linux/drivers/net/ethernet/intel/ice/ice_txrx.c
David S. Miller e1289cfb63 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2021-06-28

The following pull-request contains BPF updates for your *net-next* tree.

We've added 37 non-merge commits during the last 12 day(s) which contain
a total of 56 files changed, 394 insertions(+), 380 deletions(-).

The main changes are:

1) XDP driver RCU cleanups, from Toke Høiland-Jørgensen and Paul E. McKenney.

2) Fix bpf_skb_change_proto() IPv4/v6 GSO handling, from Maciej Żenczykowski.

3) Fix false positive kmemleak report for BPF ringbuf alloc, from Rustam Kovhaev.

4) Fix x86 JIT's extable offset calculation for PROBE_LDX NULL, from Ravi Bangoria.

5) Enable libbpf fallback probing with tracing under RHEL7, from Jonathan Edwards.

6) Clean up x86 JIT to remove unused cnt tracking from EMIT macro, from Jiri Olsa.

7) Netlink cleanups for libbpf to please Coverity, from Kumar Kartikeya Dwivedi.

8) Allow to retrieve ancestor cgroup id in tracing programs, from Namhyung Kim.

9) Fix lirc BPF program query to use user-provided prog_cnt, from Sean Young.

10) Add initial libbpf doc including generated kdoc for its API, from Grant Seltzer.

11) Make xdp_rxq_info_unreg_mem_model() more robust, from Jakub Kicinski.

12) Fix up bpfilter startup log-level to info level, from Gary Lin.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-28 15:28:03 -07:00

2380 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* The driver transmit and receive code */
#include <linux/prefetch.h>
#include <linux/mm.h>
#include <linux/bpf_trace.h>
#include <net/xdp.h>
#include "ice_txrx_lib.h"
#include "ice_lib.h"
#include "ice.h"
#include "ice_trace.h"
#include "ice_dcb_lib.h"
#include "ice_xsk.h"
#define ICE_RX_HDR_SIZE 256
#define FDIR_DESC_RXDID 0x40
#define ICE_FDIR_CLEAN_DELAY 10
/**
* ice_prgm_fdir_fltr - Program a Flow Director filter
* @vsi: VSI to send dummy packet
* @fdir_desc: flow director descriptor
* @raw_packet: allocated buffer for flow director
*/
int
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
u8 *raw_packet)
{
struct ice_tx_buf *tx_buf, *first;
struct ice_fltr_desc *f_desc;
struct ice_tx_desc *tx_desc;
struct ice_ring *tx_ring;
struct device *dev;
dma_addr_t dma;
u32 td_cmd;
u16 i;
/* VSI and Tx ring */
if (!vsi)
return -ENOENT;
tx_ring = vsi->tx_rings[0];
if (!tx_ring || !tx_ring->desc)
return -ENOENT;
dev = tx_ring->dev;
/* we are using two descriptors to add/del a filter and we can wait */
for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
if (!i)
return -EAGAIN;
msleep_interruptible(1);
}
dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma))
return -EINVAL;
/* grab the next descriptor */
i = tx_ring->next_to_use;
first = &tx_ring->tx_buf[i];
f_desc = ICE_TX_FDIRDESC(tx_ring, i);
memcpy(f_desc, fdir_desc, sizeof(*f_desc));
i++;
i = (i < tx_ring->count) ? i : 0;
tx_desc = ICE_TX_DESC(tx_ring, i);
tx_buf = &tx_ring->tx_buf[i];
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
memset(tx_buf, 0, sizeof(*tx_buf));
dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
dma_unmap_addr_set(tx_buf, dma, dma);
tx_desc->buf_addr = cpu_to_le64(dma);
td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
ICE_TX_DESC_CMD_RE;
tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
tx_buf->raw_buf = raw_packet;
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
/* Force memory write to complete before letting h/w know
* there are new descriptors to fetch.
*/
wmb();
/* mark the data descriptor to be watched */
first->next_to_watch = tx_desc;
writel(tx_ring->next_to_use, tx_ring->tail);
return 0;
}
/**
* ice_unmap_and_free_tx_buf - Release a Tx buffer
* @ring: the ring that owns the buffer
* @tx_buf: the buffer to free
*/
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
if (tx_buf->skb) {
if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
devm_kfree(ring->dev, tx_buf->raw_buf);
else if (ice_ring_is_xdp(ring))
page_frag_free(tx_buf->raw_buf);
else
dev_kfree_skb_any(tx_buf->skb);
if (dma_unmap_len(tx_buf, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
}
tx_buf->next_to_watch = NULL;
tx_buf->skb = NULL;
dma_unmap_len_set(tx_buf, len, 0);
/* tx_buf must be completely set up in the transmit path */
}
static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->q_index);
}
/**
* ice_clean_tx_ring - Free any empty Tx buffers
* @tx_ring: ring to be cleaned
*/
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
u16 i;
if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
ice_xsk_clean_xdp_ring(tx_ring);
goto tx_skip_free;
}
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buf)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++)
ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
tx_skip_free:
memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
if (!tx_ring->netdev)
return;
/* cleanup Tx queue statistics */
netdev_tx_reset_queue(txring_txq(tx_ring));
}
/**
* ice_free_tx_ring - Free Tx resources per queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
ice_clean_tx_ring(tx_ring);
devm_kfree(tx_ring->dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
if (tx_ring->desc) {
dmam_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
}
/**
* ice_clean_tx_irq - Reclaim resources after transmit completes
* @tx_ring: Tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
{
unsigned int total_bytes = 0, total_pkts = 0;
unsigned int budget = ICE_DFLT_IRQ_WORK;
struct ice_vsi *vsi = tx_ring->vsi;
s16 i = tx_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
tx_buf = &tx_ring->tx_buf[i];
tx_desc = ICE_TX_DESC(tx_ring, i);
i -= tx_ring->count;
prefetch(&vsi->state);
do {
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no work pending */
if (!eop_desc)
break;
smp_rmb(); /* prevent any other reads prior to eop_desc */
ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
/* if the descriptor isn't done, no work yet to do */
if (!(eop_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buf->bytecount;
total_pkts += tx_buf->gso_segs;
if (ice_ring_is_xdp(tx_ring))
page_frag_free(tx_buf->raw_buf);
else
/* free the skb */
napi_consume_skb(tx_buf->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
/* clear tx_buf data */
tx_buf->skb = NULL;
dma_unmap_len_set(tx_buf, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
/* move us one more past the eop_desc for start of next pkt */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
prefetch(tx_desc);
/* update budget accounting */
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
if (ice_ring_is_xdp(tx_ring))
return !!budget;
netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
total_bytes);
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
(ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (__netif_subqueue_stopped(tx_ring->netdev,
tx_ring->q_index) &&
!test_bit(ICE_VSI_DOWN, vsi->state)) {
netif_wake_subqueue(tx_ring->netdev,
tx_ring->q_index);
++tx_ring->tx_stats.restart_q;
}
}
return !!budget;
}
/**
* ice_setup_tx_ring - Allocate the Tx descriptors
* @tx_ring: the Tx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(tx_ring->tx_buf);
tx_ring->tx_buf =
devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
GFP_KERNEL);
if (!tx_ring->tx_buf)
return -ENOMEM;
/* round up to nearest page */
tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
PAGE_SIZE);
tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
GFP_KERNEL);
if (!tx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
tx_ring->size);
goto err;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->tx_stats.prev_pkt = -1;
return 0;
err:
devm_kfree(dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
return -ENOMEM;
}
/**
* ice_clean_rx_ring - Free Rx buffers
* @rx_ring: ring to be cleaned
*/
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
u16 i;
/* ring already cleared, nothing to do */
if (!rx_ring->rx_buf)
return;
if (rx_ring->skb) {
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
}
if (rx_ring->xsk_pool) {
ice_xsk_clean_rx_ring(rx_ring);
goto rx_skip_free;
}
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
if (!rx_buf->page)
continue;
/* Invalidate cache lines that may have been written to by
* device so that we avoid corrupting memory.
*/
dma_sync_single_range_for_cpu(dev, rx_buf->dma,
rx_buf->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* free resources associated with mapping */
dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
rx_buf->page = NULL;
rx_buf->page_offset = 0;
}
rx_skip_free:
memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* ice_free_rx_ring - Free Rx resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
*/
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
ice_clean_rx_ring(rx_ring);
if (rx_ring->vsi->type == ICE_VSI_PF)
if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
rx_ring->xdp_prog = NULL;
devm_kfree(rx_ring->dev, rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
if (rx_ring->desc) {
dmam_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
}
/**
* ice_setup_rx_ring - Allocate the Rx descriptors
* @rx_ring: the Rx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(rx_ring->rx_buf);
rx_ring->rx_buf =
devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
GFP_KERNEL);
if (!rx_ring->rx_buf)
return -ENOMEM;
/* round up to nearest page */
rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
PAGE_SIZE);
rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
GFP_KERNEL);
if (!rx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
rx_ring->size);
goto err;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
if (ice_is_xdp_ena_vsi(rx_ring->vsi))
WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
if (rx_ring->vsi->type == ICE_VSI_PF &&
!xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
goto err;
return 0;
err:
devm_kfree(dev, rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
return -ENOMEM;
}
static unsigned int
ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
{
unsigned int truesize;
#if (PAGE_SIZE < 8192)
truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
truesize = rx_ring->rx_offset ?
SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
SKB_DATA_ALIGN(size);
#endif
return truesize;
}
/**
* ice_run_xdp - Executes an XDP program on initialized xdp_buff
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog)
{
struct ice_ring *xdp_ring;
int err, result;
u32 act;
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
return ICE_XDP_PASS;
case XDP_TX:
xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
result = ice_xmit_xdp_buff(xdp, xdp_ring);
if (result == ICE_XDP_CONSUMED)
goto out_failure;
return result;
case XDP_REDIRECT:
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
if (err)
goto out_failure;
return ICE_XDP_REDIR;
default:
bpf_warn_invalid_xdp_action(act);
fallthrough;
case XDP_ABORTED:
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_DROP:
return ICE_XDP_CONSUMED;
}
}
/**
* ice_xdp_xmit - submit packets to XDP ring for transmission
* @dev: netdev
* @n: number of XDP frames to be transmitted
* @frames: XDP frames to be transmitted
* @flags: transmit flags
*
* Returns number of frames successfully sent. Failed frames
* will be free'ed by XDP core.
* For error cases, a negative errno code is returned and no-frames
* are transmitted (caller must handle freeing frames).
*/
int
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
u32 flags)
{
struct ice_netdev_priv *np = netdev_priv(dev);
unsigned int queue_index = smp_processor_id();
struct ice_vsi *vsi = np->vsi;
struct ice_ring *xdp_ring;
int nxmit = 0, i;
if (test_bit(ICE_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
return -ENXIO;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
xdp_ring = vsi->xdp_rings[queue_index];
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
int err;
err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
if (err != ICE_XDP_TX)
break;
nxmit++;
}
if (unlikely(flags & XDP_XMIT_FLUSH))
ice_xdp_ring_update_tail(xdp_ring);
return nxmit;
}
/**
* ice_alloc_mapped_page - recycle or make a new page
* @rx_ring: ring to use
* @bi: rx_buf struct to modify
*
* Returns true if the page was successfully allocated or
* reused.
*/
static bool
ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
if (unlikely(!page)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
/* map page for use */
dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, ice_rx_pg_order(rx_ring));
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = rx_ring->rx_offset;
page_ref_add(page, USHRT_MAX - 1);
bi->pagecnt_bias = USHRT_MAX;
return true;
}
/**
* ice_alloc_rx_bufs - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail. Returning
* true signals to the caller that we didn't replace cleaned_count buffers and
* there is more work to do.
*
* First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
* buffers. Then bump tail at most one time. Grouping like this lets us avoid
* multiple tail writes per call.
*/
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
struct ice_rx_buf *bi;
/* do nothing if no valid netdev defined */
if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
!cleaned_count)
return false;
/* get the Rx descriptor and buffer based on next_to_use */
rx_desc = ICE_RX_DESC(rx_ring, ntu);
bi = &rx_ring->rx_buf[ntu];
do {
/* if we fail here, we have work remaining */
if (!ice_alloc_mapped_page(rx_ring, bi))
break;
/* sync the buffer for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
bi->page_offset,
rx_ring->rx_buf_len,
DMA_FROM_DEVICE);
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = ICE_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buf;
ntu = 0;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.status_error0 = 0;
cleaned_count--;
} while (cleaned_count);
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return !!cleaned_count;
}
/**
* ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
* @rx_buf: Rx buffer to adjust
* @size: Size of adjustment
*
* Update the offset within page so that Rx buf will be ready to be reused.
* For systems with PAGE_SIZE < 8192 this function will flip the page offset
* so the second half of page assigned to Rx buffer will be used, otherwise
* the offset is moved by "size" bytes
*/
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
{
#if (PAGE_SIZE < 8192)
/* flip page offset to other buffer */
rx_buf->page_offset ^= size;
#else
/* move offset up to the next cache line */
rx_buf->page_offset += size;
#endif
}
/**
* ice_can_reuse_rx_page - Determine if page can be reused for another Rx
* @rx_buf: buffer containing the page
* @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
*
* If page is reusable, we have a green light for calling ice_reuse_rx_page,
* which will assign the current buffer to the buffer that next_to_alloc is
* pointing to; otherwise, the DMA mapping needs to be destroyed and
* page freed
*/
static bool
ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
{
unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
struct page *page = rx_buf->page;
/* avoid re-using remote and pfmemalloc pages */
if (!dev_page_is_reusable(page))
return false;
#if (PAGE_SIZE < 8192)
/* if we are only owner of page we can reuse it */
if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
return false;
#else
#define ICE_LAST_OFFSET \
(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
if (rx_buf->page_offset > ICE_LAST_OFFSET)
return false;
#endif /* PAGE_SIZE < 8192) */
/* If we have drained the page fragment pool we need to update
* the pagecnt_bias and page count so that we fully restock the
* number of references the driver holds.
*/
if (unlikely(pagecnt_bias == 1)) {
page_ref_add(page, USHRT_MAX - 1);
rx_buf->pagecnt_bias = USHRT_MAX;
}
return true;
}
/**
* ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: packet length from rx_desc
*
* This function will add the data contained in rx_buf->page to the skb.
* It will just attach the page as a frag to the skb.
* The function will then update the page offset.
*/
static void
ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
struct sk_buff *skb, unsigned int size)
{
#if (PAGE_SIZE >= 8192)
unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
#else
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#endif
if (!size)
return;
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
rx_buf->page_offset, size, truesize);
/* page is being used so we must update the page offset */
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
}
/**
* ice_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: Rx descriptor ring to store buffers on
* @old_buf: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
*/
static void
ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
{
u16 nta = rx_ring->next_to_alloc;
struct ice_rx_buf *new_buf;
new_buf = &rx_ring->rx_buf[nta];
/* update, and store next to alloc */
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
/* Transfer page from old buffer to new buffer.
* Move each member individually to avoid possible store
* forwarding stalls and unnecessary copy of skb.
*/
new_buf->dma = old_buf->dma;
new_buf->page = old_buf->page;
new_buf->page_offset = old_buf->page_offset;
new_buf->pagecnt_bias = old_buf->pagecnt_bias;
}
/**
* ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
* @rx_ring: Rx descriptor ring to transact packets on
* @size: size of buffer to add to skb
* @rx_buf_pgcnt: rx_buf page refcount
*
* This function will pull an Rx buffer from the ring and synchronize it
* for use by the CPU.
*/
static struct ice_rx_buf *
ice_get_rx_buf(struct ice_ring *rx_ring, const unsigned int size,
int *rx_buf_pgcnt)
{
struct ice_rx_buf *rx_buf;
rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
*rx_buf_pgcnt =
#if (PAGE_SIZE < 8192)
page_count(rx_buf->page);
#else
0;
#endif
prefetchw(rx_buf->page);
if (!size)
return rx_buf;
/* we are reusing so sync this buffer for CPU use */
dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
rx_buf->page_offset, size,
DMA_FROM_DEVICE);
/* We have pulled a buffer for use, so decrement pagecnt_bias */
rx_buf->pagecnt_bias--;
return rx_buf;
}
/**
* ice_build_skb - Build skb around an existing buffer
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function builds an skb around an existing Rx buffer, taking care
* to set up the skb correctly and avoid any memcpy overhead.
*/
static struct sk_buff *
ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
struct xdp_buff *xdp)
{
u8 metasize = xdp->data - xdp->data_meta;
#if (PAGE_SIZE < 8192)
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#else
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
SKB_DATA_ALIGN(xdp->data_end -
xdp->data_hard_start);
#endif
struct sk_buff *skb;
/* Prefetch first cache line of first page. If xdp->data_meta
* is unused, this points exactly as xdp->data, otherwise we
* likely have a consumer accessing first few bytes of meta
* data, and then actual data.
*/
net_prefetch(xdp->data_meta);
/* build an skb around the page buffer */
skb = build_skb(xdp->data_hard_start, truesize);
if (unlikely(!skb))
return NULL;
/* must to record Rx queue, otherwise OS features such as
* symmetric queue won't work
*/
skb_record_rx_queue(skb, rx_ring->q_index);
/* update pointers within the skb to store the data */
skb_reserve(skb, xdp->data - xdp->data_hard_start);
__skb_put(skb, xdp->data_end - xdp->data);
if (metasize)
skb_metadata_set(skb, metasize);
/* buffer is used by skb, update page_offset */
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
return skb;
}
/**
* ice_construct_skb - Allocate skb and populate it
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function allocates an skb. It then populates it with the page
* data from the current receive descriptor, taking care to set up the
* skb correctly.
*/
static struct sk_buff *
ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
struct xdp_buff *xdp)
{
unsigned int size = xdp->data_end - xdp->data;
unsigned int headlen;
struct sk_buff *skb;
/* prefetch first cache line of first page */
net_prefetch(xdp->data);
/* allocate a skb to store the frags */
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
skb_record_rx_queue(skb, rx_ring->q_index);
/* Determine available headroom for copy */
headlen = size;
if (headlen > ICE_RX_HDR_SIZE)
headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
/* align pull length to size of long to optimize memcpy performance */
memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
sizeof(long)));
/* if we exhaust the linear part then add what is left as a frag */
size -= headlen;
if (size) {
#if (PAGE_SIZE >= 8192)
unsigned int truesize = SKB_DATA_ALIGN(size);
#else
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#endif
skb_add_rx_frag(skb, 0, rx_buf->page,
rx_buf->page_offset + headlen, size, truesize);
/* buffer is used by skb, update page_offset */
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
} else {
/* buffer is unused, reset bias back to rx_buf; data was copied
* onto skb's linear part so there's no need for adjusting
* page offset and we can reuse this buffer as-is
*/
rx_buf->pagecnt_bias++;
}
return skb;
}
/**
* ice_put_rx_buf - Clean up used buffer and either recycle or free
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
*
* This function will update next_to_clean and then clean up the contents
* of the rx_buf. It will either recycle the buffer or unmap it and free
* the associated resources.
*/
static void
ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
int rx_buf_pgcnt)
{
u16 ntc = rx_ring->next_to_clean + 1;
/* fetch, update, and store next to clean */
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
if (!rx_buf)
return;
if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
/* hand second half of page back to the ring */
ice_reuse_rx_page(rx_ring, rx_buf);
} else {
/* we are not reusing the buffer so unmap it */
dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
ICE_RX_DMA_ATTR);
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
}
/* clear contents of buffer_info */
rx_buf->page = NULL;
}
/**
* ice_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
*
* If the buffer is an EOP buffer, this function exits returning false,
* otherwise return true indicating that this is in fact a non-EOP buffer.
*/
static bool
ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
{
/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
return false;
rx_ring->rx_stats.non_eop_descs++;
return true;
}
/**
* ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
* @rx_ring: Rx descriptor ring to transact packets on
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed
*/
int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
unsigned int offset = rx_ring->rx_offset;
unsigned int xdp_res, xdp_xmit = 0;
struct sk_buff *skb = rx_ring->skb;
struct bpf_prog *xdp_prog = NULL;
struct xdp_buff xdp;
bool failure;
/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
#if (PAGE_SIZE < 8192)
frame_sz = ice_rx_frame_truesize(rx_ring, 0);
#endif
xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
/* start the loop to process Rx packets bounded by 'budget' */
while (likely(total_rx_pkts < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
struct ice_rx_buf *rx_buf;
unsigned char *hard_start;
unsigned int size;
u16 stat_err_bits;
int rx_buf_pgcnt;
u16 vlan_tag = 0;
u16 rx_ptype;
/* get the Rx desc from Rx ring based on 'next_to_clean' */
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
/* status_error_len will always be zero for unused descriptors
* because it's cleared in cleanup, and overlaps with hdr_addr
* which is always zero because packet split isn't used, if the
* hardware wrote DD then it will be non-zero
*/
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we know the
* DD bit is set.
*/
dma_rmb();
ice_trace(clean_rx_irq, rx_ring, rx_desc);
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
struct ice_vsi *ctrl_vsi = rx_ring->vsi;
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
ctrl_vsi->vf_id != ICE_INVAL_VFID)
ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
ice_put_rx_buf(rx_ring, NULL, 0);
cleaned_count++;
continue;
}
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
/* retrieve a buffer from the ring */
rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
if (!size) {
xdp.data = NULL;
xdp.data_end = NULL;
xdp.data_hard_start = NULL;
xdp.data_meta = NULL;
goto construct_skb;
}
hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
offset;
xdp_prepare_buff(&xdp, hard_start, offset, size, true);
#if (PAGE_SIZE > 4096)
/* At larger PAGE_SIZE, frame_sz depend on len size */
xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
#endif
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog)
goto construct_skb;
xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
if (!xdp_res)
goto construct_skb;
if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
xdp_xmit |= xdp_res;
ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
} else {
rx_buf->pagecnt_bias++;
}
total_rx_bytes += size;
total_rx_pkts++;
cleaned_count++;
ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
continue;
construct_skb:
if (skb) {
ice_add_rx_frag(rx_ring, rx_buf, skb, size);
} else if (likely(xdp.data)) {
if (ice_ring_uses_build_skb(rx_ring))
skb = ice_build_skb(rx_ring, rx_buf, &xdp);
else
skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
}
/* exit if we failed to retrieve a buffer */
if (!skb) {
rx_ring->rx_stats.alloc_buf_failed++;
if (rx_buf)
rx_buf->pagecnt_bias++;
break;
}
ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
cleaned_count++;
/* skip if it is NOP desc */
if (ice_is_non_eop(rx_ring, rx_desc))
continue;
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
dev_kfree_skb_any(skb);
continue;
}
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
if (ice_test_staterr(rx_desc, stat_err_bits))
vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
/* pad the skb if needed, to make a valid ethernet frame */
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* populate checksum, VLAN, and protocol */
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
/* send completed skb up the stack */
ice_receive_skb(rx_ring, skb, vlan_tag);
skb = NULL;
/* update budget accounting */
total_rx_pkts++;
}
/* return up to cleaned_count buffers to hardware */
failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
if (xdp_prog)
ice_finalize_xdp_rx(rx_ring, xdp_xmit);
rx_ring->skb = skb;
ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
/* guarantee a trip back through this routine if there was a failure */
return failure ? budget : (int)total_rx_pkts;
}
/**
* ice_net_dim - Update net DIM algorithm
* @q_vector: the vector associated with the interrupt
*
* Create a DIM sample and notify net_dim() so that it can possibly decide
* a new ITR value based on incoming packets, bytes, and interrupts.
*
* This function is a no-op if the ring is not configured to dynamic ITR.
*/
static void ice_net_dim(struct ice_q_vector *q_vector)
{
struct ice_ring_container *tx = &q_vector->tx;
struct ice_ring_container *rx = &q_vector->rx;
if (ITR_IS_DYNAMIC(tx)) {
struct dim_sample dim_sample = {};
u64 packets = 0, bytes = 0;
struct ice_ring *ring;
ice_for_each_ring(ring, q_vector->tx) {
packets += ring->stats.pkts;
bytes += ring->stats.bytes;
}
dim_update_sample(q_vector->total_events, packets, bytes,
&dim_sample);
net_dim(&tx->dim, dim_sample);
}
if (ITR_IS_DYNAMIC(rx)) {
struct dim_sample dim_sample = {};
u64 packets = 0, bytes = 0;
struct ice_ring *ring;
ice_for_each_ring(ring, q_vector->rx) {
packets += ring->stats.pkts;
bytes += ring->stats.bytes;
}
dim_update_sample(q_vector->total_events, packets, bytes,
&dim_sample);
net_dim(&rx->dim, dim_sample);
}
}
/**
* ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
* @itr_idx: interrupt throttling index
* @itr: interrupt throttling value in usecs
*/
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
{
/* The ITR value is reported in microseconds, and the register value is
* recorded in 2 microsecond units. For this reason we only need to
* shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
* granularity as a shift instead of division. The mask makes sure the
* ITR value is never odd so we don't accidentally write into the field
* prior to the ITR field.
*/
itr &= ICE_ITR_MASK;
return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
}
/**
* ice_update_ena_itr - Update ITR moderation and re-enable MSI-X interrupt
* @q_vector: the vector associated with the interrupt to enable
*
* Update the net_dim() algorithm and re-enable the interrupt associated with
* this vector.
*
* If the VSI is down, the interrupt will not be re-enabled.
*/
static void ice_update_ena_itr(struct ice_q_vector *q_vector)
{
struct ice_vsi *vsi = q_vector->vsi;
bool wb_en = q_vector->wb_on_itr;
u32 itr_val;
if (test_bit(ICE_DOWN, vsi->state))
return;
/* When exiting WB_ON_ITR, let ITR resume its normal
* interrupts-enabled path.
*/
if (wb_en)
q_vector->wb_on_itr = false;
/* This will do nothing if dynamic updates are not enabled. */
ice_net_dim(q_vector);
/* net_dim() updates ITR out-of-band using a work item */
itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
/* trigger an immediate software interrupt when exiting
* busy poll, to make sure to catch any pending cleanups
* that might have been missed due to interrupt state
* transition.
*/
if (wb_en) {
itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
GLINT_DYN_CTL_SW_ITR_INDX_M |
GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
}
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
}
/**
* ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
* @q_vector: q_vector to set WB_ON_ITR on
*
* We need to tell hardware to write-back completed descriptors even when
* interrupts are disabled. Descriptors will be written back on cache line
* boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
* descriptors may not be written back if they don't fill a cache line until
* the next interrupt.
*
* This sets the write-back frequency to whatever was set previously for the
* ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
* aren't meddling with the INTENA_M bit.
*/
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
{
struct ice_vsi *vsi = q_vector->vsi;
/* already in wb_on_itr mode no need to change it */
if (q_vector->wb_on_itr)
return;
/* use previously set ITR values for all of the ITR indices by
* specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
* be static in non-adaptive mode (user configured)
*/
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
GLINT_DYN_CTL_WB_ON_ITR_M);
q_vector->wb_on_itr = true;
}
/**
* ice_napi_poll - NAPI polling Rx/Tx cleanup routine
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean all queues associated with a q_vector.
*
* Returns the amount of work done
*/
int ice_napi_poll(struct napi_struct *napi, int budget)
{
struct ice_q_vector *q_vector =
container_of(napi, struct ice_q_vector, napi);
bool clean_complete = true;
struct ice_ring *ring;
int budget_per_ring;
int work_done = 0;
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
ice_for_each_ring(ring, q_vector->tx) {
bool wd = ring->xsk_pool ?
ice_clean_tx_irq_zc(ring, budget) :
ice_clean_tx_irq(ring, budget);
if (!wd)
clean_complete = false;
}
/* Handle case where we are called by netpoll with a budget of 0 */
if (unlikely(budget <= 0))
return budget;
/* normally we have 1 Rx ring per q_vector */
if (unlikely(q_vector->num_ring_rx > 1))
/* We attempt to distribute budget to each Rx queue fairly, but
* don't allow the budget to go below 1 because that would exit
* polling early.
*/
budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
else
/* Max of 1 Rx ring in this q_vector so give it the budget */
budget_per_ring = budget;
ice_for_each_ring(ring, q_vector->rx) {
int cleaned;
/* A dedicated path for zero-copy allows making a single
* comparison in the irq context instead of many inside the
* ice_clean_rx_irq function and makes the codebase cleaner.
*/
cleaned = ring->xsk_pool ?
ice_clean_rx_irq_zc(ring, budget_per_ring) :
ice_clean_rx_irq(ring, budget_per_ring);
work_done += cleaned;
/* if we clean as many as budgeted, we must not be done */
if (cleaned >= budget_per_ring)
clean_complete = false;
}
/* If work not completed, return budget and polling will return */
if (!clean_complete) {
/* Set the writeback on ITR so partial completions of
* cache-lines will still continue even if we're polling.
*/
ice_set_wb_on_itr(q_vector);
return budget;
}
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
ice_update_ena_itr(q_vector);
else
ice_set_wb_on_itr(q_vector);
return min_t(int, work_done, budget - 1);
}
/**
* __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns -EBUSY if a stop is needed, else 0
*/
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
/* Memory barrier before checking head and tail */
smp_mb();
/* Check again in a case another CPU has just made room available. */
if (likely(ICE_DESC_UNUSED(tx_ring) < size))
return -EBUSY;
/* A reprieve! - use start_subqueue because it doesn't call schedule */
netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
++tx_ring->tx_stats.restart_q;
return 0;
}
/**
* ice_maybe_stop_tx - 1st level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns 0 if stop is not needed
*/
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
return 0;
return __ice_maybe_stop_tx(tx_ring, size);
}
/**
* ice_tx_map - Build the Tx descriptor
* @tx_ring: ring to send buffer on
* @first: first buffer info buffer to use
* @off: pointer to struct that holds offload parameters
*
* This function loops over the skb data pointed to by *first
* and gets a physical address for each memory location and programs
* it and the length into the transmit descriptor.
*/
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
struct ice_tx_offload_params *off)
{
u64 td_offset, td_tag, td_cmd;
u16 i = tx_ring->next_to_use;
unsigned int data_len, size;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
struct sk_buff *skb;
skb_frag_t *frag;
dma_addr_t dma;
td_tag = off->td_l2tag1;
td_cmd = off->td_cmd;
td_offset = off->td_offset;
skb = first->skb;
data_len = skb->data_len;
size = skb_headlen(skb);
tx_desc = ICE_TX_DESC(tx_ring, i);
if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
ICE_TX_FLAGS_VLAN_S;
}
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
tx_buf = first;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_error;
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, size);
dma_unmap_addr_set(tx_buf, dma, dma);
/* align size to end of page */
max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
tx_desc->buf_addr = cpu_to_le64(dma);
/* account for data chunks larger than the hardware
* can handle
*/
while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, td_offset, max_data,
td_tag);
tx_desc++;
i++;
if (i == tx_ring->count) {
tx_desc = ICE_TX_DESC(tx_ring, 0);
i = 0;
}
dma += max_data;
size -= max_data;
max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
tx_desc->buf_addr = cpu_to_le64(dma);
}
if (likely(!data_len))
break;
tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
size, td_tag);
tx_desc++;
i++;
if (i == tx_ring->count) {
tx_desc = ICE_TX_DESC(tx_ring, 0);
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buf = &tx_ring->tx_buf[i];
}
/* record bytecount for BQL */
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
/* record SW timestamp if HW timestamp is not available */
skb_tx_timestamp(first->skb);
i++;
if (i == tx_ring->count)
i = 0;
/* write last descriptor with RS and EOP bits */
td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
tx_desc->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, td_offset, size, td_tag);
/* Force memory writes to complete before letting h/w know there
* are new descriptors to fetch.
*
* We also use this memory barrier to make certain all of the
* status bits have been updated before next_to_watch is written.
*/
wmb();
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
tx_ring->next_to_use = i;
ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
/* notify HW of packet */
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
writel(i, tx_ring->tail);
return;
dma_error:
/* clear DMA mappings for failed tx_buf map */
for (;;) {
tx_buf = &tx_ring->tx_buf[i];
ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
if (tx_buf == first)
break;
if (i == 0)
i = tx_ring->count;
i--;
}
tx_ring->next_to_use = i;
}
/**
* ice_tx_csum - Enable Tx checksum offloads
* @first: pointer to the first descriptor
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
*/
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
u32 l4_len = 0, l3_len = 0, l2_len = 0;
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
unsigned char *hdr;
} l4;
__be16 frag_off, protocol;
unsigned char *exthdr;
u32 offset, cmd = 0;
u8 l4_proto = 0;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* compute outer L2 header size */
l2_len = ip.hdr - skb->data;
offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
protocol = vlan_get_protocol(skb);
if (protocol == htons(ETH_P_IP))
first->tx_flags |= ICE_TX_FLAGS_IPV4;
else if (protocol == htons(ETH_P_IPV6))
first->tx_flags |= ICE_TX_FLAGS_IPV6;
if (skb->encapsulation) {
bool gso_ena = false;
u32 tunnel = 0;
/* define outer network header type */
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
ICE_TX_CTX_EIPT_IPV4 :
ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
l4_proto = ip.v4->protocol;
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
int ret;
tunnel |= ICE_TX_CTX_EIPT_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto, &frag_off);
if (ret < 0)
return -1;
}
/* define outer transport */
switch (l4_proto) {
case IPPROTO_UDP:
tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
break;
case IPPROTO_GRE:
tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
break;
case IPPROTO_IPIP:
case IPPROTO_IPV6:
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
l4.hdr = skb_inner_network_header(skb);
break;
default:
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
/* compute outer L3 header size */
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
ICE_TXD_CTX_QW0_EIPLEN_S;
/* switch IP header pointer from outer to inner header */
ip.hdr = skb_inner_network_header(skb);
/* compute tunnel header size */
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
ICE_TXD_CTX_QW0_NATLEN_S;
gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
/* indicate if we need to offload outer UDP header */
if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
/* record tunnel offload values */
off->cd_tunnel_params |= tunnel;
/* set DTYP=1 to indicate that it's an Tx context descriptor
* in IPsec tunnel mode with Tx offloads in Quad word 1
*/
off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
/* switch L4 header pointer from outer to inner */
l4.hdr = skb_inner_transport_header(skb);
l4_proto = 0;
/* reset type as we transition from outer to inner headers */
first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
if (ip.v4->version == 4)
first->tx_flags |= ICE_TX_FLAGS_IPV4;
if (ip.v6->version == 6)
first->tx_flags |= ICE_TX_FLAGS_IPV6;
}
/* Enable IP checksum offloads */
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
l4_proto = ip.v4->protocol;
/* the stack computes the IP header already, the only time we
* need the hardware to recompute it is in the case of TSO.
*/
if (first->tx_flags & ICE_TX_FLAGS_TSO)
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
else
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
exthdr = ip.hdr + sizeof(*ip.v6);
l4_proto = ip.v6->nexthdr;
if (l4.hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
&frag_off);
} else {
return -1;
}
/* compute inner L3 header size */
l3_len = l4.hdr - ip.hdr;
offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
/* Enable L4 checksum offloads */
switch (l4_proto) {
case IPPROTO_TCP:
/* enable checksum offloads */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
l4_len = l4.tcp->doff;
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
case IPPROTO_UDP:
/* enable UDP checksum offload */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
l4_len = (sizeof(struct udphdr) >> 2);
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
case IPPROTO_SCTP:
/* enable SCTP checksum offload */
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
l4_len = sizeof(struct sctphdr) >> 2;
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
break;
default:
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return -1;
skb_checksum_help(skb);
return 0;
}
off->td_cmd |= cmd;
off->td_offset |= offset;
return 1;
}
/**
* ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
* @tx_ring: ring to send buffer on
* @first: pointer to struct ice_tx_buf
*
* Checks the skb and set up correspondingly several generic transmit flags
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
*/
static void
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
struct sk_buff *skb = first->skb;
/* nothing left to do, software offloaded VLAN */
if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
return;
/* currently, we always assume 802.1Q for VLAN insertion as VLAN
* insertion for 802.1AD is not supported
*/
if (skb_vlan_tag_present(skb)) {
first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
}
ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
}
/**
* ice_tso - computes mss and TSO length to prepare for TSO
* @first: pointer to struct ice_tx_buf
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
*/
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
struct sk_buff *skb = first->skb;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
struct udphdr *udp;
unsigned char *hdr;
} l4;
u64 cd_mss, cd_tso_len;
u32 paylen;
u8 l4_start;
int err;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
/* cppcheck-suppress unreadVariable */
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* initialize outer IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_IPXIP4 |
SKB_GSO_IPXIP6 |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
l4.udp->len = 0;
/* determine offset of outer transport header */
l4_start = (u8)(l4.hdr - skb->data);
/* remove payload length from outer checksum */
paylen = skb->len - l4_start;
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
}
/* reset pointers to inner headers */
/* cppcheck-suppress unreadVariable */
ip.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
/* initialize inner IP header fields */
if (ip.v4->version == 4) {
ip.v4->tot_len = 0;
ip.v4->check = 0;
} else {
ip.v6->payload_len = 0;
}
}
/* determine offset of transport header */
l4_start = (u8)(l4.hdr - skb->data);
/* remove payload length from checksum */
paylen = skb->len - l4_start;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
csum_replace_by_diff(&l4.udp->check,
(__force __wsum)htonl(paylen));
/* compute length of UDP segmentation header */
off->header_len = (u8)sizeof(l4.udp) + l4_start;
} else {
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(paylen));
/* compute length of TCP segmentation header */
off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
}
/* update gso_segs and bytecount */
first->gso_segs = skb_shinfo(skb)->gso_segs;
first->bytecount += (first->gso_segs - 1) * off->header_len;
cd_tso_len = skb->len - off->header_len;
cd_mss = skb_shinfo(skb)->gso_size;
/* record cdesc_qw1 with TSO parameters */
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
(ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
(cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
(cd_mss << ICE_TXD_CTX_QW1_MSS_S));
first->tx_flags |= ICE_TX_FLAGS_TSO;
return 1;
}
/**
* ice_txd_use_count - estimate the number of descriptors needed for Tx
* @size: transmit request size in bytes
*
* Due to hardware alignment restrictions (4K alignment), we need to
* assume that we can have no more than 12K of data per descriptor, even
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
* Thus, we need to divide by 12K. But division is slow! Instead,
* we decompose the operation into shifts and one relatively cheap
* multiply operation.
*
* To divide by 12K, we first divide by 4K, then divide by 3:
* To divide by 4K, shift right by 12 bits
* To divide by 3, multiply by 85, then divide by 256
* (Divide by 256 is done by shifting right by 8 bits)
* Finally, we add one to round up. Because 256 isn't an exact multiple of
* 3, we'll underestimate near each multiple of 12K. This is actually more
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
* segment. For our purposes this is accurate out to 1M which is orders of
* magnitude greater than our largest possible GSO size.
*
* This would then be implemented as:
* return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
*
* Since multiplication and division are commutative, we can reorder
* operations into:
* return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
*/
static unsigned int ice_txd_use_count(unsigned int size)
{
return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
}
/**
* ice_xmit_desc_count - calculate number of Tx descriptors needed
* @skb: send buffer
*
* Returns number of data descriptors needed for this skb.
*/
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int count = 0, size = skb_headlen(skb);
for (;;) {
count += ice_txd_use_count(size);
if (!nr_frags--)
break;
size = skb_frag_size(frag++);
}
return count;
}
/**
* __ice_chk_linearize - Check if there are more than 8 buffers per packet
* @skb: send buffer
*
* Note: This HW can't DMA more than 8 buffers to build a packet on the wire
* and so we need to figure out the cases where we need to linearize the skb.
*
* For TSO we need to count the TSO header and segment payload separately.
* As such we need to check cases where we have 7 fragments or more as we
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
* the segment payload in the first descriptor, and another 7 for the
* fragments.
*/
static bool __ice_chk_linearize(struct sk_buff *skb)
{
const skb_frag_t *frag, *stale;
int nr_frags, sum;
/* no need to check if number of frags is less than 7 */
nr_frags = skb_shinfo(skb)->nr_frags;
if (nr_frags < (ICE_MAX_BUF_TXD - 1))
return false;
/* We need to walk through the list and validate that each group
* of 6 fragments totals at least gso_size.
*/
nr_frags -= ICE_MAX_BUF_TXD - 2;
frag = &skb_shinfo(skb)->frags[0];
/* Initialize size to the negative value of gso_size minus 1. We
* use this as the worst case scenario in which the frag ahead
* of us only provides one byte which is why we are limited to 6
* descriptors for a single transmit as the header and previous
* fragment are already consuming 2 descriptors.
*/
sum = 1 - skb_shinfo(skb)->gso_size;
/* Add size of frags 0 through 4 to create our initial sum */
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
sum += skb_frag_size(frag++);
/* Walk through fragments adding latest fragment, testing it, and
* then removing stale fragments from the sum.
*/
for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
int stale_size = skb_frag_size(stale);
sum += skb_frag_size(frag++);
/* The stale fragment may present us with a smaller
* descriptor than the actual fragment size. To account
* for that we need to remove all the data on the front and
* figure out what the remainder would be in the last
* descriptor associated with the fragment.
*/
if (stale_size > ICE_MAX_DATA_PER_TXD) {
int align_pad = -(skb_frag_off(stale)) &
(ICE_MAX_READ_REQ_SIZE - 1);
sum -= align_pad;
stale_size -= align_pad;
do {
sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
} while (stale_size > ICE_MAX_DATA_PER_TXD);
}
/* if sum is negative we failed to make sufficient progress */
if (sum < 0)
return true;
if (!nr_frags--)
break;
sum -= stale_size;
}
return false;
}
/**
* ice_chk_linearize - Check if there are more than 8 fragments per packet
* @skb: send buffer
* @count: number of buffers used
*
* Note: Our HW can't scatter-gather more than 8 fragments to build
* a packet on the wire and so we need to figure out the cases where we
* need to linearize the skb.
*/
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
/* Both TSO and single send will work if count is less than 8 */
if (likely(count < ICE_MAX_BUF_TXD))
return false;
if (skb_is_gso(skb))
return __ice_chk_linearize(skb);
/* we can support up to 8 data buffers for a single send */
return count != ICE_MAX_BUF_TXD;
}
/**
* ice_tstamp - set up context descriptor for hardware timestamp
* @tx_ring: pointer to the Tx ring to send buffer on
* @skb: pointer to the SKB we're sending
* @first: Tx buffer
* @off: Tx offload parameters
*/
static void
ice_tstamp(struct ice_ring *tx_ring, struct sk_buff *skb,
struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
s8 idx;
/* only timestamp the outbound packet if the user has requested it */
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
return;
if (!tx_ring->ptp_tx)
return;
/* Tx timestamps cannot be sampled when doing TSO */
if (first->tx_flags & ICE_TX_FLAGS_TSO)
return;
/* Grab an open timestamp slot */
idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
if (idx < 0)
return;
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
(ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
first->tx_flags |= ICE_TX_FLAGS_TSYN;
}
/**
* ice_xmit_frame_ring - Sends buffer on Tx ring
* @skb: send buffer
* @tx_ring: ring to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
struct ice_tx_offload_params offload = { 0 };
struct ice_vsi *vsi = tx_ring->vsi;
struct ice_tx_buf *first;
struct ethhdr *eth;
unsigned int count;
int tso, csum;
ice_trace(xmit_frame_ring, tx_ring, skb);
count = ice_xmit_desc_count(skb);
if (ice_chk_linearize(skb, count)) {
if (__skb_linearize(skb))
goto out_drop;
count = ice_txd_use_count(skb->len);
tx_ring->tx_stats.tx_linearize++;
}
/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
* + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
* + 4 desc gap to avoid the cache line where head is,
* + 1 desc for context descriptor,
* otherwise try next time
*/
if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
ICE_DESCS_FOR_CTX_DESC)) {
tx_ring->tx_stats.tx_busy++;
return NETDEV_TX_BUSY;
}
offload.tx_ring = tx_ring;
/* record the location of the first descriptor for this packet */
first = &tx_ring->tx_buf[tx_ring->next_to_use];
first->skb = skb;
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
first->gso_segs = 1;
first->tx_flags = 0;
/* prepare the VLAN tagging flags for Tx */
ice_tx_prepare_vlan_flags(tx_ring, first);
/* set up TSO offload */
tso = ice_tso(first, &offload);
if (tso < 0)
goto out_drop;
/* always set up Tx checksum offload */
csum = ice_tx_csum(first, &offload);
if (csum < 0)
goto out_drop;
/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
eth = (struct ethhdr *)skb_mac_header(skb);
if (unlikely((skb->priority == TC_PRIO_CONTROL ||
eth->h_proto == htons(ETH_P_LLDP)) &&
vsi->type == ICE_VSI_PF &&
vsi->port_info->qos_cfg.is_sw_lldp))
offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
ICE_TX_CTX_DESC_SWTCH_UPLINK <<
ICE_TXD_CTX_QW1_CMD_S);
ice_tstamp(tx_ring, skb, first, &offload);
if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
struct ice_tx_ctx_desc *cdesc;
u16 i = tx_ring->next_to_use;
/* grab the next descriptor */
cdesc = ICE_TX_CTX_DESC(tx_ring, i);
i++;
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
/* setup context descriptor */
cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
cdesc->rsvd = cpu_to_le16(0);
cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
}
ice_tx_map(tx_ring, first, &offload);
return NETDEV_TX_OK;
out_drop:
ice_trace(xmit_frame_ring_drop, tx_ring, skb);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/**
* ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
* @skb: send buffer
* @netdev: network interface device structure
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_ring *tx_ring;
tx_ring = vsi->tx_rings[skb->queue_mapping];
/* hardware can't handle really short frames, hardware padding works
* beyond this point
*/
if (skb_put_padto(skb, ICE_MIN_TX_LEN))
return NETDEV_TX_OK;
return ice_xmit_frame_ring(skb, tx_ring);
}
/**
* ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
* @tx_ring: tx_ring to clean
*/
void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
{
struct ice_vsi *vsi = tx_ring->vsi;
s16 i = tx_ring->next_to_clean;
int budget = ICE_DFLT_IRQ_WORK;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
tx_buf = &tx_ring->tx_buf[i];
tx_desc = ICE_TX_DESC(tx_ring, i);
i -= tx_ring->count;
do {
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
/* if next_to_watch is not set then there is no pending work */
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if the descriptor isn't done, no work to do */
if (!(eop_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
tx_desc->buf_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move past filter desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
/* unmap the data header */
if (dma_unmap_len(tx_buf, len))
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
devm_kfree(tx_ring->dev, tx_buf->raw_buf);
/* clear next_to_watch to prevent false hangs */
tx_buf->raw_buf = NULL;
tx_buf->tx_flags = 0;
tx_buf->next_to_watch = NULL;
dma_unmap_len_set(tx_buf, len, 0);
tx_desc->buf_addr = 0;
tx_desc->cmd_type_offset_bsz = 0;
/* move past eop_desc for start of next FD desc */
tx_buf++;
tx_desc++;
i++;
if (unlikely(!i)) {
i -= tx_ring->count;
tx_buf = tx_ring->tx_buf;
tx_desc = ICE_TX_DESC(tx_ring, 0);
}
budget--;
} while (likely(budget));
i += tx_ring->count;
tx_ring->next_to_clean = i;
/* re-enable interrupt if needed */
ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
}