mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 00:04:15 +08:00
1d9cfee753
Patch series "arm64: Enable vmemmap mapping from device memory", v4. This series enables vmemmap backing memory allocation from device memory ranges on arm64. But before that, it enables vmemmap_populate_basepages() and vmemmap_alloc_block_buf() to accommodate struct vmem_altmap based alocation requests. This patch (of 3): vmemmap_populate_basepages() is used across platforms to allocate backing memory for vmemmap mapping. This is used as a standard default choice or as a fallback when intended huge pages allocation fails. This just creates entire vmemmap mapping with base pages (PAGE_SIZE). On arm64 platforms, vmemmap_populate_basepages() is called instead of the platform specific vmemmap_populate() when ARM64_SWAPPER_USES_SECTION_MAPS is not enabled as in case for ARM64_16K_PAGES and ARM64_64K_PAGES configs. At present vmemmap_populate_basepages() does not support allocating from driver defined struct vmem_altmap while trying to create vmemmap mapping for a device memory range. It prevents ARM64_16K_PAGES and ARM64_64K_PAGES configs on arm64 from supporting device memory with vmemap_altmap request. This enables vmem_altmap support in vmemmap_populate_basepages() unlocking device memory allocation for vmemap mapping on arm64 platforms with 16K or 64K base page configs. Each architecture should evaluate and decide on subscribing device memory based base page allocation through vmemmap_populate_basepages(). Hence lets keep it disabled on all archs in order to preserve the existing semantics. A subsequent patch enables it on arm64. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Jia He <justin.he@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Yu Zhao <yuzhao@google.com> Link: http://lkml.kernel.org/r/1594004178-8861-1-git-send-email-anshuman.khandual@arm.com Link: http://lkml.kernel.org/r/1594004178-8861-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
666 lines
18 KiB
C
666 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
|
|
* Copyright (c) 2001 Intel Corp.
|
|
* Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
|
|
* Copyright (c) 2002 NEC Corp.
|
|
* Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
|
|
* Copyright (c) 2004 Silicon Graphics, Inc
|
|
* Russ Anderson <rja@sgi.com>
|
|
* Jesse Barnes <jbarnes@sgi.com>
|
|
* Jack Steiner <steiner@sgi.com>
|
|
*/
|
|
|
|
/*
|
|
* Platform initialization for Discontig Memory
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/sections.h>
|
|
|
|
/*
|
|
* Track per-node information needed to setup the boot memory allocator, the
|
|
* per-node areas, and the real VM.
|
|
*/
|
|
struct early_node_data {
|
|
struct ia64_node_data *node_data;
|
|
unsigned long pernode_addr;
|
|
unsigned long pernode_size;
|
|
unsigned long min_pfn;
|
|
unsigned long max_pfn;
|
|
};
|
|
|
|
static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
|
|
static nodemask_t memory_less_mask __initdata;
|
|
|
|
pg_data_t *pgdat_list[MAX_NUMNODES];
|
|
|
|
/*
|
|
* To prevent cache aliasing effects, align per-node structures so that they
|
|
* start at addresses that are strided by node number.
|
|
*/
|
|
#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
|
|
#define NODEDATA_ALIGN(addr, node) \
|
|
((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
|
|
(((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
|
|
|
|
/**
|
|
* build_node_maps - callback to setup mem_data structs for each node
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* Detect extents of each piece of memory that we wish to
|
|
* treat as a virtually contiguous block (i.e. each node). Each such block
|
|
* must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
|
|
* if necessary. Any non-existent pages will simply be part of the virtual
|
|
* memmap.
|
|
*/
|
|
static int __init build_node_maps(unsigned long start, unsigned long len,
|
|
int node)
|
|
{
|
|
unsigned long spfn, epfn, end = start + len;
|
|
|
|
epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
|
|
spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
|
|
|
|
if (!mem_data[node].min_pfn) {
|
|
mem_data[node].min_pfn = spfn;
|
|
mem_data[node].max_pfn = epfn;
|
|
} else {
|
|
mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
|
|
mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* early_nr_cpus_node - return number of cpus on a given node
|
|
* @node: node to check
|
|
*
|
|
* Count the number of cpus on @node. We can't use nr_cpus_node() yet because
|
|
* acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
|
|
* called yet. Note that node 0 will also count all non-existent cpus.
|
|
*/
|
|
static int __meminit early_nr_cpus_node(int node)
|
|
{
|
|
int cpu, n = 0;
|
|
|
|
for_each_possible_early_cpu(cpu)
|
|
if (node == node_cpuid[cpu].nid)
|
|
n++;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* compute_pernodesize - compute size of pernode data
|
|
* @node: the node id.
|
|
*/
|
|
static unsigned long __meminit compute_pernodesize(int node)
|
|
{
|
|
unsigned long pernodesize = 0, cpus;
|
|
|
|
cpus = early_nr_cpus_node(node);
|
|
pernodesize += PERCPU_PAGE_SIZE * cpus;
|
|
pernodesize += node * L1_CACHE_BYTES;
|
|
pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
|
|
pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
pernodesize = PAGE_ALIGN(pernodesize);
|
|
return pernodesize;
|
|
}
|
|
|
|
/**
|
|
* per_cpu_node_setup - setup per-cpu areas on each node
|
|
* @cpu_data: per-cpu area on this node
|
|
* @node: node to setup
|
|
*
|
|
* Copy the static per-cpu data into the region we just set aside and then
|
|
* setup __per_cpu_offset for each CPU on this node. Return a pointer to
|
|
* the end of the area.
|
|
*/
|
|
static void *per_cpu_node_setup(void *cpu_data, int node)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
int cpu;
|
|
|
|
for_each_possible_early_cpu(cpu) {
|
|
void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
|
|
|
|
if (node != node_cpuid[cpu].nid)
|
|
continue;
|
|
|
|
memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
|
|
__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
|
|
__per_cpu_start;
|
|
|
|
/*
|
|
* percpu area for cpu0 is moved from the __init area
|
|
* which is setup by head.S and used till this point.
|
|
* Update ar.k3. This move is ensures that percpu
|
|
* area for cpu0 is on the correct node and its
|
|
* virtual address isn't insanely far from other
|
|
* percpu areas which is important for congruent
|
|
* percpu allocator.
|
|
*/
|
|
if (cpu == 0)
|
|
ia64_set_kr(IA64_KR_PER_CPU_DATA,
|
|
(unsigned long)cpu_data -
|
|
(unsigned long)__per_cpu_start);
|
|
|
|
cpu_data += PERCPU_PAGE_SIZE;
|
|
}
|
|
#endif
|
|
return cpu_data;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* setup_per_cpu_areas - setup percpu areas
|
|
*
|
|
* Arch code has already allocated and initialized percpu areas. All
|
|
* this function has to do is to teach the determined layout to the
|
|
* dynamic percpu allocator, which happens to be more complex than
|
|
* creating whole new ones using helpers.
|
|
*/
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
struct pcpu_alloc_info *ai;
|
|
struct pcpu_group_info *gi;
|
|
unsigned int *cpu_map;
|
|
void *base;
|
|
unsigned long base_offset;
|
|
unsigned int cpu;
|
|
ssize_t static_size, reserved_size, dyn_size;
|
|
int node, prev_node, unit, nr_units;
|
|
|
|
ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
|
|
if (!ai)
|
|
panic("failed to allocate pcpu_alloc_info");
|
|
cpu_map = ai->groups[0].cpu_map;
|
|
|
|
/* determine base */
|
|
base = (void *)ULONG_MAX;
|
|
for_each_possible_cpu(cpu)
|
|
base = min(base,
|
|
(void *)(__per_cpu_offset[cpu] + __per_cpu_start));
|
|
base_offset = (void *)__per_cpu_start - base;
|
|
|
|
/* build cpu_map, units are grouped by node */
|
|
unit = 0;
|
|
for_each_node(node)
|
|
for_each_possible_cpu(cpu)
|
|
if (node == node_cpuid[cpu].nid)
|
|
cpu_map[unit++] = cpu;
|
|
nr_units = unit;
|
|
|
|
/* set basic parameters */
|
|
static_size = __per_cpu_end - __per_cpu_start;
|
|
reserved_size = PERCPU_MODULE_RESERVE;
|
|
dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
|
|
if (dyn_size < 0)
|
|
panic("percpu area overflow static=%zd reserved=%zd\n",
|
|
static_size, reserved_size);
|
|
|
|
ai->static_size = static_size;
|
|
ai->reserved_size = reserved_size;
|
|
ai->dyn_size = dyn_size;
|
|
ai->unit_size = PERCPU_PAGE_SIZE;
|
|
ai->atom_size = PAGE_SIZE;
|
|
ai->alloc_size = PERCPU_PAGE_SIZE;
|
|
|
|
/*
|
|
* CPUs are put into groups according to node. Walk cpu_map
|
|
* and create new groups at node boundaries.
|
|
*/
|
|
prev_node = NUMA_NO_NODE;
|
|
ai->nr_groups = 0;
|
|
for (unit = 0; unit < nr_units; unit++) {
|
|
cpu = cpu_map[unit];
|
|
node = node_cpuid[cpu].nid;
|
|
|
|
if (node == prev_node) {
|
|
gi->nr_units++;
|
|
continue;
|
|
}
|
|
prev_node = node;
|
|
|
|
gi = &ai->groups[ai->nr_groups++];
|
|
gi->nr_units = 1;
|
|
gi->base_offset = __per_cpu_offset[cpu] + base_offset;
|
|
gi->cpu_map = &cpu_map[unit];
|
|
}
|
|
|
|
pcpu_setup_first_chunk(ai, base);
|
|
pcpu_free_alloc_info(ai);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* fill_pernode - initialize pernode data.
|
|
* @node: the node id.
|
|
* @pernode: physical address of pernode data
|
|
* @pernodesize: size of the pernode data
|
|
*/
|
|
static void __init fill_pernode(int node, unsigned long pernode,
|
|
unsigned long pernodesize)
|
|
{
|
|
void *cpu_data;
|
|
int cpus = early_nr_cpus_node(node);
|
|
|
|
mem_data[node].pernode_addr = pernode;
|
|
mem_data[node].pernode_size = pernodesize;
|
|
memset(__va(pernode), 0, pernodesize);
|
|
|
|
cpu_data = (void *)pernode;
|
|
pernode += PERCPU_PAGE_SIZE * cpus;
|
|
pernode += node * L1_CACHE_BYTES;
|
|
|
|
pgdat_list[node] = __va(pernode);
|
|
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
|
|
mem_data[node].node_data = __va(pernode);
|
|
pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
|
|
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
|
|
|
|
cpu_data = per_cpu_node_setup(cpu_data, node);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* find_pernode_space - allocate memory for memory map and per-node structures
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @node: node where this range resides
|
|
*
|
|
* This routine reserves space for the per-cpu data struct, the list of
|
|
* pg_data_ts and the per-node data struct. Each node will have something like
|
|
* the following in the first chunk of addr. space large enough to hold it.
|
|
*
|
|
* ________________________
|
|
* | |
|
|
* |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
|
|
* | PERCPU_PAGE_SIZE * | start and length big enough
|
|
* | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
|
|
* |------------------------|
|
|
* | local pg_data_t * |
|
|
* |------------------------|
|
|
* | local ia64_node_data |
|
|
* |------------------------|
|
|
* | ??? |
|
|
* |________________________|
|
|
*
|
|
* Once this space has been set aside, the bootmem maps are initialized. We
|
|
* could probably move the allocation of the per-cpu and ia64_node_data space
|
|
* outside of this function and use alloc_bootmem_node(), but doing it here
|
|
* is straightforward and we get the alignments we want so...
|
|
*/
|
|
static int __init find_pernode_space(unsigned long start, unsigned long len,
|
|
int node)
|
|
{
|
|
unsigned long spfn, epfn;
|
|
unsigned long pernodesize = 0, pernode;
|
|
|
|
spfn = start >> PAGE_SHIFT;
|
|
epfn = (start + len) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Make sure this memory falls within this node's usable memory
|
|
* since we may have thrown some away in build_maps().
|
|
*/
|
|
if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
|
|
return 0;
|
|
|
|
/* Don't setup this node's local space twice... */
|
|
if (mem_data[node].pernode_addr)
|
|
return 0;
|
|
|
|
/*
|
|
* Calculate total size needed, incl. what's necessary
|
|
* for good alignment and alias prevention.
|
|
*/
|
|
pernodesize = compute_pernodesize(node);
|
|
pernode = NODEDATA_ALIGN(start, node);
|
|
|
|
/* Is this range big enough for what we want to store here? */
|
|
if (start + len > (pernode + pernodesize))
|
|
fill_pernode(node, pernode, pernodesize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* reserve_pernode_space - reserve memory for per-node space
|
|
*
|
|
* Reserve the space used by the bootmem maps & per-node space in the boot
|
|
* allocator so that when we actually create the real mem maps we don't
|
|
* use their memory.
|
|
*/
|
|
static void __init reserve_pernode_space(void)
|
|
{
|
|
unsigned long base, size;
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
if (node_isset(node, memory_less_mask))
|
|
continue;
|
|
|
|
/* Now the per-node space */
|
|
size = mem_data[node].pernode_size;
|
|
base = __pa(mem_data[node].pernode_addr);
|
|
memblock_reserve(base, size);
|
|
}
|
|
}
|
|
|
|
static void __meminit scatter_node_data(void)
|
|
{
|
|
pg_data_t **dst;
|
|
int node;
|
|
|
|
/*
|
|
* for_each_online_node() can't be used at here.
|
|
* node_online_map is not set for hot-added nodes at this time,
|
|
* because we are halfway through initialization of the new node's
|
|
* structures. If for_each_online_node() is used, a new node's
|
|
* pg_data_ptrs will be not initialized. Instead of using it,
|
|
* pgdat_list[] is checked.
|
|
*/
|
|
for_each_node(node) {
|
|
if (pgdat_list[node]) {
|
|
dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
|
|
memcpy(dst, pgdat_list, sizeof(pgdat_list));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* initialize_pernode_data - fixup per-cpu & per-node pointers
|
|
*
|
|
* Each node's per-node area has a copy of the global pg_data_t list, so
|
|
* we copy that to each node here, as well as setting the per-cpu pointer
|
|
* to the local node data structure.
|
|
*/
|
|
static void __init initialize_pernode_data(void)
|
|
{
|
|
int cpu, node;
|
|
|
|
scatter_node_data();
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Set the node_data pointer for each per-cpu struct */
|
|
for_each_possible_early_cpu(cpu) {
|
|
node = node_cpuid[cpu].nid;
|
|
per_cpu(ia64_cpu_info, cpu).node_data =
|
|
mem_data[node].node_data;
|
|
}
|
|
#else
|
|
{
|
|
struct cpuinfo_ia64 *cpu0_cpu_info;
|
|
cpu = 0;
|
|
node = node_cpuid[cpu].nid;
|
|
cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
|
|
((char *)&ia64_cpu_info - __per_cpu_start));
|
|
cpu0_cpu_info->node_data = mem_data[node].node_data;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
|
|
/**
|
|
* memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
|
|
* node but fall back to any other node when __alloc_bootmem_node fails
|
|
* for best.
|
|
* @nid: node id
|
|
* @pernodesize: size of this node's pernode data
|
|
*/
|
|
static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
|
|
{
|
|
void *ptr = NULL;
|
|
u8 best = 0xff;
|
|
int bestnode = NUMA_NO_NODE, node, anynode = 0;
|
|
|
|
for_each_online_node(node) {
|
|
if (node_isset(node, memory_less_mask))
|
|
continue;
|
|
else if (node_distance(nid, node) < best) {
|
|
best = node_distance(nid, node);
|
|
bestnode = node;
|
|
}
|
|
anynode = node;
|
|
}
|
|
|
|
if (bestnode == NUMA_NO_NODE)
|
|
bestnode = anynode;
|
|
|
|
ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
|
|
__pa(MAX_DMA_ADDRESS),
|
|
MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
bestnode);
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
|
|
__func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memory_less_nodes - allocate and initialize CPU only nodes pernode
|
|
* information.
|
|
*/
|
|
static void __init memory_less_nodes(void)
|
|
{
|
|
unsigned long pernodesize;
|
|
void *pernode;
|
|
int node;
|
|
|
|
for_each_node_mask(node, memory_less_mask) {
|
|
pernodesize = compute_pernodesize(node);
|
|
pernode = memory_less_node_alloc(node, pernodesize);
|
|
fill_pernode(node, __pa(pernode), pernodesize);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* find_memory - walk the EFI memory map and setup the bootmem allocator
|
|
*
|
|
* Called early in boot to setup the bootmem allocator, and to
|
|
* allocate the per-cpu and per-node structures.
|
|
*/
|
|
void __init find_memory(void)
|
|
{
|
|
int node;
|
|
|
|
reserve_memory();
|
|
efi_memmap_walk(filter_memory, register_active_ranges);
|
|
|
|
if (num_online_nodes() == 0) {
|
|
printk(KERN_ERR "node info missing!\n");
|
|
node_set_online(0);
|
|
}
|
|
|
|
nodes_or(memory_less_mask, memory_less_mask, node_online_map);
|
|
min_low_pfn = -1;
|
|
max_low_pfn = 0;
|
|
|
|
/* These actually end up getting called by call_pernode_memory() */
|
|
efi_memmap_walk(filter_rsvd_memory, build_node_maps);
|
|
efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
|
|
efi_memmap_walk(find_max_min_low_pfn, NULL);
|
|
|
|
for_each_online_node(node)
|
|
if (mem_data[node].min_pfn)
|
|
node_clear(node, memory_less_mask);
|
|
|
|
reserve_pernode_space();
|
|
memory_less_nodes();
|
|
initialize_pernode_data();
|
|
|
|
max_pfn = max_low_pfn;
|
|
|
|
find_initrd();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/**
|
|
* per_cpu_init - setup per-cpu variables
|
|
*
|
|
* find_pernode_space() does most of this already, we just need to set
|
|
* local_per_cpu_offset
|
|
*/
|
|
void *per_cpu_init(void)
|
|
{
|
|
int cpu;
|
|
static int first_time = 1;
|
|
|
|
if (first_time) {
|
|
first_time = 0;
|
|
for_each_possible_early_cpu(cpu)
|
|
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
|
|
}
|
|
|
|
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/**
|
|
* call_pernode_memory - use SRAT to call callback functions with node info
|
|
* @start: physical start of range
|
|
* @len: length of range
|
|
* @arg: function to call for each range
|
|
*
|
|
* efi_memmap_walk() knows nothing about layout of memory across nodes. Find
|
|
* out to which node a block of memory belongs. Ignore memory that we cannot
|
|
* identify, and split blocks that run across multiple nodes.
|
|
*
|
|
* Take this opportunity to round the start address up and the end address
|
|
* down to page boundaries.
|
|
*/
|
|
void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
|
|
{
|
|
unsigned long rs, re, end = start + len;
|
|
void (*func)(unsigned long, unsigned long, int);
|
|
int i;
|
|
|
|
start = PAGE_ALIGN(start);
|
|
end &= PAGE_MASK;
|
|
if (start >= end)
|
|
return;
|
|
|
|
func = arg;
|
|
|
|
if (!num_node_memblks) {
|
|
/* No SRAT table, so assume one node (node 0) */
|
|
if (start < end)
|
|
(*func)(start, end - start, 0);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < num_node_memblks; i++) {
|
|
rs = max(start, node_memblk[i].start_paddr);
|
|
re = min(end, node_memblk[i].start_paddr +
|
|
node_memblk[i].size);
|
|
|
|
if (rs < re)
|
|
(*func)(rs, re - rs, node_memblk[i].nid);
|
|
|
|
if (re == end)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* paging_init - setup page tables
|
|
*
|
|
* paging_init() sets up the page tables for each node of the system and frees
|
|
* the bootmem allocator memory for general use.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long max_dma;
|
|
unsigned long pfn_offset = 0;
|
|
unsigned long max_pfn = 0;
|
|
int node;
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
|
|
sparse_memory_present_with_active_regions(MAX_NUMNODES);
|
|
sparse_init();
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
|
|
sizeof(struct page));
|
|
vmem_map = (struct page *) VMALLOC_END;
|
|
efi_memmap_walk(create_mem_map_page_table, NULL);
|
|
printk("Virtual mem_map starts at 0x%p\n", vmem_map);
|
|
#endif
|
|
|
|
for_each_online_node(node) {
|
|
pfn_offset = mem_data[node].min_pfn;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
|
|
#endif
|
|
if (mem_data[node].max_pfn > max_pfn)
|
|
max_pfn = mem_data[node].max_pfn;
|
|
}
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = max_dma;
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_pfn;
|
|
free_area_init(max_zone_pfns);
|
|
|
|
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
pg_data_t *arch_alloc_nodedata(int nid)
|
|
{
|
|
unsigned long size = compute_pernodesize(nid);
|
|
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
void arch_free_nodedata(pg_data_t *pgdat)
|
|
{
|
|
kfree(pgdat);
|
|
}
|
|
|
|
void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
|
|
{
|
|
pgdat_list[update_node] = update_pgdat;
|
|
scatter_node_data();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
return vmemmap_populate_basepages(start, end, node, NULL);
|
|
}
|
|
|
|
void vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
}
|
|
#endif
|