linux/fs/btrfs/tests/btrfs-tests.c
Al Viro 1f58bb18f6 mount_pseudo(): drop 'name' argument, switch to d_make_root()
Once upon a time we used to set ->d_name of e.g. pipefs root
so that d_path() on pipes would work.  These days it's
completely pointless - dentries of pipes are not even connected
to pipefs root.  However, mount_pseudo() had set the root
dentry name (passed as the second argument) and callers
kept inventing names to pass to it.  Including those that
didn't *have* any non-root dentries to start with...

All of that had been pointless for about 8 years now; it's
time to get rid of that cargo-culting...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-05-25 17:59:24 -04:00

288 lines
7.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2013 Fusion IO. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/magic.h>
#include "btrfs-tests.h"
#include "../ctree.h"
#include "../free-space-cache.h"
#include "../free-space-tree.h"
#include "../transaction.h"
#include "../volumes.h"
#include "../disk-io.h"
#include "../qgroup.h"
static struct vfsmount *test_mnt = NULL;
const char *test_error[] = {
[TEST_ALLOC_FS_INFO] = "cannot allocate fs_info",
[TEST_ALLOC_ROOT] = "cannot allocate root",
[TEST_ALLOC_EXTENT_BUFFER] = "cannot extent buffer",
[TEST_ALLOC_PATH] = "cannot allocate path",
[TEST_ALLOC_INODE] = "cannot allocate inode",
[TEST_ALLOC_BLOCK_GROUP] = "cannot allocate block group",
[TEST_ALLOC_EXTENT_MAP] = "cannot allocate extent map",
};
static const struct super_operations btrfs_test_super_ops = {
.alloc_inode = btrfs_alloc_inode,
.destroy_inode = btrfs_test_destroy_inode,
};
static struct dentry *btrfs_test_mount(struct file_system_type *fs_type,
int flags, const char *dev_name,
void *data)
{
return mount_pseudo(fs_type, &btrfs_test_super_ops,
NULL, BTRFS_TEST_MAGIC);
}
static struct file_system_type test_type = {
.name = "btrfs_test_fs",
.mount = btrfs_test_mount,
.kill_sb = kill_anon_super,
};
struct inode *btrfs_new_test_inode(void)
{
return new_inode(test_mnt->mnt_sb);
}
static int btrfs_init_test_fs(void)
{
int ret;
ret = register_filesystem(&test_type);
if (ret) {
printk(KERN_ERR "btrfs: cannot register test file system\n");
return ret;
}
test_mnt = kern_mount(&test_type);
if (IS_ERR(test_mnt)) {
printk(KERN_ERR "btrfs: cannot mount test file system\n");
unregister_filesystem(&test_type);
return PTR_ERR(test_mnt);
}
return 0;
}
static void btrfs_destroy_test_fs(void)
{
kern_unmount(test_mnt);
unregister_filesystem(&test_type);
}
struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
{
struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
GFP_KERNEL);
if (!fs_info)
return fs_info;
fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
GFP_KERNEL);
if (!fs_info->fs_devices) {
kfree(fs_info);
return NULL;
}
fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
GFP_KERNEL);
if (!fs_info->super_copy) {
kfree(fs_info->fs_devices);
kfree(fs_info);
return NULL;
}
fs_info->nodesize = nodesize;
fs_info->sectorsize = sectorsize;
if (init_srcu_struct(&fs_info->subvol_srcu)) {
kfree(fs_info->fs_devices);
kfree(fs_info->super_copy);
kfree(fs_info);
return NULL;
}
spin_lock_init(&fs_info->buffer_lock);
spin_lock_init(&fs_info->qgroup_lock);
spin_lock_init(&fs_info->super_lock);
spin_lock_init(&fs_info->fs_roots_radix_lock);
spin_lock_init(&fs_info->tree_mod_seq_lock);
mutex_init(&fs_info->qgroup_ioctl_lock);
mutex_init(&fs_info->qgroup_rescan_lock);
rwlock_init(&fs_info->tree_mod_log_lock);
fs_info->running_transaction = NULL;
fs_info->qgroup_tree = RB_ROOT;
fs_info->qgroup_ulist = NULL;
atomic64_set(&fs_info->tree_mod_seq, 0);
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
fs_info->pinned_extents = &fs_info->freed_extents[0];
set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
test_mnt->mnt_sb->s_fs_info = fs_info;
return fs_info;
}
void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
{
struct radix_tree_iter iter;
void **slot;
if (!fs_info)
return;
if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
&fs_info->fs_state)))
return;
test_mnt->mnt_sb->s_fs_info = NULL;
spin_lock(&fs_info->buffer_lock);
radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
struct extent_buffer *eb;
eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
if (!eb)
continue;
/* Shouldn't happen but that kind of thinking creates CVE's */
if (radix_tree_exception(eb)) {
if (radix_tree_deref_retry(eb))
slot = radix_tree_iter_retry(&iter);
continue;
}
slot = radix_tree_iter_resume(slot, &iter);
spin_unlock(&fs_info->buffer_lock);
free_extent_buffer_stale(eb);
spin_lock(&fs_info->buffer_lock);
}
spin_unlock(&fs_info->buffer_lock);
btrfs_free_qgroup_config(fs_info);
btrfs_free_fs_roots(fs_info);
cleanup_srcu_struct(&fs_info->subvol_srcu);
kfree(fs_info->super_copy);
kfree(fs_info->fs_devices);
kfree(fs_info);
}
void btrfs_free_dummy_root(struct btrfs_root *root)
{
if (!root)
return;
/* Will be freed by btrfs_free_fs_roots */
if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state)))
return;
if (root->node) {
/* One for allocate_extent_buffer */
free_extent_buffer(root->node);
}
kfree(root);
}
struct btrfs_block_group_cache *
btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
unsigned long length)
{
struct btrfs_block_group_cache *cache;
cache = kzalloc(sizeof(*cache), GFP_KERNEL);
if (!cache)
return NULL;
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
GFP_KERNEL);
if (!cache->free_space_ctl) {
kfree(cache);
return NULL;
}
cache->key.objectid = 0;
cache->key.offset = length;
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
cache->full_stripe_len = fs_info->sectorsize;
cache->fs_info = fs_info;
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
INIT_LIST_HEAD(&cache->bg_list);
btrfs_init_free_space_ctl(cache);
mutex_init(&cache->free_space_lock);
return cache;
}
void btrfs_free_dummy_block_group(struct btrfs_block_group_cache *cache)
{
if (!cache)
return;
__btrfs_remove_free_space_cache(cache->free_space_ctl);
kfree(cache->free_space_ctl);
kfree(cache);
}
void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
memset(trans, 0, sizeof(*trans));
trans->transid = 1;
trans->type = __TRANS_DUMMY;
trans->fs_info = fs_info;
}
int btrfs_run_sanity_tests(void)
{
int ret, i;
u32 sectorsize, nodesize;
u32 test_sectorsize[] = {
PAGE_SIZE,
};
ret = btrfs_init_test_fs();
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
sectorsize = test_sectorsize[i];
for (nodesize = sectorsize;
nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
nodesize <<= 1) {
pr_info("BTRFS: selftest: sectorsize: %u nodesize: %u\n",
sectorsize, nodesize);
ret = btrfs_test_free_space_cache(sectorsize, nodesize);
if (ret)
goto out;
ret = btrfs_test_extent_buffer_operations(sectorsize,
nodesize);
if (ret)
goto out;
ret = btrfs_test_extent_io(sectorsize, nodesize);
if (ret)
goto out;
ret = btrfs_test_inodes(sectorsize, nodesize);
if (ret)
goto out;
ret = btrfs_test_qgroups(sectorsize, nodesize);
if (ret)
goto out;
ret = btrfs_test_free_space_tree(sectorsize, nodesize);
if (ret)
goto out;
}
}
ret = btrfs_test_extent_map();
out:
btrfs_destroy_test_fs();
return ret;
}