mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 10:05:00 +08:00
130c5ce716
This fixes the A->B/B->A locking dependency, see the warning below.
The function task_exit_notify() is called with (task_exit_notifier)
.rwsem set and then calls sync_buffer() which locks buffer_mutex. In
sync_start() the buffer_mutex was set to prevent notifier functions to
be started before sync_start() is finished. But when registering the
notifier, (task_exit_notifier).rwsem is locked too, but now in
different order than in sync_buffer(). In theory this causes a locking
dependency, what does not occur in practice since task_exit_notify()
is always called after the notifier is registered which means the lock
is already released.
However, after checking the notifier functions it turned out the
buffer_mutex in sync_start() is unnecessary. This is because
sync_buffer() may be called from the notifiers even if sync_start()
did not finish yet, the buffers are already allocated but empty. No
need to protect this with the mutex.
So we fix this theoretical locking dependency by removing buffer_mutex
in sync_start(). This is similar to the implementation before commit:
750d857
oprofile: fix crash when accessing freed task structs
which introduced the locking dependency.
Lockdep warning:
oprofiled/4447 is trying to acquire lock:
(buffer_mutex){+.+...}, at: [<ffffffffa0000e55>] sync_buffer+0x31/0x3ec [oprofile]
but task is already holding lock:
((task_exit_notifier).rwsem){++++..}, at: [<ffffffff81058026>] __blocking_notifier_call_chain+0x39/0x67
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 ((task_exit_notifier).rwsem){++++..}:
[<ffffffff8106557f>] lock_acquire+0xf8/0x11e
[<ffffffff81463a2b>] down_write+0x44/0x67
[<ffffffff810581c0>] blocking_notifier_chain_register+0x52/0x8b
[<ffffffff8105a6ac>] profile_event_register+0x2d/0x2f
[<ffffffffa00013c1>] sync_start+0x47/0xc6 [oprofile]
[<ffffffffa00001bb>] oprofile_setup+0x60/0xa5 [oprofile]
[<ffffffffa00014e3>] event_buffer_open+0x59/0x8c [oprofile]
[<ffffffff810cd3b9>] __dentry_open+0x1eb/0x308
[<ffffffff810cd59d>] nameidata_to_filp+0x60/0x67
[<ffffffff810daad6>] do_last+0x5be/0x6b2
[<ffffffff810dbc33>] path_openat+0xc7/0x360
[<ffffffff810dbfc5>] do_filp_open+0x3d/0x8c
[<ffffffff810ccfd2>] do_sys_open+0x110/0x1a9
[<ffffffff810cd09e>] sys_open+0x20/0x22
[<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b
-> #0 (buffer_mutex){+.+...}:
[<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
[<ffffffff8106557f>] lock_acquire+0xf8/0x11e
[<ffffffff814634f0>] mutex_lock_nested+0x63/0x309
[<ffffffffa0000e55>] sync_buffer+0x31/0x3ec [oprofile]
[<ffffffffa0001226>] task_exit_notify+0x16/0x1a [oprofile]
[<ffffffff81467b96>] notifier_call_chain+0x37/0x63
[<ffffffff8105803d>] __blocking_notifier_call_chain+0x50/0x67
[<ffffffff81058068>] blocking_notifier_call_chain+0x14/0x16
[<ffffffff8105a718>] profile_task_exit+0x1a/0x1c
[<ffffffff81039e8f>] do_exit+0x2a/0x6fc
[<ffffffff8103a5e4>] do_group_exit+0x83/0xae
[<ffffffff8103a626>] sys_exit_group+0x17/0x1b
[<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b
other info that might help us debug this:
1 lock held by oprofiled/4447:
#0: ((task_exit_notifier).rwsem){++++..}, at: [<ffffffff81058026>] __blocking_notifier_call_chain+0x39/0x67
stack backtrace:
Pid: 4447, comm: oprofiled Not tainted 2.6.39-00007-gcf4d8d4 #10
Call Trace:
[<ffffffff81063193>] print_circular_bug+0xae/0xbc
[<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
[<ffffffffa0000e55>] ? sync_buffer+0x31/0x3ec [oprofile]
[<ffffffff8106557f>] lock_acquire+0xf8/0x11e
[<ffffffffa0000e55>] ? sync_buffer+0x31/0x3ec [oprofile]
[<ffffffff81062627>] ? mark_lock+0x42f/0x552
[<ffffffffa0000e55>] ? sync_buffer+0x31/0x3ec [oprofile]
[<ffffffff814634f0>] mutex_lock_nested+0x63/0x309
[<ffffffffa0000e55>] ? sync_buffer+0x31/0x3ec [oprofile]
[<ffffffffa0000e55>] sync_buffer+0x31/0x3ec [oprofile]
[<ffffffff81058026>] ? __blocking_notifier_call_chain+0x39/0x67
[<ffffffff81058026>] ? __blocking_notifier_call_chain+0x39/0x67
[<ffffffffa0001226>] task_exit_notify+0x16/0x1a [oprofile]
[<ffffffff81467b96>] notifier_call_chain+0x37/0x63
[<ffffffff8105803d>] __blocking_notifier_call_chain+0x50/0x67
[<ffffffff81058068>] blocking_notifier_call_chain+0x14/0x16
[<ffffffff8105a718>] profile_task_exit+0x1a/0x1c
[<ffffffff81039e8f>] do_exit+0x2a/0x6fc
[<ffffffff81465031>] ? retint_swapgs+0xe/0x13
[<ffffffff8103a5e4>] do_group_exit+0x83/0xae
[<ffffffff8103a626>] sys_exit_group+0x17/0x1b
[<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b
Reported-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Carl Love <carll@us.ibm.com>
Cc: <stable@kernel.org> # .36+
Signed-off-by: Robert Richter <robert.richter@amd.com>
599 lines
14 KiB
C
599 lines
14 KiB
C
/**
|
|
* @file buffer_sync.c
|
|
*
|
|
* @remark Copyright 2002-2009 OProfile authors
|
|
* @remark Read the file COPYING
|
|
*
|
|
* @author John Levon <levon@movementarian.org>
|
|
* @author Barry Kasindorf
|
|
* @author Robert Richter <robert.richter@amd.com>
|
|
*
|
|
* This is the core of the buffer management. Each
|
|
* CPU buffer is processed and entered into the
|
|
* global event buffer. Such processing is necessary
|
|
* in several circumstances, mentioned below.
|
|
*
|
|
* The processing does the job of converting the
|
|
* transitory EIP value into a persistent dentry/offset
|
|
* value that the profiler can record at its leisure.
|
|
*
|
|
* See fs/dcookies.c for a description of the dentry/offset
|
|
* objects.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/dcookies.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/oprofile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include "oprofile_stats.h"
|
|
#include "event_buffer.h"
|
|
#include "cpu_buffer.h"
|
|
#include "buffer_sync.h"
|
|
|
|
static LIST_HEAD(dying_tasks);
|
|
static LIST_HEAD(dead_tasks);
|
|
static cpumask_var_t marked_cpus;
|
|
static DEFINE_SPINLOCK(task_mortuary);
|
|
static void process_task_mortuary(void);
|
|
|
|
/* Take ownership of the task struct and place it on the
|
|
* list for processing. Only after two full buffer syncs
|
|
* does the task eventually get freed, because by then
|
|
* we are sure we will not reference it again.
|
|
* Can be invoked from softirq via RCU callback due to
|
|
* call_rcu() of the task struct, hence the _irqsave.
|
|
*/
|
|
static int
|
|
task_free_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
unsigned long flags;
|
|
struct task_struct *task = data;
|
|
spin_lock_irqsave(&task_mortuary, flags);
|
|
list_add(&task->tasks, &dying_tasks);
|
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
|
|
/* The task is on its way out. A sync of the buffer means we can catch
|
|
* any remaining samples for this task.
|
|
*/
|
|
static int
|
|
task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
/* To avoid latency problems, we only process the current CPU,
|
|
* hoping that most samples for the task are on this CPU
|
|
*/
|
|
sync_buffer(raw_smp_processor_id());
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* The task is about to try a do_munmap(). We peek at what it's going to
|
|
* do, and if it's an executable region, process the samples first, so
|
|
* we don't lose any. This does not have to be exact, it's a QoI issue
|
|
* only.
|
|
*/
|
|
static int
|
|
munmap_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
unsigned long addr = (unsigned long)data;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *mpnt;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
mpnt = find_vma(mm, addr);
|
|
if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
|
|
up_read(&mm->mmap_sem);
|
|
/* To avoid latency problems, we only process the current CPU,
|
|
* hoping that most samples for the task are on this CPU
|
|
*/
|
|
sync_buffer(raw_smp_processor_id());
|
|
return 0;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* We need to be told about new modules so we don't attribute to a previously
|
|
* loaded module, or drop the samples on the floor.
|
|
*/
|
|
static int
|
|
module_load_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
#ifdef CONFIG_MODULES
|
|
if (val != MODULE_STATE_COMING)
|
|
return 0;
|
|
|
|
/* FIXME: should we process all CPU buffers ? */
|
|
mutex_lock(&buffer_mutex);
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(MODULE_LOADED_CODE);
|
|
mutex_unlock(&buffer_mutex);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct notifier_block task_free_nb = {
|
|
.notifier_call = task_free_notify,
|
|
};
|
|
|
|
static struct notifier_block task_exit_nb = {
|
|
.notifier_call = task_exit_notify,
|
|
};
|
|
|
|
static struct notifier_block munmap_nb = {
|
|
.notifier_call = munmap_notify,
|
|
};
|
|
|
|
static struct notifier_block module_load_nb = {
|
|
.notifier_call = module_load_notify,
|
|
};
|
|
|
|
static void free_all_tasks(void)
|
|
{
|
|
/* make sure we don't leak task structs */
|
|
process_task_mortuary();
|
|
process_task_mortuary();
|
|
}
|
|
|
|
int sync_start(void)
|
|
{
|
|
int err;
|
|
|
|
if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
err = task_handoff_register(&task_free_nb);
|
|
if (err)
|
|
goto out1;
|
|
err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
if (err)
|
|
goto out2;
|
|
err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
|
|
if (err)
|
|
goto out3;
|
|
err = register_module_notifier(&module_load_nb);
|
|
if (err)
|
|
goto out4;
|
|
|
|
start_cpu_work();
|
|
|
|
out:
|
|
return err;
|
|
out4:
|
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
|
out3:
|
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
out2:
|
|
task_handoff_unregister(&task_free_nb);
|
|
free_all_tasks();
|
|
out1:
|
|
free_cpumask_var(marked_cpus);
|
|
goto out;
|
|
}
|
|
|
|
|
|
void sync_stop(void)
|
|
{
|
|
end_cpu_work();
|
|
unregister_module_notifier(&module_load_nb);
|
|
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
|
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
|
task_handoff_unregister(&task_free_nb);
|
|
barrier(); /* do all of the above first */
|
|
|
|
flush_cpu_work();
|
|
|
|
free_all_tasks();
|
|
free_cpumask_var(marked_cpus);
|
|
}
|
|
|
|
|
|
/* Optimisation. We can manage without taking the dcookie sem
|
|
* because we cannot reach this code without at least one
|
|
* dcookie user still being registered (namely, the reader
|
|
* of the event buffer). */
|
|
static inline unsigned long fast_get_dcookie(struct path *path)
|
|
{
|
|
unsigned long cookie;
|
|
|
|
if (path->dentry->d_flags & DCACHE_COOKIE)
|
|
return (unsigned long)path->dentry;
|
|
get_dcookie(path, &cookie);
|
|
return cookie;
|
|
}
|
|
|
|
|
|
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
|
|
* which corresponds loosely to "application name". This is
|
|
* not strictly necessary but allows oprofile to associate
|
|
* shared-library samples with particular applications
|
|
*/
|
|
static unsigned long get_exec_dcookie(struct mm_struct *mm)
|
|
{
|
|
unsigned long cookie = NO_COOKIE;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (!mm)
|
|
goto out;
|
|
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
if (!vma->vm_file)
|
|
continue;
|
|
if (!(vma->vm_flags & VM_EXECUTABLE))
|
|
continue;
|
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return cookie;
|
|
}
|
|
|
|
|
|
/* Convert the EIP value of a sample into a persistent dentry/offset
|
|
* pair that can then be added to the global event buffer. We make
|
|
* sure to do this lookup before a mm->mmap modification happens so
|
|
* we don't lose track.
|
|
*/
|
|
static unsigned long
|
|
lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
|
|
{
|
|
unsigned long cookie = NO_COOKIE;
|
|
struct vm_area_struct *vma;
|
|
|
|
for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
continue;
|
|
|
|
if (vma->vm_file) {
|
|
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
|
*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
|
|
vma->vm_start;
|
|
} else {
|
|
/* must be an anonymous map */
|
|
*offset = addr;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!vma)
|
|
cookie = INVALID_COOKIE;
|
|
|
|
return cookie;
|
|
}
|
|
|
|
static unsigned long last_cookie = INVALID_COOKIE;
|
|
|
|
static void add_cpu_switch(int i)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CPU_SWITCH_CODE);
|
|
add_event_entry(i);
|
|
last_cookie = INVALID_COOKIE;
|
|
}
|
|
|
|
static void add_kernel_ctx_switch(unsigned int in_kernel)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
if (in_kernel)
|
|
add_event_entry(KERNEL_ENTER_SWITCH_CODE);
|
|
else
|
|
add_event_entry(KERNEL_EXIT_SWITCH_CODE);
|
|
}
|
|
|
|
static void
|
|
add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CTX_SWITCH_CODE);
|
|
add_event_entry(task->pid);
|
|
add_event_entry(cookie);
|
|
/* Another code for daemon back-compat */
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(CTX_TGID_CODE);
|
|
add_event_entry(task->tgid);
|
|
}
|
|
|
|
|
|
static void add_cookie_switch(unsigned long cookie)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(COOKIE_SWITCH_CODE);
|
|
add_event_entry(cookie);
|
|
}
|
|
|
|
|
|
static void add_trace_begin(void)
|
|
{
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(TRACE_BEGIN_CODE);
|
|
}
|
|
|
|
static void add_data(struct op_entry *entry, struct mm_struct *mm)
|
|
{
|
|
unsigned long code, pc, val;
|
|
unsigned long cookie;
|
|
off_t offset;
|
|
|
|
if (!op_cpu_buffer_get_data(entry, &code))
|
|
return;
|
|
if (!op_cpu_buffer_get_data(entry, &pc))
|
|
return;
|
|
if (!op_cpu_buffer_get_size(entry))
|
|
return;
|
|
|
|
if (mm) {
|
|
cookie = lookup_dcookie(mm, pc, &offset);
|
|
|
|
if (cookie == NO_COOKIE)
|
|
offset = pc;
|
|
if (cookie == INVALID_COOKIE) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
|
offset = pc;
|
|
}
|
|
if (cookie != last_cookie) {
|
|
add_cookie_switch(cookie);
|
|
last_cookie = cookie;
|
|
}
|
|
} else
|
|
offset = pc;
|
|
|
|
add_event_entry(ESCAPE_CODE);
|
|
add_event_entry(code);
|
|
add_event_entry(offset); /* Offset from Dcookie */
|
|
|
|
while (op_cpu_buffer_get_data(entry, &val))
|
|
add_event_entry(val);
|
|
}
|
|
|
|
static inline void add_sample_entry(unsigned long offset, unsigned long event)
|
|
{
|
|
add_event_entry(offset);
|
|
add_event_entry(event);
|
|
}
|
|
|
|
|
|
/*
|
|
* Add a sample to the global event buffer. If possible the
|
|
* sample is converted into a persistent dentry/offset pair
|
|
* for later lookup from userspace. Return 0 on failure.
|
|
*/
|
|
static int
|
|
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
|
|
{
|
|
unsigned long cookie;
|
|
off_t offset;
|
|
|
|
if (in_kernel) {
|
|
add_sample_entry(s->eip, s->event);
|
|
return 1;
|
|
}
|
|
|
|
/* add userspace sample */
|
|
|
|
if (!mm) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mm);
|
|
return 0;
|
|
}
|
|
|
|
cookie = lookup_dcookie(mm, s->eip, &offset);
|
|
|
|
if (cookie == INVALID_COOKIE) {
|
|
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
|
return 0;
|
|
}
|
|
|
|
if (cookie != last_cookie) {
|
|
add_cookie_switch(cookie);
|
|
last_cookie = cookie;
|
|
}
|
|
|
|
add_sample_entry(offset, s->event);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void release_mm(struct mm_struct *mm)
|
|
{
|
|
if (!mm)
|
|
return;
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
|
|
|
|
static struct mm_struct *take_tasks_mm(struct task_struct *task)
|
|
{
|
|
struct mm_struct *mm = get_task_mm(task);
|
|
if (mm)
|
|
down_read(&mm->mmap_sem);
|
|
return mm;
|
|
}
|
|
|
|
|
|
static inline int is_code(unsigned long val)
|
|
{
|
|
return val == ESCAPE_CODE;
|
|
}
|
|
|
|
|
|
/* Move tasks along towards death. Any tasks on dead_tasks
|
|
* will definitely have no remaining references in any
|
|
* CPU buffers at this point, because we use two lists,
|
|
* and to have reached the list, it must have gone through
|
|
* one full sync already.
|
|
*/
|
|
static void process_task_mortuary(void)
|
|
{
|
|
unsigned long flags;
|
|
LIST_HEAD(local_dead_tasks);
|
|
struct task_struct *task;
|
|
struct task_struct *ttask;
|
|
|
|
spin_lock_irqsave(&task_mortuary, flags);
|
|
|
|
list_splice_init(&dead_tasks, &local_dead_tasks);
|
|
list_splice_init(&dying_tasks, &dead_tasks);
|
|
|
|
spin_unlock_irqrestore(&task_mortuary, flags);
|
|
|
|
list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
|
|
list_del(&task->tasks);
|
|
free_task(task);
|
|
}
|
|
}
|
|
|
|
|
|
static void mark_done(int cpu)
|
|
{
|
|
int i;
|
|
|
|
cpumask_set_cpu(cpu, marked_cpus);
|
|
|
|
for_each_online_cpu(i) {
|
|
if (!cpumask_test_cpu(i, marked_cpus))
|
|
return;
|
|
}
|
|
|
|
/* All CPUs have been processed at least once,
|
|
* we can process the mortuary once
|
|
*/
|
|
process_task_mortuary();
|
|
|
|
cpumask_clear(marked_cpus);
|
|
}
|
|
|
|
|
|
/* FIXME: this is not sufficient if we implement syscall barrier backtrace
|
|
* traversal, the code switch to sb_sample_start at first kernel enter/exit
|
|
* switch so we need a fifth state and some special handling in sync_buffer()
|
|
*/
|
|
typedef enum {
|
|
sb_bt_ignore = -2,
|
|
sb_buffer_start,
|
|
sb_bt_start,
|
|
sb_sample_start,
|
|
} sync_buffer_state;
|
|
|
|
/* Sync one of the CPU's buffers into the global event buffer.
|
|
* Here we need to go through each batch of samples punctuated
|
|
* by context switch notes, taking the task's mmap_sem and doing
|
|
* lookup in task->mm->mmap to convert EIP into dcookie/offset
|
|
* value.
|
|
*/
|
|
void sync_buffer(int cpu)
|
|
{
|
|
struct mm_struct *mm = NULL;
|
|
struct mm_struct *oldmm;
|
|
unsigned long val;
|
|
struct task_struct *new;
|
|
unsigned long cookie = 0;
|
|
int in_kernel = 1;
|
|
sync_buffer_state state = sb_buffer_start;
|
|
unsigned int i;
|
|
unsigned long available;
|
|
unsigned long flags;
|
|
struct op_entry entry;
|
|
struct op_sample *sample;
|
|
|
|
mutex_lock(&buffer_mutex);
|
|
|
|
add_cpu_switch(cpu);
|
|
|
|
op_cpu_buffer_reset(cpu);
|
|
available = op_cpu_buffer_entries(cpu);
|
|
|
|
for (i = 0; i < available; ++i) {
|
|
sample = op_cpu_buffer_read_entry(&entry, cpu);
|
|
if (!sample)
|
|
break;
|
|
|
|
if (is_code(sample->eip)) {
|
|
flags = sample->event;
|
|
if (flags & TRACE_BEGIN) {
|
|
state = sb_bt_start;
|
|
add_trace_begin();
|
|
}
|
|
if (flags & KERNEL_CTX_SWITCH) {
|
|
/* kernel/userspace switch */
|
|
in_kernel = flags & IS_KERNEL;
|
|
if (state == sb_buffer_start)
|
|
state = sb_sample_start;
|
|
add_kernel_ctx_switch(flags & IS_KERNEL);
|
|
}
|
|
if (flags & USER_CTX_SWITCH
|
|
&& op_cpu_buffer_get_data(&entry, &val)) {
|
|
/* userspace context switch */
|
|
new = (struct task_struct *)val;
|
|
oldmm = mm;
|
|
release_mm(oldmm);
|
|
mm = take_tasks_mm(new);
|
|
if (mm != oldmm)
|
|
cookie = get_exec_dcookie(mm);
|
|
add_user_ctx_switch(new, cookie);
|
|
}
|
|
if (op_cpu_buffer_get_size(&entry))
|
|
add_data(&entry, mm);
|
|
continue;
|
|
}
|
|
|
|
if (state < sb_bt_start)
|
|
/* ignore sample */
|
|
continue;
|
|
|
|
if (add_sample(mm, sample, in_kernel))
|
|
continue;
|
|
|
|
/* ignore backtraces if failed to add a sample */
|
|
if (state == sb_bt_start) {
|
|
state = sb_bt_ignore;
|
|
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
|
|
}
|
|
}
|
|
release_mm(mm);
|
|
|
|
mark_done(cpu);
|
|
|
|
mutex_unlock(&buffer_mutex);
|
|
}
|
|
|
|
/* The function can be used to add a buffer worth of data directly to
|
|
* the kernel buffer. The buffer is assumed to be a circular buffer.
|
|
* Take the entries from index start and end at index end, wrapping
|
|
* at max_entries.
|
|
*/
|
|
void oprofile_put_buff(unsigned long *buf, unsigned int start,
|
|
unsigned int stop, unsigned int max)
|
|
{
|
|
int i;
|
|
|
|
i = start;
|
|
|
|
mutex_lock(&buffer_mutex);
|
|
while (i != stop) {
|
|
add_event_entry(buf[i++]);
|
|
|
|
if (i >= max)
|
|
i = 0;
|
|
}
|
|
|
|
mutex_unlock(&buffer_mutex);
|
|
}
|
|
|