linux/kernel/sched/wait.c
Tim Chen 11a19c7b09 sched/wait: Introduce wakeup boomark in wake_up_page_bit
Now that we have added breaks in the wait queue scan and allow bookmark
on scan position, we put this logic in the wake_up_page_bit function.

We can have very long page wait list in large system where multiple
pages share the same wait list. We break the wake up walk here to allow
other cpus a chance to access the list, and not to disable the interrupts
when traversing the list for too long.  This reduces the interrupt and
rescheduling latency, and excessive page wait queue lock hold time.

[ v2: Remove bookmark_wake_function ]

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-14 09:56:18 -07:00

449 lines
13 KiB
C

/*
* Generic waiting primitives.
*
* (C) 2004 Nadia Yvette Chambers, Oracle
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/sched/signal.h>
#include <linux/sched/debug.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/hash.h>
#include <linux/kthread.h>
void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
{
spin_lock_init(&wq_head->lock);
lockdep_set_class_and_name(&wq_head->lock, key, name);
INIT_LIST_HEAD(&wq_head->head);
}
EXPORT_SYMBOL(__init_waitqueue_head);
void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&wq_head->lock, flags);
__add_wait_queue_entry_tail(wq_head, wq_entry);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue);
void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&wq_head->lock, flags);
__add_wait_queue_entry_tail(wq_head, wq_entry);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue_exclusive);
void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
spin_lock_irqsave(&wq_head->lock, flags);
__remove_wait_queue(wq_head, wq_entry);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL(remove_wait_queue);
/*
* Scan threshold to break wait queue walk.
* This allows a waker to take a break from holding the
* wait queue lock during the wait queue walk.
*/
#define WAITQUEUE_WALK_BREAK_CNT 64
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
int nr_exclusive, int wake_flags, void *key,
wait_queue_entry_t *bookmark)
{
wait_queue_entry_t *curr, *next;
int cnt = 0;
if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
curr = list_next_entry(bookmark, entry);
list_del(&bookmark->entry);
bookmark->flags = 0;
} else
curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
if (&curr->entry == &wq_head->head)
return nr_exclusive;
list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
unsigned flags = curr->flags;
int ret;
if (flags & WQ_FLAG_BOOKMARK)
continue;
ret = curr->func(curr, mode, wake_flags, key);
if (ret < 0)
break;
if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;
if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
(&next->entry != &wq_head->head)) {
bookmark->flags = WQ_FLAG_BOOKMARK;
list_add_tail(&bookmark->entry, &next->entry);
break;
}
}
return nr_exclusive;
}
static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
int nr_exclusive, int wake_flags, void *key)
{
unsigned long flags;
wait_queue_entry_t bookmark;
bookmark.flags = 0;
bookmark.private = NULL;
bookmark.func = NULL;
INIT_LIST_HEAD(&bookmark.entry);
spin_lock_irqsave(&wq_head->lock, flags);
nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key, &bookmark);
spin_unlock_irqrestore(&wq_head->lock, flags);
while (bookmark.flags & WQ_FLAG_BOOKMARK) {
spin_lock_irqsave(&wq_head->lock, flags);
nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
wake_flags, key, &bookmark);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
}
/**
* __wake_up - wake up threads blocked on a waitqueue.
* @wq_head: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
int nr_exclusive, void *key)
{
__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
}
EXPORT_SYMBOL(__wake_up);
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
{
__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_locked);
void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
{
__wake_up_common(wq_head, mode, 1, 0, key, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
unsigned int mode, void *key, wait_queue_entry_t *bookmark)
{
__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
}
EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
/**
* __wake_up_sync_key - wake up threads blocked on a waitqueue.
* @wq_head: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: opaque value to be passed to wakeup targets
*
* The sync wakeup differs that the waker knows that it will schedule
* away soon, so while the target thread will be woken up, it will not
* be migrated to another CPU - ie. the two threads are 'synchronized'
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
int nr_exclusive, void *key)
{
int wake_flags = 1; /* XXX WF_SYNC */
if (unlikely(!wq_head))
return;
if (unlikely(nr_exclusive != 1))
wake_flags = 0;
__wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key);
}
EXPORT_SYMBOL_GPL(__wake_up_sync_key);
/*
* __wake_up_sync - see __wake_up_sync_key()
*/
void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive)
{
__wake_up_sync_key(wq_head, mode, nr_exclusive, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
/*
* Note: we use "set_current_state()" _after_ the wait-queue add,
* because we need a memory barrier there on SMP, so that any
* wake-function that tests for the wait-queue being active
* will be guaranteed to see waitqueue addition _or_ subsequent
* tests in this thread will see the wakeup having taken place.
*
* The spin_unlock() itself is semi-permeable and only protects
* one way (it only protects stuff inside the critical region and
* stops them from bleeding out - it would still allow subsequent
* loads to move into the critical region).
*/
void
prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
{
unsigned long flags;
wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&wq_head->lock, flags);
if (list_empty(&wq_entry->entry))
__add_wait_queue(wq_head, wq_entry);
set_current_state(state);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait);
void
prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
{
unsigned long flags;
wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&wq_head->lock, flags);
if (list_empty(&wq_entry->entry))
__add_wait_queue_entry_tail(wq_head, wq_entry);
set_current_state(state);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);
void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
{
wq_entry->flags = flags;
wq_entry->private = current;
wq_entry->func = autoremove_wake_function;
INIT_LIST_HEAD(&wq_entry->entry);
}
EXPORT_SYMBOL(init_wait_entry);
long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
{
unsigned long flags;
long ret = 0;
spin_lock_irqsave(&wq_head->lock, flags);
if (unlikely(signal_pending_state(state, current))) {
/*
* Exclusive waiter must not fail if it was selected by wakeup,
* it should "consume" the condition we were waiting for.
*
* The caller will recheck the condition and return success if
* we were already woken up, we can not miss the event because
* wakeup locks/unlocks the same wq_head->lock.
*
* But we need to ensure that set-condition + wakeup after that
* can't see us, it should wake up another exclusive waiter if
* we fail.
*/
list_del_init(&wq_entry->entry);
ret = -ERESTARTSYS;
} else {
if (list_empty(&wq_entry->entry)) {
if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
__add_wait_queue_entry_tail(wq_head, wq_entry);
else
__add_wait_queue(wq_head, wq_entry);
}
set_current_state(state);
}
spin_unlock_irqrestore(&wq_head->lock, flags);
return ret;
}
EXPORT_SYMBOL(prepare_to_wait_event);
/*
* Note! These two wait functions are entered with the
* wait-queue lock held (and interrupts off in the _irq
* case), so there is no race with testing the wakeup
* condition in the caller before they add the wait
* entry to the wake queue.
*/
int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
{
if (likely(list_empty(&wait->entry)))
__add_wait_queue_entry_tail(wq, wait);
set_current_state(TASK_INTERRUPTIBLE);
if (signal_pending(current))
return -ERESTARTSYS;
spin_unlock(&wq->lock);
schedule();
spin_lock(&wq->lock);
return 0;
}
EXPORT_SYMBOL(do_wait_intr);
int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
{
if (likely(list_empty(&wait->entry)))
__add_wait_queue_entry_tail(wq, wait);
set_current_state(TASK_INTERRUPTIBLE);
if (signal_pending(current))
return -ERESTARTSYS;
spin_unlock_irq(&wq->lock);
schedule();
spin_lock_irq(&wq->lock);
return 0;
}
EXPORT_SYMBOL(do_wait_intr_irq);
/**
* finish_wait - clean up after waiting in a queue
* @wq_head: waitqueue waited on
* @wq_entry: wait descriptor
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*/
void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
/*
* We can check for list emptiness outside the lock
* IFF:
* - we use the "careful" check that verifies both
* the next and prev pointers, so that there cannot
* be any half-pending updates in progress on other
* CPU's that we haven't seen yet (and that might
* still change the stack area.
* and
* - all other users take the lock (ie we can only
* have _one_ other CPU that looks at or modifies
* the list).
*/
if (!list_empty_careful(&wq_entry->entry)) {
spin_lock_irqsave(&wq_head->lock, flags);
list_del_init(&wq_entry->entry);
spin_unlock_irqrestore(&wq_head->lock, flags);
}
}
EXPORT_SYMBOL(finish_wait);
int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wq_entry, mode, sync, key);
if (ret)
list_del_init(&wq_entry->entry);
return ret;
}
EXPORT_SYMBOL(autoremove_wake_function);
static inline bool is_kthread_should_stop(void)
{
return (current->flags & PF_KTHREAD) && kthread_should_stop();
}
/*
* DEFINE_WAIT_FUNC(wait, woken_wake_func);
*
* add_wait_queue(&wq_head, &wait);
* for (;;) {
* if (condition)
* break;
*
* p->state = mode; condition = true;
* smp_mb(); // A smp_wmb(); // C
* if (!wq_entry->flags & WQ_FLAG_WOKEN) wq_entry->flags |= WQ_FLAG_WOKEN;
* schedule() try_to_wake_up();
* p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
* wq_entry->flags &= ~WQ_FLAG_WOKEN; condition = true;
* smp_mb() // B smp_wmb(); // C
* wq_entry->flags |= WQ_FLAG_WOKEN;
* }
* remove_wait_queue(&wq_head, &wait);
*
*/
long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
{
set_current_state(mode); /* A */
/*
* The above implies an smp_mb(), which matches with the smp_wmb() from
* woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
* also observe all state before the wakeup.
*/
if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
timeout = schedule_timeout(timeout);
__set_current_state(TASK_RUNNING);
/*
* The below implies an smp_mb(), it too pairs with the smp_wmb() from
* woken_wake_function() such that we must either observe the wait
* condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
* an event.
*/
smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
return timeout;
}
EXPORT_SYMBOL(wait_woken);
int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
{
/*
* Although this function is called under waitqueue lock, LOCK
* doesn't imply write barrier and the users expects write
* barrier semantics on wakeup functions. The following
* smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
* and is paired with smp_store_mb() in wait_woken().
*/
smp_wmb(); /* C */
wq_entry->flags |= WQ_FLAG_WOKEN;
return default_wake_function(wq_entry, mode, sync, key);
}
EXPORT_SYMBOL(woken_wake_function);