linux/drivers/infiniband/core/addr.c
Linus Torvalds 19fd08b85b Merge candidates for 4.17 merge window
- Fix RDMA uapi headers to actually compile in userspace and be more
   complete
 
 - Three shared with netdev pull requests from Mellanox:
 
    * 7 patches, mostly to net with 1 IB related one at the back). This
      series addresses an IRQ performance issue (patch 1), cleanups related to
      the fix for the IRQ performance problem (patches 2-6), and then extends
      the fragmented completion queue support that already exists in the net
      side of the driver to the ib side of the driver (patch 7).
 
    * Mostly IB, with 5 patches to net that are needed to support the remaining
      10 patches to the IB subsystem. This series extends the current
      'representor' framework when the mlx5 driver is in switchdev mode from
      being a netdev only construct to being a netdev/IB dev construct. The IB
      dev is limited to raw Eth queue pairs only, but by having an IB dev of
      this type attached to the representor for a switchdev port, it enables
      DPDK to work on the switchdev device.
 
    * All net related, but needed as infrastructure for the rdma driver
 
 - Updates for the hns, i40iw, bnxt_re, cxgb3, cxgb4, hns drivers
 
 - SRP performance updates
 
 - IB uverbs write path cleanup patch series from Leon
 
 - Add RDMA_CM support to ib_srpt. This is disabled by default.  Users need to
   set the port for ib_srpt to listen on in configfs in order for it to be
   enabled (/sys/kernel/config/target/srpt/discovery_auth/rdma_cm_port)
 
 - TSO and Scatter FCS support in mlx4
 
 - Refactor of modify_qp routine to resolve problems seen while working on new
   code that is forthcoming
 
 - More refactoring and updates of RDMA CM for containers support from Parav
 
 - mlx5 'fine grained packet pacing', 'ipsec offload' and 'device memory'
   user API features
 
 - Infrastructure updates for the new IOCTL interface, based on increased usage
 
 - ABI compatibility bug fixes to fully support 32 bit userspace on 64 bit
   kernel as was originally intended. See the commit messages for
   extensive details
 
 - Syzkaller bugs and code cleanups motivated by them
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCgAGBQJax5Z0AAoJEDht9xV+IJsacCwQAJBIgmLCvVp5fBu2kJcXMMVI
 y3l2YNzAUJvDDKv1r5yTC9ugBXEkDtgzi/W/C2/5es2yUG/QeT/zzQ3YPrtsnN68
 5FkiXQ35Tt7+PBHMr0cacGRmF4M3Td3MeW0X5aJaBKhqlNKwA+aF18pjGWBmpVYx
 URYCwLb5BZBKVh4+1Leebsk4i0/7jSauAqE5M+9notuAUfBCoY1/Eve3DipEIBBp
 EyrEnMDIdujYRsg4KHlxFKKJ1EFGItknLQbNL1+SEa0Oe0SnEl5Bd53Yxfz7ekNP
 oOWQe5csTcs3Yr4Ob0TC+69CzI71zKbz6qPDILTwXmsPFZJ9ipJs4S8D6F7ra8tb
 D5aT1EdRzh/vAORPC9T3DQ3VsHdvhwpUMG7knnKrVT9X/g7E+gSji1BqaQaTr/xs
 i40GepHT7lM/TWEuee/6LRpqdhuOhud7vfaRFwn2JGRX9suqTcvwhkBkPUDGV5XX
 5RkHcWOb/7KvmpG7S1gaRGK5kO208LgmAZi7REaJFoZB74FqSneMR6NHIH07ha41
 Zou7rnxV68CT2bgu27m+72EsprgmBkVDeEzXgKxVI/+PZ1oadUFpgcZ3pRLOPWVx
 rEqjHu65rlA/YPog4iXQaMfSwt/oRD3cVJS/n8EdJKXi4Qt2RDDGdyOmt74w4prM
 QuLEdvJIFmwrND1KDoqn
 =Ku8g
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-unmerged' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull rdma updates from Jason Gunthorpe:
 "Doug and I are at a conference next week so if another PR is sent I
  expect it to only be bug fixes. Parav noted yesterday that there are
  some fringe case behavior changes in his work that he would like to
  fix, and I see that Intel has a number of rc looking patches for HFI1
  they posted yesterday.

  Parav is again the biggest contributor by patch count with his ongoing
  work to enable container support in the RDMA stack, followed by Leon
  doing syzkaller inspired cleanups, though most of the actual fixing
  went to RC.

  There is one uncomfortable series here fixing the user ABI to actually
  work as intended in 32 bit mode. There are lots of notes in the commit
  messages, but the basic summary is we don't think there is an actual
  32 bit kernel user of drivers/infiniband for several good reasons.

  However we are seeing people want to use a 32 bit user space with 64
  bit kernel, which didn't completely work today. So in fixing it we
  required a 32 bit rxe user to upgrade their userspace. rxe users are
  still already quite rare and we think a 32 bit one is non-existing.

   - Fix RDMA uapi headers to actually compile in userspace and be more
     complete

   - Three shared with netdev pull requests from Mellanox:

      * 7 patches, mostly to net with 1 IB related one at the back).
        This series addresses an IRQ performance issue (patch 1),
        cleanups related to the fix for the IRQ performance problem
        (patches 2-6), and then extends the fragmented completion queue
        support that already exists in the net side of the driver to the
        ib side of the driver (patch 7).

      * Mostly IB, with 5 patches to net that are needed to support the
        remaining 10 patches to the IB subsystem. This series extends
        the current 'representor' framework when the mlx5 driver is in
        switchdev mode from being a netdev only construct to being a
        netdev/IB dev construct. The IB dev is limited to raw Eth queue
        pairs only, but by having an IB dev of this type attached to the
        representor for a switchdev port, it enables DPDK to work on the
        switchdev device.

      * All net related, but needed as infrastructure for the rdma
        driver

   - Updates for the hns, i40iw, bnxt_re, cxgb3, cxgb4, hns drivers

   - SRP performance updates

   - IB uverbs write path cleanup patch series from Leon

   - Add RDMA_CM support to ib_srpt. This is disabled by default. Users
     need to set the port for ib_srpt to listen on in configfs in order
     for it to be enabled
     (/sys/kernel/config/target/srpt/discovery_auth/rdma_cm_port)

   - TSO and Scatter FCS support in mlx4

   - Refactor of modify_qp routine to resolve problems seen while
     working on new code that is forthcoming

   - More refactoring and updates of RDMA CM for containers support from
     Parav

   - mlx5 'fine grained packet pacing', 'ipsec offload' and 'device
     memory' user API features

   - Infrastructure updates for the new IOCTL interface, based on
     increased usage

   - ABI compatibility bug fixes to fully support 32 bit userspace on 64
     bit kernel as was originally intended. See the commit messages for
     extensive details

   - Syzkaller bugs and code cleanups motivated by them"

* tag 'for-linus-unmerged' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (199 commits)
  IB/rxe: Fix for oops in rxe_register_device on ppc64le arch
  IB/mlx5: Device memory mr registration support
  net/mlx5: Mkey creation command adjustments
  IB/mlx5: Device memory support in mlx5_ib
  net/mlx5: Query device memory capabilities
  IB/uverbs: Add device memory registration ioctl support
  IB/uverbs: Add alloc/free dm uverbs ioctl support
  IB/uverbs: Add device memory capabilities reporting
  IB/uverbs: Expose device memory capabilities to user
  RDMA/qedr: Fix wmb usage in qedr
  IB/rxe: Removed GID add/del dummy routines
  RDMA/qedr: Zero stack memory before copying to user space
  IB/mlx5: Add ability to hash by IPSEC_SPI when creating a TIR
  IB/mlx5: Add information for querying IPsec capabilities
  IB/mlx5: Add IPsec support for egress and ingress
  {net,IB}/mlx5: Add ipsec helper
  IB/mlx5: Add modify_flow_action_esp verb
  IB/mlx5: Add implementation for create and destroy action_xfrm
  IB/uverbs: Introduce ESP steering match filter
  IB/uverbs: Add modify ESP flow_action
  ...
2018-04-06 17:35:43 -07:00

844 lines
20 KiB
C

/*
* Copyright (c) 2005 Voltaire Inc. All rights reserved.
* Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
* Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
* Copyright (c) 2005 Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mutex.h>
#include <linux/inetdevice.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/arp.h>
#include <net/neighbour.h>
#include <net/route.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/ip6_route.h>
#include <rdma/ib_addr.h>
#include <rdma/ib.h>
#include <rdma/rdma_netlink.h>
#include <net/netlink.h>
#include "core_priv.h"
struct addr_req {
struct list_head list;
struct sockaddr_storage src_addr;
struct sockaddr_storage dst_addr;
struct rdma_dev_addr *addr;
struct rdma_addr_client *client;
void *context;
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context);
unsigned long timeout;
struct delayed_work work;
int status;
u32 seq;
};
static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
static void process_req(struct work_struct *work);
static DEFINE_MUTEX(lock);
static LIST_HEAD(req_list);
static DECLARE_DELAYED_WORK(work, process_req);
static struct workqueue_struct *addr_wq;
static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
.len = sizeof(struct rdma_nla_ls_gid)},
};
static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
{
struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
int ret;
if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
return false;
ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
nlmsg_len(nlh), ib_nl_addr_policy, NULL);
if (ret)
return false;
return true;
}
static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
{
const struct nlattr *head, *curr;
union ib_gid gid;
struct addr_req *req;
int len, rem;
int found = 0;
head = (const struct nlattr *)nlmsg_data(nlh);
len = nlmsg_len(nlh);
nla_for_each_attr(curr, head, len, rem) {
if (curr->nla_type == LS_NLA_TYPE_DGID)
memcpy(&gid, nla_data(curr), nla_len(curr));
}
mutex_lock(&lock);
list_for_each_entry(req, &req_list, list) {
if (nlh->nlmsg_seq != req->seq)
continue;
/* We set the DGID part, the rest was set earlier */
rdma_addr_set_dgid(req->addr, &gid);
req->status = 0;
found = 1;
break;
}
mutex_unlock(&lock);
if (!found)
pr_info("Couldn't find request waiting for DGID: %pI6\n",
&gid);
}
int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
!(NETLINK_CB(skb).sk))
return -EPERM;
if (ib_nl_is_good_ip_resp(nlh))
ib_nl_process_good_ip_rsep(nlh);
return skb->len;
}
static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
const void *daddr,
u32 seq, u16 family)
{
struct sk_buff *skb = NULL;
struct nlmsghdr *nlh;
struct rdma_ls_ip_resolve_header *header;
void *data;
size_t size;
int attrtype;
int len;
if (family == AF_INET) {
size = sizeof(struct in_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
} else {
size = sizeof(struct in6_addr);
attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
}
len = nla_total_size(sizeof(size));
len += NLMSG_ALIGN(sizeof(*header));
skb = nlmsg_new(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
if (!data) {
nlmsg_free(skb);
return -ENODATA;
}
/* Construct the family header first */
header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
header->ifindex = dev_addr->bound_dev_if;
nla_put(skb, attrtype, size, daddr);
/* Repair the nlmsg header length */
nlmsg_end(skb, nlh);
rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
/* Make the request retry, so when we get the response from userspace
* we will have something.
*/
return -ENODATA;
}
int rdma_addr_size(struct sockaddr *addr)
{
switch (addr->sa_family) {
case AF_INET:
return sizeof(struct sockaddr_in);
case AF_INET6:
return sizeof(struct sockaddr_in6);
case AF_IB:
return sizeof(struct sockaddr_ib);
default:
return 0;
}
}
EXPORT_SYMBOL(rdma_addr_size);
int rdma_addr_size_in6(struct sockaddr_in6 *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_in6);
int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
{
int ret = rdma_addr_size((struct sockaddr *) addr);
return ret <= sizeof(*addr) ? ret : 0;
}
EXPORT_SYMBOL(rdma_addr_size_kss);
static struct rdma_addr_client self;
void rdma_addr_register_client(struct rdma_addr_client *client)
{
atomic_set(&client->refcount, 1);
init_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_register_client);
static inline void put_client(struct rdma_addr_client *client)
{
if (atomic_dec_and_test(&client->refcount))
complete(&client->comp);
}
void rdma_addr_unregister_client(struct rdma_addr_client *client)
{
put_client(client);
wait_for_completion(&client->comp);
}
EXPORT_SYMBOL(rdma_addr_unregister_client);
void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
const struct net_device *dev,
const unsigned char *dst_dev_addr)
{
dev_addr->dev_type = dev->type;
memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
if (dst_dev_addr)
memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
dev_addr->bound_dev_if = dev->ifindex;
}
EXPORT_SYMBOL(rdma_copy_addr);
int rdma_translate_ip(const struct sockaddr *addr,
struct rdma_dev_addr *dev_addr)
{
struct net_device *dev;
if (dev_addr->bound_dev_if) {
dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
if (!dev)
return -ENODEV;
rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
return 0;
}
switch (addr->sa_family) {
case AF_INET:
dev = ip_dev_find(dev_addr->net,
((const struct sockaddr_in *)addr)->sin_addr.s_addr);
if (!dev)
return -EADDRNOTAVAIL;
rdma_copy_addr(dev_addr, dev, NULL);
dev_put(dev);
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
rcu_read_lock();
for_each_netdev_rcu(dev_addr->net, dev) {
if (ipv6_chk_addr(dev_addr->net,
&((const struct sockaddr_in6 *)addr)->sin6_addr,
dev, 1)) {
rdma_copy_addr(dev_addr, dev, NULL);
break;
}
}
rcu_read_unlock();
break;
#endif
}
return 0;
}
EXPORT_SYMBOL(rdma_translate_ip);
static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
{
unsigned long delay;
delay = time - jiffies;
if ((long)delay < 0)
delay = 0;
mod_delayed_work(addr_wq, delayed_work, delay);
}
static void queue_req(struct addr_req *req)
{
struct addr_req *temp_req;
mutex_lock(&lock);
list_for_each_entry_reverse(temp_req, &req_list, list) {
if (time_after_eq(req->timeout, temp_req->timeout))
break;
}
list_add(&req->list, &temp_req->list);
set_timeout(&req->work, req->timeout);
mutex_unlock(&lock);
}
static int ib_nl_fetch_ha(const struct dst_entry *dst,
struct rdma_dev_addr *dev_addr,
const void *daddr, u32 seq, u16 family)
{
if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
return -EADDRNOTAVAIL;
/* We fill in what we can, the response will fill the rest */
rdma_copy_addr(dev_addr, dst->dev, NULL);
return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
}
static int dst_fetch_ha(const struct dst_entry *dst,
struct rdma_dev_addr *dev_addr,
const void *daddr)
{
struct neighbour *n;
int ret = 0;
n = dst_neigh_lookup(dst, daddr);
rcu_read_lock();
if (!n || !(n->nud_state & NUD_VALID)) {
if (n)
neigh_event_send(n, NULL);
ret = -ENODATA;
} else {
rdma_copy_addr(dev_addr, dst->dev, n->ha);
}
rcu_read_unlock();
if (n)
neigh_release(n);
return ret;
}
static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
{
struct rtable *rt;
struct rt6_info *rt6;
if (family == AF_INET) {
rt = container_of(dst, struct rtable, dst);
return rt->rt_uses_gateway;
}
rt6 = container_of(dst, struct rt6_info, dst);
return rt6->rt6i_flags & RTF_GATEWAY;
}
static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
const struct sockaddr *dst_in, u32 seq)
{
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
const void *daddr = (dst_in->sa_family == AF_INET) ?
(const void *)&dst_in4->sin_addr.s_addr :
(const void *)&dst_in6->sin6_addr;
sa_family_t family = dst_in->sa_family;
/* Gateway + ARPHRD_INFINIBAND -> IB router */
if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
else
return dst_fetch_ha(dst, dev_addr, daddr);
}
static int addr4_resolve(struct sockaddr_in *src_in,
const struct sockaddr_in *dst_in,
struct rdma_dev_addr *addr,
struct rtable **prt)
{
__be32 src_ip = src_in->sin_addr.s_addr;
__be32 dst_ip = dst_in->sin_addr.s_addr;
struct rtable *rt;
struct flowi4 fl4;
int ret;
memset(&fl4, 0, sizeof(fl4));
fl4.daddr = dst_ip;
fl4.saddr = src_ip;
fl4.flowi4_oif = addr->bound_dev_if;
rt = ip_route_output_key(addr->net, &fl4);
ret = PTR_ERR_OR_ZERO(rt);
if (ret)
return ret;
src_in->sin_family = AF_INET;
src_in->sin_addr.s_addr = fl4.saddr;
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV4;
addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
*prt = rt;
return 0;
}
#if IS_ENABLED(CONFIG_IPV6)
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
struct flowi6 fl6;
struct dst_entry *dst;
struct rt6_info *rt;
int ret;
memset(&fl6, 0, sizeof fl6);
fl6.daddr = dst_in->sin6_addr;
fl6.saddr = src_in->sin6_addr;
fl6.flowi6_oif = addr->bound_dev_if;
ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
if (ret < 0)
return ret;
rt = (struct rt6_info *)dst;
if (ipv6_addr_any(&src_in->sin6_addr)) {
src_in->sin6_family = AF_INET6;
src_in->sin6_addr = fl6.saddr;
}
/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
* definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
* type accordingly.
*/
if (rt->rt6i_flags & RTF_GATEWAY &&
ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
addr->network = RDMA_NETWORK_IPV6;
addr->hoplimit = ip6_dst_hoplimit(dst);
*pdst = dst;
return 0;
}
#else
static int addr6_resolve(struct sockaddr_in6 *src_in,
const struct sockaddr_in6 *dst_in,
struct rdma_dev_addr *addr,
struct dst_entry **pdst)
{
return -EADDRNOTAVAIL;
}
#endif
static int addr_resolve_neigh(const struct dst_entry *dst,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
u32 seq)
{
if (dst->dev->flags & IFF_LOOPBACK) {
int ret;
ret = rdma_translate_ip(dst_in, addr);
if (!ret)
memcpy(addr->dst_dev_addr, addr->src_dev_addr,
MAX_ADDR_LEN);
return ret;
}
/* If the device doesn't do ARP internally */
if (!(dst->dev->flags & IFF_NOARP))
return fetch_ha(dst, addr, dst_in, seq);
rdma_copy_addr(addr, dst->dev, NULL);
return 0;
}
static int addr_resolve(struct sockaddr *src_in,
const struct sockaddr *dst_in,
struct rdma_dev_addr *addr,
bool resolve_neigh,
u32 seq)
{
struct net_device *ndev;
struct dst_entry *dst;
int ret;
if (!addr->net) {
pr_warn_ratelimited("%s: missing namespace\n", __func__);
return -EINVAL;
}
if (src_in->sa_family == AF_INET) {
struct rtable *rt = NULL;
const struct sockaddr_in *dst_in4 =
(const struct sockaddr_in *)dst_in;
ret = addr4_resolve((struct sockaddr_in *)src_in,
dst_in4, addr, &rt);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
if (addr->bound_dev_if) {
ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
} else {
ndev = rt->dst.dev;
dev_hold(ndev);
}
ip_rt_put(rt);
} else {
const struct sockaddr_in6 *dst_in6 =
(const struct sockaddr_in6 *)dst_in;
ret = addr6_resolve((struct sockaddr_in6 *)src_in,
dst_in6, addr,
&dst);
if (ret)
return ret;
if (resolve_neigh)
ret = addr_resolve_neigh(dst, dst_in, addr, seq);
if (addr->bound_dev_if) {
ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
} else {
ndev = dst->dev;
dev_hold(ndev);
}
dst_release(dst);
}
if (ndev) {
if (ndev->flags & IFF_LOOPBACK)
ret = rdma_translate_ip(dst_in, addr);
else
addr->bound_dev_if = ndev->ifindex;
dev_put(ndev);
}
return ret;
}
static void process_one_req(struct work_struct *_work)
{
struct addr_req *req;
struct sockaddr *src_in, *dst_in;
mutex_lock(&lock);
req = container_of(_work, struct addr_req, work.work);
if (req->status == -ENODATA) {
src_in = (struct sockaddr *)&req->src_addr;
dst_in = (struct sockaddr *)&req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->seq);
if (req->status && time_after_eq(jiffies, req->timeout)) {
req->status = -ETIMEDOUT;
} else if (req->status == -ENODATA) {
/* requeue the work for retrying again */
set_timeout(&req->work, req->timeout);
mutex_unlock(&lock);
return;
}
}
list_del(&req->list);
mutex_unlock(&lock);
/*
* Although the work will normally have been canceled by the
* workqueue, it can still be requeued as long as it is on the
* req_list, so it could have been requeued before we grabbed &lock.
* We need to cancel it after it is removed from req_list to really be
* sure it is safe to free.
*/
cancel_delayed_work(&req->work);
req->callback(req->status, (struct sockaddr *)&req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
static void process_req(struct work_struct *work)
{
struct addr_req *req, *temp_req;
struct sockaddr *src_in, *dst_in;
struct list_head done_list;
INIT_LIST_HEAD(&done_list);
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->status == -ENODATA) {
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
req->status = addr_resolve(src_in, dst_in, req->addr,
true, req->seq);
if (req->status && time_after_eq(jiffies, req->timeout))
req->status = -ETIMEDOUT;
else if (req->status == -ENODATA) {
set_timeout(&req->work, req->timeout);
continue;
}
}
list_move_tail(&req->list, &done_list);
}
mutex_unlock(&lock);
list_for_each_entry_safe(req, temp_req, &done_list, list) {
list_del(&req->list);
/* It is safe to cancel other work items from this work item
* because at a time there can be only one work item running
* with this single threaded work queue.
*/
cancel_delayed_work(&req->work);
req->callback(req->status, (struct sockaddr *) &req->src_addr,
req->addr, req->context);
put_client(req->client);
kfree(req);
}
}
int rdma_resolve_ip(struct rdma_addr_client *client,
struct sockaddr *src_addr, struct sockaddr *dst_addr,
struct rdma_dev_addr *addr, int timeout_ms,
void (*callback)(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context),
void *context)
{
struct sockaddr *src_in, *dst_in;
struct addr_req *req;
int ret = 0;
req = kzalloc(sizeof *req, GFP_KERNEL);
if (!req)
return -ENOMEM;
src_in = (struct sockaddr *) &req->src_addr;
dst_in = (struct sockaddr *) &req->dst_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family) {
ret = -EINVAL;
goto err;
}
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
req->addr = addr;
req->callback = callback;
req->context = context;
req->client = client;
atomic_inc(&client->refcount);
INIT_DELAYED_WORK(&req->work, process_one_req);
req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
switch (req->status) {
case 0:
req->timeout = jiffies;
queue_req(req);
break;
case -ENODATA:
req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
queue_req(req);
break;
default:
ret = req->status;
atomic_dec(&client->refcount);
goto err;
}
return ret;
err:
kfree(req);
return ret;
}
EXPORT_SYMBOL(rdma_resolve_ip);
int rdma_resolve_ip_route(struct sockaddr *src_addr,
const struct sockaddr *dst_addr,
struct rdma_dev_addr *addr)
{
struct sockaddr_storage ssrc_addr = {};
struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
if (src_addr) {
if (src_addr->sa_family != dst_addr->sa_family)
return -EINVAL;
memcpy(src_in, src_addr, rdma_addr_size(src_addr));
} else {
src_in->sa_family = dst_addr->sa_family;
}
return addr_resolve(src_in, dst_addr, addr, false, 0);
}
void rdma_addr_cancel(struct rdma_dev_addr *addr)
{
struct addr_req *req, *temp_req;
mutex_lock(&lock);
list_for_each_entry_safe(req, temp_req, &req_list, list) {
if (req->addr == addr) {
req->status = -ECANCELED;
req->timeout = jiffies;
list_move(&req->list, &req_list);
set_timeout(&req->work, req->timeout);
break;
}
}
mutex_unlock(&lock);
}
EXPORT_SYMBOL(rdma_addr_cancel);
struct resolve_cb_context {
struct completion comp;
int status;
};
static void resolve_cb(int status, struct sockaddr *src_addr,
struct rdma_dev_addr *addr, void *context)
{
((struct resolve_cb_context *)context)->status = status;
complete(&((struct resolve_cb_context *)context)->comp);
}
int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
const union ib_gid *dgid,
u8 *dmac, const struct net_device *ndev,
int *hoplimit)
{
struct rdma_dev_addr dev_addr;
struct resolve_cb_context ctx;
union {
struct sockaddr _sockaddr;
struct sockaddr_in _sockaddr_in;
struct sockaddr_in6 _sockaddr_in6;
} sgid_addr, dgid_addr;
int ret;
rdma_gid2ip(&sgid_addr._sockaddr, sgid);
rdma_gid2ip(&dgid_addr._sockaddr, dgid);
memset(&dev_addr, 0, sizeof(dev_addr));
dev_addr.bound_dev_if = ndev->ifindex;
dev_addr.net = &init_net;
init_completion(&ctx.comp);
ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
&dev_addr, 1000, resolve_cb, &ctx);
if (ret)
return ret;
wait_for_completion(&ctx.comp);
ret = ctx.status;
if (ret)
return ret;
memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
*hoplimit = dev_addr.hoplimit;
return 0;
}
static int netevent_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
if (event == NETEVENT_NEIGH_UPDATE) {
struct neighbour *neigh = ctx;
if (neigh->nud_state & NUD_VALID)
set_timeout(&work, jiffies);
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = netevent_callback
};
int addr_init(void)
{
addr_wq = alloc_ordered_workqueue("ib_addr", 0);
if (!addr_wq)
return -ENOMEM;
register_netevent_notifier(&nb);
rdma_addr_register_client(&self);
return 0;
}
void addr_cleanup(void)
{
rdma_addr_unregister_client(&self);
unregister_netevent_notifier(&nb);
destroy_workqueue(addr_wq);
}