
mount -t tmpfs zdtm /mnt/1
mount --make-shared /mnt/1
mkdir /mnt/1/1
iteration=10
if [ -n "$1" ] ; then
iteration=$1
fi
for i in $(seq $iteration); do
mount --bind /mnt/1/1 /mnt/1/1
done
mount --rbind /mnt/1 /mnt/2
TIMEFORMAT='%Rs'
nr=$(( ( 2 ** ( $iteration + 1 ) ) + 1 ))
echo -n "umount -l /mnt/1 -> $nr "
time umount -l /mnt/1
nr=$(cat /proc/self/mountinfo | grep zdtm | wc -l )
time umount -l /mnt/2
$ for i in $(seq 9 19); do echo $i; unshare -Urm bash ./run.sh $i; done
Here are the performance numbers with and without the patch:
mhash | 8192 | 8192 | 1048576 | 1048576
mounts | before | after | before | after
------------------------------------------------
1025 | 0.040s | 0.016s | 0.038s | 0.019s
2049 | 0.094s | 0.017s | 0.080s | 0.018s
4097 | 0.243s | 0.019s | 0.206s | 0.023s
8193 | 1.202s | 0.028s | 1.562s | 0.032s
16385 | 9.635s | 0.036s | 9.952s | 0.041s
32769 | 60.928s | 0.063s | 44.321s | 0.064s
65537 | | 0.097s | | 0.097s
131073 | | 0.233s | | 0.176s
262145 | | 0.653s | | 0.344s
524289 | | 2.305s | | 0.735s
1048577 | | 7.107s | | 2.603s
Andrei Vagin reports fixing the performance problem is part of the
work to fix CVE-2016-6213.
Cc: stable@vger.kernel.org
Fixes: a05964f391
("[PATCH] shared mounts handling: umount")
Reported-by: Andrei Vagin <avagin@openvz.org>
Reviewed-by: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
610 lines
15 KiB
C
610 lines
15 KiB
C
/*
|
|
* linux/fs/pnode.c
|
|
*
|
|
* (C) Copyright IBM Corporation 2005.
|
|
* Released under GPL v2.
|
|
* Author : Ram Pai (linuxram@us.ibm.com)
|
|
*
|
|
*/
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/nsproxy.h>
|
|
#include "internal.h"
|
|
#include "pnode.h"
|
|
|
|
/* return the next shared peer mount of @p */
|
|
static inline struct mount *next_peer(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_share.next, struct mount, mnt_share);
|
|
}
|
|
|
|
static inline struct mount *first_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
|
|
}
|
|
|
|
static inline struct mount *last_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
|
|
}
|
|
|
|
static inline struct mount *next_slave(struct mount *p)
|
|
{
|
|
return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
|
|
}
|
|
|
|
static struct mount *get_peer_under_root(struct mount *mnt,
|
|
struct mnt_namespace *ns,
|
|
const struct path *root)
|
|
{
|
|
struct mount *m = mnt;
|
|
|
|
do {
|
|
/* Check the namespace first for optimization */
|
|
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
|
|
return m;
|
|
|
|
m = next_peer(m);
|
|
} while (m != mnt);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Get ID of closest dominating peer group having a representative
|
|
* under the given root.
|
|
*
|
|
* Caller must hold namespace_sem
|
|
*/
|
|
int get_dominating_id(struct mount *mnt, const struct path *root)
|
|
{
|
|
struct mount *m;
|
|
|
|
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
|
|
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
|
|
if (d)
|
|
return d->mnt_group_id;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_make_slave(struct mount *mnt)
|
|
{
|
|
struct mount *master, *slave_mnt;
|
|
|
|
if (list_empty(&mnt->mnt_share)) {
|
|
if (IS_MNT_SHARED(mnt)) {
|
|
mnt_release_group_id(mnt);
|
|
CLEAR_MNT_SHARED(mnt);
|
|
}
|
|
master = mnt->mnt_master;
|
|
if (!master) {
|
|
struct list_head *p = &mnt->mnt_slave_list;
|
|
while (!list_empty(p)) {
|
|
slave_mnt = list_first_entry(p,
|
|
struct mount, mnt_slave);
|
|
list_del_init(&slave_mnt->mnt_slave);
|
|
slave_mnt->mnt_master = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
} else {
|
|
struct mount *m;
|
|
/*
|
|
* slave 'mnt' to a peer mount that has the
|
|
* same root dentry. If none is available then
|
|
* slave it to anything that is available.
|
|
*/
|
|
for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
|
|
if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
|
|
master = m;
|
|
break;
|
|
}
|
|
}
|
|
list_del_init(&mnt->mnt_share);
|
|
mnt->mnt_group_id = 0;
|
|
CLEAR_MNT_SHARED(mnt);
|
|
}
|
|
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
|
|
slave_mnt->mnt_master = master;
|
|
list_move(&mnt->mnt_slave, &master->mnt_slave_list);
|
|
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave_list);
|
|
mnt->mnt_master = master;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
void change_mnt_propagation(struct mount *mnt, int type)
|
|
{
|
|
if (type == MS_SHARED) {
|
|
set_mnt_shared(mnt);
|
|
return;
|
|
}
|
|
do_make_slave(mnt);
|
|
if (type != MS_SLAVE) {
|
|
list_del_init(&mnt->mnt_slave);
|
|
mnt->mnt_master = NULL;
|
|
if (type == MS_UNBINDABLE)
|
|
mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
|
|
else
|
|
mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get the next mount in the propagation tree.
|
|
* @m: the mount seen last
|
|
* @origin: the original mount from where the tree walk initiated
|
|
*
|
|
* Note that peer groups form contiguous segments of slave lists.
|
|
* We rely on that in get_source() to be able to find out if
|
|
* vfsmount found while iterating with propagation_next() is
|
|
* a peer of one we'd found earlier.
|
|
*/
|
|
static struct mount *propagation_next(struct mount *m,
|
|
struct mount *origin)
|
|
{
|
|
/* are there any slaves of this mount? */
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
return first_slave(m);
|
|
|
|
while (1) {
|
|
struct mount *master = m->mnt_master;
|
|
|
|
if (master == origin->mnt_master) {
|
|
struct mount *next = next_peer(m);
|
|
return (next == origin) ? NULL : next;
|
|
} else if (m->mnt_slave.next != &master->mnt_slave_list)
|
|
return next_slave(m);
|
|
|
|
/* back at master */
|
|
m = master;
|
|
}
|
|
}
|
|
|
|
static struct mount *skip_propagation_subtree(struct mount *m,
|
|
struct mount *origin)
|
|
{
|
|
/*
|
|
* Advance m such that propagation_next will not return
|
|
* the slaves of m.
|
|
*/
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
m = last_slave(m);
|
|
|
|
return m;
|
|
}
|
|
|
|
static struct mount *next_group(struct mount *m, struct mount *origin)
|
|
{
|
|
while (1) {
|
|
while (1) {
|
|
struct mount *next;
|
|
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
|
|
return first_slave(m);
|
|
next = next_peer(m);
|
|
if (m->mnt_group_id == origin->mnt_group_id) {
|
|
if (next == origin)
|
|
return NULL;
|
|
} else if (m->mnt_slave.next != &next->mnt_slave)
|
|
break;
|
|
m = next;
|
|
}
|
|
/* m is the last peer */
|
|
while (1) {
|
|
struct mount *master = m->mnt_master;
|
|
if (m->mnt_slave.next != &master->mnt_slave_list)
|
|
return next_slave(m);
|
|
m = next_peer(master);
|
|
if (master->mnt_group_id == origin->mnt_group_id)
|
|
break;
|
|
if (master->mnt_slave.next == &m->mnt_slave)
|
|
break;
|
|
m = master;
|
|
}
|
|
if (m == origin)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* all accesses are serialized by namespace_sem */
|
|
static struct user_namespace *user_ns;
|
|
static struct mount *last_dest, *first_source, *last_source, *dest_master;
|
|
static struct mountpoint *mp;
|
|
static struct hlist_head *list;
|
|
|
|
static inline bool peers(struct mount *m1, struct mount *m2)
|
|
{
|
|
return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
|
|
}
|
|
|
|
static int propagate_one(struct mount *m)
|
|
{
|
|
struct mount *child;
|
|
int type;
|
|
/* skip ones added by this propagate_mnt() */
|
|
if (IS_MNT_NEW(m))
|
|
return 0;
|
|
/* skip if mountpoint isn't covered by it */
|
|
if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
|
|
return 0;
|
|
if (peers(m, last_dest)) {
|
|
type = CL_MAKE_SHARED;
|
|
} else {
|
|
struct mount *n, *p;
|
|
bool done;
|
|
for (n = m; ; n = p) {
|
|
p = n->mnt_master;
|
|
if (p == dest_master || IS_MNT_MARKED(p))
|
|
break;
|
|
}
|
|
do {
|
|
struct mount *parent = last_source->mnt_parent;
|
|
if (last_source == first_source)
|
|
break;
|
|
done = parent->mnt_master == p;
|
|
if (done && peers(n, parent))
|
|
break;
|
|
last_source = last_source->mnt_master;
|
|
} while (!done);
|
|
|
|
type = CL_SLAVE;
|
|
/* beginning of peer group among the slaves? */
|
|
if (IS_MNT_SHARED(m))
|
|
type |= CL_MAKE_SHARED;
|
|
}
|
|
|
|
/* Notice when we are propagating across user namespaces */
|
|
if (m->mnt_ns->user_ns != user_ns)
|
|
type |= CL_UNPRIVILEGED;
|
|
child = copy_tree(last_source, last_source->mnt.mnt_root, type);
|
|
if (IS_ERR(child))
|
|
return PTR_ERR(child);
|
|
child->mnt.mnt_flags &= ~MNT_LOCKED;
|
|
mnt_set_mountpoint(m, mp, child);
|
|
last_dest = m;
|
|
last_source = child;
|
|
if (m->mnt_master != dest_master) {
|
|
read_seqlock_excl(&mount_lock);
|
|
SET_MNT_MARK(m->mnt_master);
|
|
read_sequnlock_excl(&mount_lock);
|
|
}
|
|
hlist_add_head(&child->mnt_hash, list);
|
|
return count_mounts(m->mnt_ns, child);
|
|
}
|
|
|
|
/*
|
|
* mount 'source_mnt' under the destination 'dest_mnt' at
|
|
* dentry 'dest_dentry'. And propagate that mount to
|
|
* all the peer and slave mounts of 'dest_mnt'.
|
|
* Link all the new mounts into a propagation tree headed at
|
|
* source_mnt. Also link all the new mounts using ->mnt_list
|
|
* headed at source_mnt's ->mnt_list
|
|
*
|
|
* @dest_mnt: destination mount.
|
|
* @dest_dentry: destination dentry.
|
|
* @source_mnt: source mount.
|
|
* @tree_list : list of heads of trees to be attached.
|
|
*/
|
|
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
|
|
struct mount *source_mnt, struct hlist_head *tree_list)
|
|
{
|
|
struct mount *m, *n;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* we don't want to bother passing tons of arguments to
|
|
* propagate_one(); everything is serialized by namespace_sem,
|
|
* so globals will do just fine.
|
|
*/
|
|
user_ns = current->nsproxy->mnt_ns->user_ns;
|
|
last_dest = dest_mnt;
|
|
first_source = source_mnt;
|
|
last_source = source_mnt;
|
|
mp = dest_mp;
|
|
list = tree_list;
|
|
dest_master = dest_mnt->mnt_master;
|
|
|
|
/* all peers of dest_mnt, except dest_mnt itself */
|
|
for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
|
|
ret = propagate_one(n);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* all slave groups */
|
|
for (m = next_group(dest_mnt, dest_mnt); m;
|
|
m = next_group(m, dest_mnt)) {
|
|
/* everything in that slave group */
|
|
n = m;
|
|
do {
|
|
ret = propagate_one(n);
|
|
if (ret)
|
|
goto out;
|
|
n = next_peer(n);
|
|
} while (n != m);
|
|
}
|
|
out:
|
|
read_seqlock_excl(&mount_lock);
|
|
hlist_for_each_entry(n, tree_list, mnt_hash) {
|
|
m = n->mnt_parent;
|
|
if (m->mnt_master != dest_mnt->mnt_master)
|
|
CLEAR_MNT_MARK(m->mnt_master);
|
|
}
|
|
read_sequnlock_excl(&mount_lock);
|
|
return ret;
|
|
}
|
|
|
|
static struct mount *find_topper(struct mount *mnt)
|
|
{
|
|
/* If there is exactly one mount covering mnt completely return it. */
|
|
struct mount *child;
|
|
|
|
if (!list_is_singular(&mnt->mnt_mounts))
|
|
return NULL;
|
|
|
|
child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
|
|
if (child->mnt_mountpoint != mnt->mnt.mnt_root)
|
|
return NULL;
|
|
|
|
return child;
|
|
}
|
|
|
|
/*
|
|
* return true if the refcount is greater than count
|
|
*/
|
|
static inline int do_refcount_check(struct mount *mnt, int count)
|
|
{
|
|
return mnt_get_count(mnt) > count;
|
|
}
|
|
|
|
/*
|
|
* check if the mount 'mnt' can be unmounted successfully.
|
|
* @mnt: the mount to be checked for unmount
|
|
* NOTE: unmounting 'mnt' would naturally propagate to all
|
|
* other mounts its parent propagates to.
|
|
* Check if any of these mounts that **do not have submounts**
|
|
* have more references than 'refcnt'. If so return busy.
|
|
*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
int propagate_mount_busy(struct mount *mnt, int refcnt)
|
|
{
|
|
struct mount *m, *child, *topper;
|
|
struct mount *parent = mnt->mnt_parent;
|
|
|
|
if (mnt == parent)
|
|
return do_refcount_check(mnt, refcnt);
|
|
|
|
/*
|
|
* quickly check if the current mount can be unmounted.
|
|
* If not, we don't have to go checking for all other
|
|
* mounts
|
|
*/
|
|
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
|
|
return 1;
|
|
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
int count = 1;
|
|
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
|
|
if (!child)
|
|
continue;
|
|
|
|
/* Is there exactly one mount on the child that covers
|
|
* it completely whose reference should be ignored?
|
|
*/
|
|
topper = find_topper(child);
|
|
if (topper)
|
|
count += 1;
|
|
else if (!list_empty(&child->mnt_mounts))
|
|
continue;
|
|
|
|
if (do_refcount_check(child, count))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear MNT_LOCKED when it can be shown to be safe.
|
|
*
|
|
* mount_lock lock must be held for write
|
|
*/
|
|
void propagate_mount_unlock(struct mount *mnt)
|
|
{
|
|
struct mount *parent = mnt->mnt_parent;
|
|
struct mount *m, *child;
|
|
|
|
BUG_ON(parent == mnt);
|
|
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
|
|
if (child)
|
|
child->mnt.mnt_flags &= ~MNT_LOCKED;
|
|
}
|
|
}
|
|
|
|
static void umount_one(struct mount *mnt, struct list_head *to_umount)
|
|
{
|
|
CLEAR_MNT_MARK(mnt);
|
|
mnt->mnt.mnt_flags |= MNT_UMOUNT;
|
|
list_del_init(&mnt->mnt_child);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
list_move_tail(&mnt->mnt_list, to_umount);
|
|
}
|
|
|
|
/*
|
|
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
|
|
* parent propagates to.
|
|
*/
|
|
static bool __propagate_umount(struct mount *mnt,
|
|
struct list_head *to_umount,
|
|
struct list_head *to_restore)
|
|
{
|
|
bool progress = false;
|
|
struct mount *child;
|
|
|
|
/*
|
|
* The state of the parent won't change if this mount is
|
|
* already unmounted or marked as without children.
|
|
*/
|
|
if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
|
|
goto out;
|
|
|
|
/* Verify topper is the only grandchild that has not been
|
|
* speculatively unmounted.
|
|
*/
|
|
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
|
|
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
|
|
continue;
|
|
if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
|
|
continue;
|
|
/* Found a mounted child */
|
|
goto children;
|
|
}
|
|
|
|
/* Mark mounts that can be unmounted if not locked */
|
|
SET_MNT_MARK(mnt);
|
|
progress = true;
|
|
|
|
/* If a mount is without children and not locked umount it. */
|
|
if (!IS_MNT_LOCKED(mnt)) {
|
|
umount_one(mnt, to_umount);
|
|
} else {
|
|
children:
|
|
list_move_tail(&mnt->mnt_umounting, to_restore);
|
|
}
|
|
out:
|
|
return progress;
|
|
}
|
|
|
|
static void umount_list(struct list_head *to_umount,
|
|
struct list_head *to_restore)
|
|
{
|
|
struct mount *mnt, *child, *tmp;
|
|
list_for_each_entry(mnt, to_umount, mnt_list) {
|
|
list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
|
|
/* topper? */
|
|
if (child->mnt_mountpoint == mnt->mnt.mnt_root)
|
|
list_move_tail(&child->mnt_umounting, to_restore);
|
|
else
|
|
umount_one(child, to_umount);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void restore_mounts(struct list_head *to_restore)
|
|
{
|
|
/* Restore mounts to a clean working state */
|
|
while (!list_empty(to_restore)) {
|
|
struct mount *mnt, *parent;
|
|
struct mountpoint *mp;
|
|
|
|
mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
|
|
CLEAR_MNT_MARK(mnt);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
|
|
/* Should this mount be reparented? */
|
|
mp = mnt->mnt_mp;
|
|
parent = mnt->mnt_parent;
|
|
while (parent->mnt.mnt_flags & MNT_UMOUNT) {
|
|
mp = parent->mnt_mp;
|
|
parent = parent->mnt_parent;
|
|
}
|
|
if (parent != mnt->mnt_parent)
|
|
mnt_change_mountpoint(parent, mp, mnt);
|
|
}
|
|
}
|
|
|
|
static void cleanup_umount_visitations(struct list_head *visited)
|
|
{
|
|
while (!list_empty(visited)) {
|
|
struct mount *mnt =
|
|
list_first_entry(visited, struct mount, mnt_umounting);
|
|
list_del_init(&mnt->mnt_umounting);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* collect all mounts that receive propagation from the mount in @list,
|
|
* and return these additional mounts in the same list.
|
|
* @list: the list of mounts to be unmounted.
|
|
*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
int propagate_umount(struct list_head *list)
|
|
{
|
|
struct mount *mnt;
|
|
LIST_HEAD(to_restore);
|
|
LIST_HEAD(to_umount);
|
|
LIST_HEAD(visited);
|
|
|
|
/* Find candidates for unmounting */
|
|
list_for_each_entry_reverse(mnt, list, mnt_list) {
|
|
struct mount *parent = mnt->mnt_parent;
|
|
struct mount *m;
|
|
|
|
/*
|
|
* If this mount has already been visited it is known that it's
|
|
* entire peer group and all of their slaves in the propagation
|
|
* tree for the mountpoint has already been visited and there is
|
|
* no need to visit them again.
|
|
*/
|
|
if (!list_empty(&mnt->mnt_umounting))
|
|
continue;
|
|
|
|
list_add_tail(&mnt->mnt_umounting, &visited);
|
|
for (m = propagation_next(parent, parent); m;
|
|
m = propagation_next(m, parent)) {
|
|
struct mount *child = __lookup_mnt(&m->mnt,
|
|
mnt->mnt_mountpoint);
|
|
if (!child)
|
|
continue;
|
|
|
|
if (!list_empty(&child->mnt_umounting)) {
|
|
/*
|
|
* If the child has already been visited it is
|
|
* know that it's entire peer group and all of
|
|
* their slaves in the propgation tree for the
|
|
* mountpoint has already been visited and there
|
|
* is no need to visit this subtree again.
|
|
*/
|
|
m = skip_propagation_subtree(m, parent);
|
|
continue;
|
|
} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
|
|
/*
|
|
* We have come accross an partially unmounted
|
|
* mount in list that has not been visited yet.
|
|
* Remember it has been visited and continue
|
|
* about our merry way.
|
|
*/
|
|
list_add_tail(&child->mnt_umounting, &visited);
|
|
continue;
|
|
}
|
|
|
|
/* Check the child and parents while progress is made */
|
|
while (__propagate_umount(child,
|
|
&to_umount, &to_restore)) {
|
|
/* Is the parent a umount candidate? */
|
|
child = child->mnt_parent;
|
|
if (list_empty(&child->mnt_umounting))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
umount_list(&to_umount, &to_restore);
|
|
restore_mounts(&to_restore);
|
|
cleanup_umount_visitations(&visited);
|
|
list_splice_tail(&to_umount, list);
|
|
|
|
return 0;
|
|
}
|