linux/arch/x86/kvm/vmx/vmx.c
Sean Christopherson 61c08aa960 KVM: VMX: Compare only a single byte for VMCS' "launched" in vCPU-run
The vCPU-run asm blob does a manual comparison of a VMCS' launched
status to execute the correct VM-Enter instruction, i.e. VMLAUNCH vs.
VMRESUME.  The launched flag is a bool, which is a typedef of _Bool.
C99 does not define an exact size for _Bool, stating only that is must
be large enough to hold '0' and '1'.  Most, if not all, compilers use
a single byte for _Bool, including gcc[1].

Originally, 'launched' was of type 'int' and so the asm blob used 'cmpl'
to check the launch status.  When 'launched' was moved to be stored on a
per-VMCS basis, struct vcpu_vmx's "temporary" __launched flag was added
in order to avoid having to pass the current VMCS into the asm blob.
The new  '__launched' was defined as a 'bool' and not an 'int', but the
'cmp' instruction was not updated.

This has not caused any known problems, likely due to compilers aligning
variables to 4-byte or 8-byte boundaries and KVM zeroing out struct
vcpu_vmx during allocation.  I.e. vCPU-run accesses "junk" data, it just
happens to always be zero and so doesn't affect the result.

[1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html

Fixes: d462b81923 ("KVM: VMX: Keep list of loaded VMCSs, instead of vcpus")
Cc: <stable@vger.kernel.org>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-12 13:12:12 +01:00

7944 lines
218 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include <linux/frame.h>
#include <linux/highmem.h>
#include <linux/hrtimer.h>
#include <linux/kernel.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/smt.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include <linux/trace_events.h>
#include <asm/apic.h>
#include <asm/asm.h>
#include <asm/cpu.h>
#include <asm/debugreg.h>
#include <asm/desc.h>
#include <asm/fpu/internal.h>
#include <asm/io.h>
#include <asm/irq_remapping.h>
#include <asm/kexec.h>
#include <asm/perf_event.h>
#include <asm/mce.h>
#include <asm/mmu_context.h>
#include <asm/mshyperv.h>
#include <asm/spec-ctrl.h>
#include <asm/virtext.h>
#include <asm/vmx.h>
#include "capabilities.h"
#include "cpuid.h"
#include "evmcs.h"
#include "irq.h"
#include "kvm_cache_regs.h"
#include "lapic.h"
#include "mmu.h"
#include "nested.h"
#include "ops.h"
#include "pmu.h"
#include "trace.h"
#include "vmcs.h"
#include "vmcs12.h"
#include "vmx.h"
#include "x86.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_VMX),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly enable_vnmi = 1;
module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, S_IRUGO);
bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, S_IRUGO);
bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 1;
module_param(nested, bool, S_IRUGO);
static u64 __read_mostly host_xss;
bool __read_mostly enable_pml = 1;
module_param_named(pml, enable_pml, bool, S_IRUGO);
#define MSR_BITMAP_MODE_X2APIC 1
#define MSR_BITMAP_MODE_X2APIC_APICV 2
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
static int __read_mostly cpu_preemption_timer_multi;
static bool __read_mostly enable_preemption_timer = 1;
#ifdef CONFIG_X86_64
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
#endif
#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
#define KVM_CR4_GUEST_OWNED_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
RTIT_STATUS_BYTECNT))
#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
module_param(ple_gap, uint, 0444);
static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, uint, 0444);
/* Default doubles per-vcpu window every exit. */
static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
module_param(ple_window_grow, uint, 0444);
/* Default resets per-vcpu window every exit to ple_window. */
static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
module_param(ple_window_shrink, uint, 0444);
/* Default is to compute the maximum so we can never overflow. */
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, uint, 0444);
/* Default is SYSTEM mode, 1 for host-guest mode */
int __read_mostly pt_mode = PT_MODE_SYSTEM;
module_param(pt_mode, int, S_IRUGO);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
/* Storage for pre module init parameter parsing */
static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
static const struct {
const char *option;
bool for_parse;
} vmentry_l1d_param[] = {
[VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
[VMENTER_L1D_FLUSH_NEVER] = {"never", true},
[VMENTER_L1D_FLUSH_COND] = {"cond", true},
[VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
};
#define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages;
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
{
struct page *page;
unsigned int i;
if (!enable_ept) {
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
return 0;
}
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
u64 msr;
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
return 0;
}
}
/* If set to auto use the default l1tf mitigation method */
if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
switch (l1tf_mitigation) {
case L1TF_MITIGATION_OFF:
l1tf = VMENTER_L1D_FLUSH_NEVER;
break;
case L1TF_MITIGATION_FLUSH_NOWARN:
case L1TF_MITIGATION_FLUSH:
case L1TF_MITIGATION_FLUSH_NOSMT:
l1tf = VMENTER_L1D_FLUSH_COND;
break;
case L1TF_MITIGATION_FULL:
case L1TF_MITIGATION_FULL_FORCE:
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
break;
}
} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
l1tf = VMENTER_L1D_FLUSH_ALWAYS;
}
if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
!boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
if (!page)
return -ENOMEM;
vmx_l1d_flush_pages = page_address(page);
/*
* Initialize each page with a different pattern in
* order to protect against KSM in the nested
* virtualization case.
*/
for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
PAGE_SIZE);
}
}
l1tf_vmx_mitigation = l1tf;
if (l1tf != VMENTER_L1D_FLUSH_NEVER)
static_branch_enable(&vmx_l1d_should_flush);
else
static_branch_disable(&vmx_l1d_should_flush);
if (l1tf == VMENTER_L1D_FLUSH_COND)
static_branch_enable(&vmx_l1d_flush_cond);
else
static_branch_disable(&vmx_l1d_flush_cond);
return 0;
}
static int vmentry_l1d_flush_parse(const char *s)
{
unsigned int i;
if (s) {
for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
if (vmentry_l1d_param[i].for_parse &&
sysfs_streq(s, vmentry_l1d_param[i].option))
return i;
}
}
return -EINVAL;
}
static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
{
int l1tf, ret;
l1tf = vmentry_l1d_flush_parse(s);
if (l1tf < 0)
return l1tf;
if (!boot_cpu_has(X86_BUG_L1TF))
return 0;
/*
* Has vmx_init() run already? If not then this is the pre init
* parameter parsing. In that case just store the value and let
* vmx_init() do the proper setup after enable_ept has been
* established.
*/
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
vmentry_l1d_flush_param = l1tf;
return 0;
}
mutex_lock(&vmx_l1d_flush_mutex);
ret = vmx_setup_l1d_flush(l1tf);
mutex_unlock(&vmx_l1d_flush_mutex);
return ret;
}
static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
{
if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
return sprintf(s, "???\n");
return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
}
static const struct kernel_param_ops vmentry_l1d_flush_ops = {
.set = vmentry_l1d_flush_set,
.get = vmentry_l1d_flush_get,
};
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type);
void vmx_vmexit(void);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
/*
* We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
* can find which vCPU should be waken up.
*/
static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
struct vmcs_config vmcs_config;
struct vmx_capability vmx_capability;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
u64 host_efer;
/*
* Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
* will emulate SYSCALL in legacy mode if the vendor string in guest
* CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
* support this emulation, IA32_STAR must always be included in
* vmx_msr_index[], even in i386 builds.
*/
const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
#if IS_ENABLED(CONFIG_HYPERV)
static bool __read_mostly enlightened_vmcs = true;
module_param(enlightened_vmcs, bool, 0444);
/* check_ept_pointer() should be under protection of ept_pointer_lock. */
static void check_ept_pointer_match(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
u64 tmp_eptp = INVALID_PAGE;
int i;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!VALID_PAGE(tmp_eptp)) {
tmp_eptp = to_vmx(vcpu)->ept_pointer;
} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
to_kvm_vmx(kvm)->ept_pointers_match
= EPT_POINTERS_MISMATCH;
return;
}
}
to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
}
static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
void *data)
{
struct kvm_tlb_range *range = data;
return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
range->pages);
}
static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
{
u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
/*
* FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
* of the base of EPT PML4 table, strip off EPT configuration
* information.
*/
if (range)
return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
kvm_fill_hv_flush_list_func, (void *)range);
else
return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
}
static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
struct kvm_tlb_range *range)
{
struct kvm_vcpu *vcpu;
int ret = 0, i;
spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
check_ept_pointer_match(kvm);
if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
kvm_for_each_vcpu(i, vcpu, kvm) {
/* If ept_pointer is invalid pointer, bypass flush request. */
if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
ret |= __hv_remote_flush_tlb_with_range(
kvm, vcpu, range);
}
} else {
ret = __hv_remote_flush_tlb_with_range(kvm,
kvm_get_vcpu(kvm, 0), range);
}
spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
return ret;
}
static int hv_remote_flush_tlb(struct kvm *kvm)
{
return hv_remote_flush_tlb_with_range(kvm, NULL);
}
#endif /* IS_ENABLED(CONFIG_HYPERV) */
/*
* Comment's format: document - errata name - stepping - processor name.
* Refer from
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
*/
static u32 vmx_preemption_cpu_tfms[] = {
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
0x000206E6,
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020652,
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020655,
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
/*
* 320767.pdf - AAP86 - B1 -
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
*/
0x000106E5,
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
0x000106A0,
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
0x000106A1,
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
0x000106A4,
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
0x000106A5,
/* Xeon E3-1220 V2 */
0x000306A8,
};
static inline bool cpu_has_broken_vmx_preemption_timer(void)
{
u32 eax = cpuid_eax(0x00000001), i;
/* Clear the reserved bits */
eax &= ~(0x3U << 14 | 0xfU << 28);
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
if (eax == vmx_preemption_cpu_tfms[i])
return true;
return false;
}
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
{
return flexpriority_enabled && lapic_in_kernel(vcpu);
}
static inline bool report_flexpriority(void)
{
return flexpriority_enabled;
}
static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
return i;
return -1;
}
struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
vmcs_clear(loaded_vmcs->shadow_vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
#ifdef CONFIG_KEXEC_CORE
/*
* This bitmap is used to indicate whether the vmclear
* operation is enabled on all cpus. All disabled by
* default.
*/
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
static inline void crash_enable_local_vmclear(int cpu)
{
cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline void crash_disable_local_vmclear(int cpu)
{
cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline int crash_local_vmclear_enabled(int cpu)
{
return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static void crash_vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
if (!crash_local_vmclear_enabled(cpu))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
#endif /* CONFIG_KEXEC_CORE */
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
crash_disable_local_vmclear(cpu);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
* is before setting loaded_vmcs->vcpu to -1 which is done in
* loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
* then adds the vmcs into percpu list before it is deleted.
*/
smp_wmb();
loaded_vmcs_init(loaded_vmcs);
crash_enable_local_vmclear(cpu);
}
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << DB_VECTOR) | (1u << AC_VECTOR);
/*
* Guest access to VMware backdoor ports could legitimately
* trigger #GP because of TSS I/O permission bitmap.
* We intercept those #GP and allow access to them anyway
* as VMware does.
*/
if (enable_vmware_backdoor)
eb |= (1u << GP_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
/*
* Check if MSR is intercepted for currently loaded MSR bitmap.
*/
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
{
unsigned long *msr_bitmap;
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return true;
msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
if (msr <= 0x1fff) {
return !!test_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
return !!test_bit(msr, msr_bitmap + 0xc00 / f);
}
return true;
}
static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit)
{
vm_entry_controls_clearbit(vmx, entry);
vm_exit_controls_clearbit(vmx, exit);
}
static int find_msr(struct vmx_msrs *m, unsigned int msr)
{
unsigned int i;
for (i = 0; i < m->nr; ++i) {
if (m->val[i].index == msr)
return i;
}
return -ENOENT;
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
int i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer()) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl()) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
i = find_msr(&m->guest, msr);
if (i < 0)
goto skip_guest;
--m->guest.nr;
m->guest.val[i] = m->guest.val[m->guest.nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
skip_guest:
i = find_msr(&m->host, msr);
if (i < 0)
return;
--m->host.nr;
m->host.val[i] = m->host.val[m->host.nr];
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
}
static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit,
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
if (host_val_vmcs != HOST_IA32_EFER)
vmcs_write64(host_val_vmcs, host_val);
vm_entry_controls_setbit(vmx, entry);
vm_exit_controls_setbit(vmx, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val, bool entry_only)
{
int i, j = 0;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer()) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl()) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
case MSR_IA32_PEBS_ENABLE:
/* PEBS needs a quiescent period after being disabled (to write
* a record). Disabling PEBS through VMX MSR swapping doesn't
* provide that period, so a CPU could write host's record into
* guest's memory.
*/
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}
i = find_msr(&m->guest, msr);
if (!entry_only)
j = find_msr(&m->host, msr);
if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
printk_once(KERN_WARNING "Not enough msr switch entries. "
"Can't add msr %x\n", msr);
return;
}
if (i < 0) {
i = m->guest.nr++;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
}
m->guest.val[i].index = msr;
m->guest.val[i].value = guest_val;
if (entry_only)
return;
if (j < 0) {
j = m->host.nr++;
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
}
m->host.val[j].index = msr;
m->host.val[j].value = host_val;
}
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer = vmx->vcpu.arch.efer;
u64 ignore_bits = 0;
if (!enable_ept) {
/*
* NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
* host CPUID is more efficient than testing guest CPUID
* or CR4. Host SMEP is anyway a requirement for guest SMEP.
*/
if (boot_cpu_has(X86_FEATURE_SMEP))
guest_efer |= EFER_NX;
else if (!(guest_efer & EFER_NX))
ignore_bits |= EFER_NX;
}
/*
* LMA and LME handled by hardware; SCE meaningless outside long mode.
*/
ignore_bits |= EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
/*
* On EPT, we can't emulate NX, so we must switch EFER atomically.
* On CPUs that support "load IA32_EFER", always switch EFER
* atomically, since it's faster than switching it manually.
*/
if (cpu_has_load_ia32_efer() ||
(enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
if (guest_efer != host_efer)
add_atomic_switch_msr(vmx, MSR_EFER,
guest_efer, host_efer, false);
else
clear_atomic_switch_msr(vmx, MSR_EFER);
return false;
} else {
clear_atomic_switch_msr(vmx, MSR_EFER);
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_msrs[efer_offset].data = guest_efer;
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
return true;
}
}
#ifdef CONFIG_X86_32
/*
* On 32-bit kernels, VM exits still load the FS and GS bases from the
* VMCS rather than the segment table. KVM uses this helper to figure
* out the current bases to poke them into the VMCS before entry.
*/
static unsigned long segment_base(u16 selector)
{
struct desc_struct *table;
unsigned long v;
if (!(selector & ~SEGMENT_RPL_MASK))
return 0;
table = get_current_gdt_ro();
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)segment_base(ldt_selector);
}
v = get_desc_base(&table[selector >> 3]);
return v;
}
#endif
static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
{
u32 i;
wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
for (i = 0; i < addr_range; i++) {
wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
}
}
static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
{
u32 i;
rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
for (i = 0; i < addr_range; i++) {
rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
}
}
static void pt_guest_enter(struct vcpu_vmx *vmx)
{
if (pt_mode == PT_MODE_SYSTEM)
return;
/*
* GUEST_IA32_RTIT_CTL is already set in the VMCS.
* Save host state before VM entry.
*/
rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
wrmsrl(MSR_IA32_RTIT_CTL, 0);
pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
}
}
static void pt_guest_exit(struct vcpu_vmx *vmx)
{
if (pt_mode == PT_MODE_SYSTEM)
return;
if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
}
/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
}
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs_host_state *host_state;
#ifdef CONFIG_X86_64
int cpu = raw_smp_processor_id();
#endif
unsigned long fs_base, gs_base;
u16 fs_sel, gs_sel;
int i;
vmx->req_immediate_exit = false;
/*
* Note that guest MSRs to be saved/restored can also be changed
* when guest state is loaded. This happens when guest transitions
* to/from long-mode by setting MSR_EFER.LMA.
*/
if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
vmx->guest_msrs_dirty = false;
for (i = 0; i < vmx->save_nmsrs; ++i)
kvm_set_shared_msr(vmx->guest_msrs[i].index,
vmx->guest_msrs[i].data,
vmx->guest_msrs[i].mask);
}
if (vmx->loaded_cpu_state)
return;
vmx->loaded_cpu_state = vmx->loaded_vmcs;
host_state = &vmx->loaded_cpu_state->host_state;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
host_state->ldt_sel = kvm_read_ldt();
#ifdef CONFIG_X86_64
savesegment(ds, host_state->ds_sel);
savesegment(es, host_state->es_sel);
gs_base = cpu_kernelmode_gs_base(cpu);
if (likely(is_64bit_mm(current->mm))) {
save_fsgs_for_kvm();
fs_sel = current->thread.fsindex;
gs_sel = current->thread.gsindex;
fs_base = current->thread.fsbase;
vmx->msr_host_kernel_gs_base = current->thread.gsbase;
} else {
savesegment(fs, fs_sel);
savesegment(gs, gs_sel);
fs_base = read_msr(MSR_FS_BASE);
vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
}
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#else
savesegment(fs, fs_sel);
savesegment(gs, gs_sel);
fs_base = segment_base(fs_sel);
gs_base = segment_base(gs_sel);
#endif
if (unlikely(fs_sel != host_state->fs_sel)) {
if (!(fs_sel & 7))
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
else
vmcs_write16(HOST_FS_SELECTOR, 0);
host_state->fs_sel = fs_sel;
}
if (unlikely(gs_sel != host_state->gs_sel)) {
if (!(gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
else
vmcs_write16(HOST_GS_SELECTOR, 0);
host_state->gs_sel = gs_sel;
}
if (unlikely(fs_base != host_state->fs_base)) {
vmcs_writel(HOST_FS_BASE, fs_base);
host_state->fs_base = fs_base;
}
if (unlikely(gs_base != host_state->gs_base)) {
vmcs_writel(HOST_GS_BASE, gs_base);
host_state->gs_base = gs_base;
}
}
static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
{
struct vmcs_host_state *host_state;
if (!vmx->loaded_cpu_state)
return;
WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
host_state = &vmx->loaded_cpu_state->host_state;
++vmx->vcpu.stat.host_state_reload;
vmx->loaded_cpu_state = NULL;
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
kvm_load_ldt(host_state->ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(host_state->gs_sel);
#else
loadsegment(gs, host_state->gs_sel);
#endif
}
if (host_state->fs_sel & 7)
loadsegment(fs, host_state->fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(host_state->ds_sel | host_state->es_sel)) {
loadsegment(ds, host_state->ds_sel);
loadsegment(es, host_state->es_sel);
}
#endif
invalidate_tss_limit();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
load_fixmap_gdt(raw_smp_processor_id());
}
#ifdef CONFIG_X86_64
static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
{
preempt_disable();
if (vmx->loaded_cpu_state)
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
preempt_enable();
return vmx->msr_guest_kernel_gs_base;
}
static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
{
preempt_disable();
if (vmx->loaded_cpu_state)
wrmsrl(MSR_KERNEL_GS_BASE, data);
preempt_enable();
vmx->msr_guest_kernel_gs_base = data;
}
#endif
static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
/*
* In case of hot-plug or hot-unplug, we may have to undo
* vmx_vcpu_pi_put even if there is no assigned device. And we
* always keep PI.NDST up to date for simplicity: it makes the
* code easier, and CPU migration is not a fast path.
*/
if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
return;
/*
* First handle the simple case where no cmpxchg is necessary; just
* allow posting non-urgent interrupts.
*
* If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
* PI.NDST: pi_post_block will do it for us and the wakeup_handler
* expects the VCPU to be on the blocked_vcpu_list that matches
* PI.NDST.
*/
if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
vcpu->cpu == cpu) {
pi_clear_sn(pi_desc);
return;
}
/* The full case. */
do {
old.control = new.control = pi_desc->control;
dest = cpu_physical_id(cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
new.sn = 0;
} while (cmpxchg64(&pi_desc->control, old.control,
new.control) != old.control);
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
if (!already_loaded) {
loaded_vmcs_clear(vmx->loaded_vmcs);
local_irq_disable();
crash_disable_local_vmclear(cpu);
/*
* Read loaded_vmcs->cpu should be before fetching
* loaded_vmcs->loaded_vmcss_on_cpu_link.
* See the comments in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
crash_enable_local_vmclear(cpu);
local_irq_enable();
}
if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
indirect_branch_prediction_barrier();
}
if (!already_loaded) {
void *gdt = get_current_gdt_ro();
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors. See 22.2.4.
*/
vmcs_writel(HOST_TR_BASE,
(unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
/*
* VM exits change the host TR limit to 0x67 after a VM
* exit. This is okay, since 0x67 covers everything except
* the IO bitmap and have have code to handle the IO bitmap
* being lost after a VM exit.
*/
BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
vmx->loaded_vmcs->cpu = cpu;
}
/* Setup TSC multiplier */
if (kvm_has_tsc_control &&
vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
decache_tsc_multiplier(vmx);
vmx_vcpu_pi_load(vcpu, cpu);
vmx->host_pkru = read_pkru();
vmx->host_debugctlmsr = get_debugctlmsr();
}
static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
/* Set SN when the vCPU is preempted */
if (vcpu->preempted)
pi_set_sn(pi_desc);
}
void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
vmx_vcpu_pi_put(vcpu);
vmx_prepare_switch_to_host(to_vmx(vcpu));
}
static bool emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
rflags = vmcs_readl(GUEST_RFLAGS);
if (to_vmx(vcpu)->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
to_vmx(vcpu)->rflags = rflags;
}
return to_vmx(vcpu)->rflags;
}
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
unsigned long old_rflags = vmx_get_rflags(vcpu);
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
to_vmx(vcpu)->rflags = rflags;
if (to_vmx(vcpu)->rmode.vm86_active) {
to_vmx(vcpu)->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
}
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long value;
/*
* Any MSR write that attempts to change bits marked reserved will
* case a #GP fault.
*/
if (data & vmx->pt_desc.ctl_bitmask)
return 1;
/*
* Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
* result in a #GP unless the same write also clears TraceEn.
*/
if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
return 1;
/*
* WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
* and FabricEn would cause #GP, if
* CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
*/
if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
!(data & RTIT_CTL_FABRIC_EN) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output))
return 1;
/*
* MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
* utilize encodings marked reserved will casue a #GP fault.
*/
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
!test_bit((data & RTIT_CTL_MTC_RANGE) >>
RTIT_CTL_MTC_RANGE_OFFSET, &value))
return 1;
value = intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cycle_thresholds);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
!test_bit((data & RTIT_CTL_CYC_THRESH) >>
RTIT_CTL_CYC_THRESH_OFFSET, &value))
return 1;
value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
!test_bit((data & RTIT_CTL_PSB_FREQ) >>
RTIT_CTL_PSB_FREQ_OFFSET, &value))
return 1;
/*
* If ADDRx_CFG is reserved or the encodings is >2 will
* cause a #GP fault.
*/
value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
return 1;
value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
return 1;
return 0;
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_rip_write(vcpu, rip);
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
}
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
{
/*
* Ensure that we clear the HLT state in the VMCS. We don't need to
* explicitly skip the instruction because if the HLT state is set,
* then the instruction is already executing and RIP has already been
* advanced.
*/
if (kvm_hlt_in_guest(vcpu->kvm) &&
vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned nr = vcpu->arch.exception.nr;
bool has_error_code = vcpu->arch.exception.has_error_code;
u32 error_code = vcpu->arch.exception.error_code;
u32 intr_info = nr | INTR_INFO_VALID_MASK;
kvm_deliver_exception_payload(vcpu);
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(nr))
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
WARN_ON_ONCE(vmx->emulation_required);
if (kvm_exception_is_soft(nr)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
vmx_clear_hlt(vcpu);
}
static bool vmx_rdtscp_supported(void)
{
return cpu_has_vmx_rdtscp();
}
static bool vmx_invpcid_supported(void)
{
return cpu_has_vmx_invpcid();
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct shared_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
}
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs, index;
save_nmsrs = 0;
#ifdef CONFIG_X86_64
/*
* The SYSCALL MSRs are only needed on long mode guests, and only
* when EFER.SCE is set.
*/
if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
index = __find_msr_index(vmx, MSR_STAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
index = __find_msr_index(vmx, MSR_EFER);
if (index >= 0 && update_transition_efer(vmx, index))
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_TSC_AUX);
if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
move_msr_up(vmx, index, save_nmsrs++);
vmx->save_nmsrs = save_nmsrs;
vmx->guest_msrs_dirty = true;
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(&vmx->vcpu);
}
static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (is_guest_mode(vcpu) &&
(vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
return vcpu->arch.tsc_offset;
}
static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u64 g_tsc_offset = 0;
/*
* We're here if L1 chose not to trap WRMSR to TSC. According
* to the spec, this should set L1's TSC; The offset that L1
* set for L2 remains unchanged, and still needs to be added
* to the newly set TSC to get L2's TSC.
*/
if (is_guest_mode(vcpu) &&
(vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
g_tsc_offset = vmcs12->tsc_offset;
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
vcpu->arch.tsc_offset - g_tsc_offset,
offset);
vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
return offset + g_tsc_offset;
}
/*
* nested_vmx_allowed() checks whether a guest should be allowed to use VMX
* instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
* all guests if the "nested" module option is off, and can also be disabled
* for a single guest by disabling its VMX cpuid bit.
*/
bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
}
static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
uint64_t val)
{
uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
return !(val & ~valid_bits);
}
static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
{
switch (msr->index) {
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!nested)
return 1;
return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
default:
return 1;
}
return 0;
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
u32 index;
switch (msr_info->index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
msr_info->data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
msr_info->data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_info);
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
return 1;
msr_info->data = to_vmx(vcpu)->spec_ctrl;
break;
case MSR_IA32_ARCH_CAPABILITIES:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
return 1;
msr_info->data = to_vmx(vcpu)->arch_capabilities;
break;
case MSR_IA32_SYSENTER_CS:
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported() ||
(!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
return 1;
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
break;
case MSR_IA32_MCG_EXT_CTL:
if (!msr_info->host_initiated &&
!(vmx->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE))
return 1;
msr_info->data = vcpu->arch.mcg_ext_ctl;
break;
case MSR_IA32_FEATURE_CONTROL:
msr_info->data = vmx->msr_ia32_feature_control;
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
&msr_info->data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
msr_info->data = vcpu->arch.ia32_xss;
break;
case MSR_IA32_RTIT_CTL:
if (pt_mode != PT_MODE_HOST_GUEST)
return 1;
msr_info->data = vmx->pt_desc.guest.ctl;
break;
case MSR_IA32_RTIT_STATUS:
if (pt_mode != PT_MODE_HOST_GUEST)
return 1;
msr_info->data = vmx->pt_desc.guest.status;
break;
case MSR_IA32_RTIT_CR3_MATCH:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cr3_filtering))
return 1;
msr_info->data = vmx->pt_desc.guest.cr3_match;
break;
case MSR_IA32_RTIT_OUTPUT_BASE:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)))
return 1;
msr_info->data = vmx->pt_desc.guest.output_base;
break;
case MSR_IA32_RTIT_OUTPUT_MASK:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)))
return 1;
msr_info->data = vmx->pt_desc.guest.output_mask;
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_num_address_ranges)))
return 1;
if (index % 2)
msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
else
msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
break;
case MSR_TSC_AUX:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
return 1;
/* Else, falls through */
default:
msr = find_msr_entry(vmx, msr_info->index);
if (msr) {
msr_info->data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
u32 index;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_write_guest_kernel_gs_base(vmx, data);
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported() ||
(!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
return 1;
if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
(data & MSR_IA32_BNDCFGS_RSVD))
return 1;
vmcs_write64(GUEST_BNDCFGS, data);
break;
case MSR_IA32_SPEC_CTRL:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
return 1;
/* The STIBP bit doesn't fault even if it's not advertised */
if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
return 1;
vmx->spec_ctrl = data;
if (!data)
break;
/*
* For non-nested:
* When it's written (to non-zero) for the first time, pass
* it through.
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
* nested_vmx_merge_msr_bitmap. We should not touch the
* vmcs02.msr_bitmap here since it gets completely overwritten
* in the merging. We update the vmcs01 here for L1 as well
* since it will end up touching the MSR anyway now.
*/
vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
MSR_IA32_SPEC_CTRL,
MSR_TYPE_RW);
break;
case MSR_IA32_PRED_CMD:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
return 1;
if (data & ~PRED_CMD_IBPB)
return 1;
if (!data)
break;
wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
/*
* For non-nested:
* When it's written (to non-zero) for the first time, pass
* it through.
*
* For nested:
* The handling of the MSR bitmap for L2 guests is done in
* nested_vmx_merge_msr_bitmap. We should not touch the
* vmcs02.msr_bitmap here since it gets completely overwritten
* in the merging.
*/
vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
MSR_TYPE_W);
break;
case MSR_IA32_ARCH_CAPABILITIES:
if (!msr_info->host_initiated)
return 1;
vmx->arch_capabilities = data;
break;
case MSR_IA32_CR_PAT:
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
return 1;
vmcs_write64(GUEST_IA32_PAT, data);
vcpu->arch.pat = data;
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_TSC_ADJUST:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_MCG_EXT_CTL:
if ((!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE)) ||
(data & ~MCG_EXT_CTL_LMCE_EN))
return 1;
vcpu->arch.mcg_ext_ctl = data;
break;
case MSR_IA32_FEATURE_CONTROL:
if (!vmx_feature_control_msr_valid(vcpu, data) ||
(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
return 1;
vmx->msr_ia32_feature_control = data;
if (msr_info->host_initiated && data == 0)
vmx_leave_nested(vcpu);
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!msr_info->host_initiated)
return 1; /* they are read-only */
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_set_vmx_msr(vcpu, msr_index, data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
/*
* The only supported bit as of Skylake is bit 8, but
* it is not supported on KVM.
*/
if (data != 0)
return 1;
vcpu->arch.ia32_xss = data;
if (vcpu->arch.ia32_xss != host_xss)
add_atomic_switch_msr(vmx, MSR_IA32_XSS,
vcpu->arch.ia32_xss, host_xss, false);
else
clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
break;
case MSR_IA32_RTIT_CTL:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
vmx_rtit_ctl_check(vcpu, data) ||
vmx->nested.vmxon)
return 1;
vmcs_write64(GUEST_IA32_RTIT_CTL, data);
vmx->pt_desc.guest.ctl = data;
pt_update_intercept_for_msr(vmx);
break;
case MSR_IA32_RTIT_STATUS:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
(data & MSR_IA32_RTIT_STATUS_MASK))
return 1;
vmx->pt_desc.guest.status = data;
break;
case MSR_IA32_RTIT_CR3_MATCH:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_cr3_filtering))
return 1;
vmx->pt_desc.guest.cr3_match = data;
break;
case MSR_IA32_RTIT_OUTPUT_BASE:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)) ||
(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
return 1;
vmx->pt_desc.guest.output_base = data;
break;
case MSR_IA32_RTIT_OUTPUT_MASK:
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
(!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_topa_output) &&
!intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_single_range_output)))
return 1;
vmx->pt_desc.guest.output_mask = data;
break;
case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
if ((pt_mode != PT_MODE_HOST_GUEST) ||
(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_num_address_ranges)))
return 1;
if (index % 2)
vmx->pt_desc.guest.addr_b[index / 2] = data;
else
vmx->pt_desc.guest.addr_a[index / 2] = data;
break;
case MSR_TSC_AUX:
if (!msr_info->host_initiated &&
!guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
return 1;
/* Check reserved bit, higher 32 bits should be zero */
if ((data >> 32) != 0)
return 1;
/* Else, falls through */
default:
msr = find_msr_entry(vmx, msr_index);
if (msr) {
u64 old_msr_data = msr->data;
msr->data = data;
if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
preempt_disable();
ret = kvm_set_shared_msr(msr->index, msr->data,
msr->mask);
preempt_enable();
if (ret)
msr->data = old_msr_data;
}
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
}
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
default:
break;
}
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
if (msr & FEATURE_CONTROL_LOCKED) {
/* launched w/ TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& tboot_enabled())
return 1;
/* launched w/o TXT and VMX only enabled w/ TXT */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& !tboot_enabled()) {
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
"activate TXT before enabling KVM\n");
return 1;
}
/* launched w/o TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& !tboot_enabled())
return 1;
}
return 0;
}
static void kvm_cpu_vmxon(u64 addr)
{
cr4_set_bits(X86_CR4_VMXE);
intel_pt_handle_vmx(1);
asm volatile ("vmxon %0" : : "m"(addr));
}
static int hardware_enable(void)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old, test_bits;
if (cr4_read_shadow() & X86_CR4_VMXE)
return -EBUSY;
/*
* This can happen if we hot-added a CPU but failed to allocate
* VP assist page for it.
*/
if (static_branch_unlikely(&enable_evmcs) &&
!hv_get_vp_assist_page(cpu))
return -EFAULT;
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
/*
* Now we can enable the vmclear operation in kdump
* since the loaded_vmcss_on_cpu list on this cpu
* has been initialized.
*
* Though the cpu is not in VMX operation now, there
* is no problem to enable the vmclear operation
* for the loaded_vmcss_on_cpu list is empty!
*/
crash_enable_local_vmclear(cpu);
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
kvm_cpu_vmxon(phys_addr);
if (enable_ept)
ept_sync_global();
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
* tricks.
*/
static void kvm_cpu_vmxoff(void)
{
asm volatile (__ex("vmxoff"));
intel_pt_handle_vmx(0);
cr4_clear_bits(X86_CR4_VMXE);
}
static void hardware_disable(void)
{
vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
struct vmx_capability *vmx_cap)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt, min2, opt2;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
memset(vmcs_conf, 0, sizeof(*vmcs_conf));
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_RDPMC_EXITING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min2 = 0;
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_XSAVES |
SECONDARY_EXEC_RDSEED_EXITING |
SECONDARY_EXEC_RDRAND_EXITING |
SECONDARY_EXEC_ENABLE_PML |
SECONDARY_EXEC_TSC_SCALING |
SECONDARY_EXEC_PT_USE_GPA |
SECONDARY_EXEC_PT_CONCEAL_VMX |
SECONDARY_EXEC_ENABLE_VMFUNC |
SECONDARY_EXEC_ENCLS_EXITING;
if (adjust_vmx_controls(min2, opt2,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
&vmx_cap->ept, &vmx_cap->vpid);
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
enabled */
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
} else if (vmx_cap->ept) {
vmx_cap->ept = 0;
pr_warn_once("EPT CAP should not exist if not support "
"1-setting enable EPT VM-execution control\n");
}
if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
vmx_cap->vpid) {
vmx_cap->vpid = 0;
pr_warn_once("VPID CAP should not exist if not support "
"1-setting enable VPID VM-execution control\n");
}
min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
VM_EXIT_SAVE_IA32_PAT |
VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_LOAD_IA32_EFER |
VM_EXIT_CLEAR_BNDCFGS |
VM_EXIT_PT_CONCEAL_PIP |
VM_EXIT_CLEAR_IA32_RTIT_CTL;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
PIN_BASED_VMX_PREEMPTION_TIMER;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
if (cpu_has_broken_vmx_preemption_timer())
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
VM_ENTRY_LOAD_IA32_PAT |
VM_ENTRY_LOAD_IA32_EFER |
VM_ENTRY_LOAD_BNDCFGS |
VM_ENTRY_PT_CONCEAL_PIP |
VM_ENTRY_LOAD_IA32_RTIT_CTL;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
/*
* Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
* can't be used due to an errata where VM Exit may incorrectly clear
* IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
* MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*/
if (boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case 26: /* AAK155 */
case 30: /* AAP115 */
case 37: /* AAT100 */
case 44: /* BC86,AAY89,BD102 */
case 46: /* BA97 */
_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
break;
default:
break;
}
}
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_conf->size);
vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
if (static_branch_unlikely(&enable_evmcs))
evmcs_sanitize_exec_ctrls(vmcs_conf);
return 0;
}
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
/* KVM supports Enlightened VMCS v1 only */
if (static_branch_unlikely(&enable_evmcs))
vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
else
vmcs->hdr.revision_id = vmcs_config.revision_id;
if (shadow)
vmcs->hdr.shadow_vmcs = 1;
return vmcs;
}
void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
if (loaded_vmcs->msr_bitmap)
free_page((unsigned long)loaded_vmcs->msr_bitmap);
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
}
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
loaded_vmcs->vmcs = alloc_vmcs(false);
if (!loaded_vmcs->vmcs)
return -ENOMEM;
loaded_vmcs->shadow_vmcs = NULL;
loaded_vmcs_init(loaded_vmcs);
if (cpu_has_vmx_msr_bitmap()) {
loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!loaded_vmcs->msr_bitmap)
goto out_vmcs;
memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
if (IS_ENABLED(CONFIG_HYPERV) &&
static_branch_unlikely(&enable_evmcs) &&
(ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
struct hv_enlightened_vmcs *evmcs =
(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
evmcs->hv_enlightenments_control.msr_bitmap = 1;
}
}
memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
return 0;
out_vmcs:
free_loaded_vmcs(loaded_vmcs);
return -ENOMEM;
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(false, cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
/*
* When eVMCS is enabled, alloc_vmcs_cpu() sets
* vmcs->revision_id to KVM_EVMCS_VERSION instead of
* revision_id reported by MSR_IA32_VMX_BASIC.
*
* However, even though not explicitly documented by
* TLFS, VMXArea passed as VMXON argument should
* still be marked with revision_id reported by
* physical CPU.
*/
if (static_branch_unlikely(&enable_evmcs))
vmcs->hdr.revision_id = vmcs_config.revision_id;
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SEGMENT_RPL_MASK;
save->dpl = save->selector & SEGMENT_RPL_MASK;
save->s = 1;
}
vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if sement
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
vmx_segment_cache_clear(vmx);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
printk_once(KERN_WARNING "kvm: segment base is not "
"paragraph aligned when entering "
"protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_writel(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Warn the user that an update is overdue.
*/
if (!kvm_vmx->tss_addr)
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
"called before entering vcpu\n");
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
kvm_mmu_reset_context(vcpu);
}
void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
if (!msr)
return;
vcpu->arch.efer = efer;
if (efer & EFER_LMA) {
vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
| VMX_AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
{
int vpid = to_vmx(vcpu)->vpid;
if (!vpid_sync_vcpu_addr(vpid, addr))
vpid_sync_context(vpid);
/*
* If VPIDs are not supported or enabled, then the above is a no-op.
* But we don't really need a TLB flush in that case anyway, because
* each VM entry/exit includes an implicit flush when VPID is 0.
*/
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
}
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty))
return;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
}
}
void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
}
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
}
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
struct kvm_vcpu *vcpu)
{
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
vmx_decache_cr3(vcpu);
if (!(cr0 & X86_CR0_PG)) {
/* From paging/starting to nonpaging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
} else if (!is_paging(vcpu)) {
/* From nonpaging to paging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
}
if (!(cr0 & X86_CR0_WP))
*hw_cr0 &= ~X86_CR0_WP;
}
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr0;
hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
if (enable_unrestricted_guest)
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
else {
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
}
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
if (enable_ept && !enable_unrestricted_guest)
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
/* depends on vcpu->arch.cr0 to be set to a new value */
vmx->emulation_required = emulation_required(vcpu);
}
static int get_ept_level(struct kvm_vcpu *vcpu)
{
if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
return 5;
return 4;
}
u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
{
u64 eptp = VMX_EPTP_MT_WB;
eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
if (enable_ept_ad_bits &&
(!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
eptp |= VMX_EPTP_AD_ENABLE_BIT;
eptp |= (root_hpa & PAGE_MASK);
return eptp;
}
void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
struct kvm *kvm = vcpu->kvm;
unsigned long guest_cr3;
u64 eptp;
guest_cr3 = cr3;
if (enable_ept) {
eptp = construct_eptp(vcpu, cr3);
vmcs_write64(EPT_POINTER, eptp);
if (kvm_x86_ops->tlb_remote_flush) {
spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
to_vmx(vcpu)->ept_pointer = eptp;
to_kvm_vmx(kvm)->ept_pointers_match
= EPT_POINTERS_CHECK;
spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
}
if (enable_unrestricted_guest || is_paging(vcpu) ||
is_guest_mode(vcpu))
guest_cr3 = kvm_read_cr3(vcpu);
else
guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
ept_load_pdptrs(vcpu);
}
vmcs_writel(GUEST_CR3, guest_cr3);
}
int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
/*
* Pass through host's Machine Check Enable value to hw_cr4, which
* is in force while we are in guest mode. Do not let guests control
* this bit, even if host CR4.MCE == 0.
*/
unsigned long hw_cr4;
hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
if (enable_unrestricted_guest)
hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
else if (to_vmx(vcpu)->rmode.vm86_active)
hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
else
hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
if (cr4 & X86_CR4_UMIP) {
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_DESC);
hw_cr4 &= ~X86_CR4_UMIP;
} else if (!is_guest_mode(vcpu) ||
!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_DESC);
}
if (cr4 & X86_CR4_VMXE) {
/*
* To use VMXON (and later other VMX instructions), a guest
* must first be able to turn on cr4.VMXE (see handle_vmon()).
* So basically the check on whether to allow nested VMX
* is here. We operate under the default treatment of SMM,
* so VMX cannot be enabled under SMM.
*/
if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
return 1;
}
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
return 1;
vcpu->arch.cr4 = cr4;
if (!enable_unrestricted_guest) {
if (enable_ept) {
if (!is_paging(vcpu)) {
hw_cr4 &= ~X86_CR4_PAE;
hw_cr4 |= X86_CR4_PSE;
} else if (!(cr4 & X86_CR4_PAE)) {
hw_cr4 &= ~X86_CR4_PAE;
}
}
/*
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
* to be manually disabled when guest switches to non-paging
* mode.
*
* If !enable_unrestricted_guest, the CPU is always running
* with CR0.PG=1 and CR4 needs to be modified.
* If enable_unrestricted_guest, the CPU automatically
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
*/
if (!is_paging(vcpu))
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
}
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
return 0;
}
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 ar;
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
var->unusable = (ar >> 16) & 1;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
/*
* Some userspaces do not preserve unusable property. Since usable
* segment has to be present according to VMX spec we can use present
* property to amend userspace bug by making unusable segment always
* nonpresent. vmx_segment_access_rights() already marks nonpresent
* segment as unusable.
*/
var->present = !var->unusable;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment s;
if (to_vmx(vcpu)->rmode.vm86_active) {
vmx_get_segment(vcpu, &s, seg);
return s.base;
}
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
}
int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (unlikely(vmx->rmode.vm86_active))
return 0;
else {
int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
return VMX_AR_DPL(ar);
}
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
if (var->unusable || !var->present)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
return ar;
}
void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
if (seg == VCPU_SREG_TR)
vmcs_write16(sf->selector, var->selector);
else if (var->s)
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
goto out;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
/*
* Fix the "Accessed" bit in AR field of segment registers for older
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
* kvm hack.
*/
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
var->type |= 0x1; /* Accessed */
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
out:
vmx->emulation_required = emulation_required(vcpu);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
dt->address = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
vmcs_writel(GUEST_IDTR_BASE, dt->address);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
dt->address = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
vmcs_writel(GUEST_GDTR_BASE, dt->address);
}
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
u32 ar;
vmx_get_segment(vcpu, &var, seg);
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
ar = vmx_segment_access_rights(&var);
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
return false;
if (ar != 0xf3)
return false;
return true;
}
static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
unsigned int cs_rpl;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
if (cs.unusable)
return false;
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
return false;
if (!cs.s)
return false;
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
if (cs.dpl > cs_rpl)
return false;
} else {
if (cs.dpl != cs_rpl)
return false;
}
if (!cs.present)
return false;
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
return true;
}
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ss;
unsigned int ss_rpl;
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
if (ss.unusable)
return true;
if (ss.type != 3 && ss.type != 7)
return false;
if (!ss.s)
return false;
if (ss.dpl != ss_rpl) /* DPL != RPL */
return false;
if (!ss.present)
return false;
return true;
}
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
unsigned int rpl;
vmx_get_segment(vcpu, &var, seg);
rpl = var.selector & SEGMENT_RPL_MASK;
if (var.unusable)
return true;
if (!var.s)
return false;
if (!var.present)
return false;
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
if (var.dpl < rpl) /* DPL < RPL */
return false;
}
/* TODO: Add other members to kvm_segment_field to allow checking for other access
* rights flags
*/
return true;
}
static bool tr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment tr;
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
if (tr.unusable)
return false;
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
return false;
if (!tr.present)
return false;
return true;
}
static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ldtr;
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
if (ldtr.unusable)
return true;
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (ldtr.type != 2)
return false;
if (!ldtr.present)
return false;
return true;
}
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ss;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
return ((cs.selector & SEGMENT_RPL_MASK) ==
(ss.selector & SEGMENT_RPL_MASK));
}
/*
* Check if guest state is valid. Returns true if valid, false if
* not.
* We assume that registers are always usable
*/
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
if (enable_unrestricted_guest)
return true;
/* real mode guest state checks */
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
return false;
} else {
/* protected mode guest state checks */
if (!cs_ss_rpl_check(vcpu))
return false;
if (!code_segment_valid(vcpu))
return false;
if (!stack_segment_valid(vcpu))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
return false;
if (!tr_valid(vcpu))
return false;
if (!ldtr_valid(vcpu))
return false;
}
/* TODO:
* - Add checks on RIP
* - Add checks on RFLAGS
*/
return true;
}
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn;
u16 data = 0;
int idx, r;
idx = srcu_read_lock(&kvm->srcu);
fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
r = kvm_write_guest_page(kvm, fn++, &data,
TSS_IOPB_BASE_OFFSET, sizeof(u16));
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = ~0;
r = kvm_write_guest_page(kvm, fn, &data,
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
sizeof(u8));
out:
srcu_read_unlock(&kvm->srcu, idx);
return r;
}
static int init_rmode_identity_map(struct kvm *kvm)
{
struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
int i, idx, r = 0;
kvm_pfn_t identity_map_pfn;
u32 tmp;
/* Protect kvm_vmx->ept_identity_pagetable_done. */
mutex_lock(&kvm->slots_lock);
if (likely(kvm_vmx->ept_identity_pagetable_done))
goto out2;
if (!kvm_vmx->ept_identity_map_addr)
kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
if (r < 0)
goto out2;
idx = srcu_read_lock(&kvm->srcu);
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
if (r < 0)
goto out;
/* Set up identity-mapping pagetable for EPT in real mode */
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
r = kvm_write_guest_page(kvm, identity_map_pfn,
&tmp, i * sizeof(tmp), sizeof(tmp));
if (r < 0)
goto out;
}
kvm_vmx->ept_identity_pagetable_done = true;
out:
srcu_read_unlock(&kvm->srcu, idx);
out2:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void seg_setup(int seg)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
ar = 0x93;
if (seg == VCPU_SREG_CS)
ar |= 0x08; /* code segment */
vmcs_write32(sf->ar_bytes, ar);
}
static int alloc_apic_access_page(struct kvm *kvm)
{
struct page *page;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.apic_access_page_done)
goto out;
r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
if (r)
goto out;
page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
if (is_error_page(page)) {
r = -EFAULT;
goto out;
}
/*
* Do not pin the page in memory, so that memory hot-unplug
* is able to migrate it.
*/
put_page(page);
kvm->arch.apic_access_page_done = true;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
int allocate_vpid(void)
{
int vpid;
if (!enable_vpid)
return 0;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS)
__set_bit(vpid, vmx_vpid_bitmap);
else
vpid = 0;
spin_unlock(&vmx_vpid_lock);
return vpid;
}
void free_vpid(int vpid)
{
if (!enable_vpid || vpid == 0)
return;
spin_lock(&vmx_vpid_lock);
__clear_bit(vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
}
static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
if (static_branch_unlikely(&enable_evmcs))
evmcs_touch_msr_bitmap();
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__clear_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__clear_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__clear_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__clear_bit(msr, msr_bitmap + 0xc00 / f);
}
}
static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
if (static_branch_unlikely(&enable_evmcs))
evmcs_touch_msr_bitmap();
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__set_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__set_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__set_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__set_bit(msr, msr_bitmap + 0xc00 / f);
}
}
static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type, bool value)
{
if (value)
vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
else
vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
}
static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
{
u8 mode = 0;
if (cpu_has_secondary_exec_ctrls() &&
(vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
mode |= MSR_BITMAP_MODE_X2APIC;
if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
mode |= MSR_BITMAP_MODE_X2APIC_APICV;
}
return mode;
}
static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
u8 mode)
{
int msr;
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
unsigned word = msr / BITS_PER_LONG;
msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
}
if (mode & MSR_BITMAP_MODE_X2APIC) {
/*
* TPR reads and writes can be virtualized even if virtual interrupt
* delivery is not in use.
*/
vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
}
}
}
void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
u8 mode = vmx_msr_bitmap_mode(vcpu);
u8 changed = mode ^ vmx->msr_bitmap_mode;
if (!changed)
return;
if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
vmx->msr_bitmap_mode = mode;
}
void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
{
unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
u32 i;
vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
MSR_TYPE_RW, flag);
for (i = 0; i < vmx->pt_desc.addr_range; i++) {
vmx_set_intercept_for_msr(msr_bitmap,
MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
vmx_set_intercept_for_msr(msr_bitmap,
MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
}
}
static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
{
return enable_apicv;
}
static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
void *vapic_page;
u32 vppr;
int rvi;
if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
return false;
rvi = vmx_get_rvi();
vapic_page = kmap(vmx->nested.virtual_apic_page);
vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
kunmap(vmx->nested.virtual_apic_page);
return ((rvi & 0xf0) > (vppr & 0xf0));
}
static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
bool nested)
{
#ifdef CONFIG_SMP
int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
if (vcpu->mode == IN_GUEST_MODE) {
/*
* The vector of interrupt to be delivered to vcpu had
* been set in PIR before this function.
*
* Following cases will be reached in this block, and
* we always send a notification event in all cases as
* explained below.
*
* Case 1: vcpu keeps in non-root mode. Sending a
* notification event posts the interrupt to vcpu.
*
* Case 2: vcpu exits to root mode and is still
* runnable. PIR will be synced to vIRR before the
* next vcpu entry. Sending a notification event in
* this case has no effect, as vcpu is not in root
* mode.
*
* Case 3: vcpu exits to root mode and is blocked.
* vcpu_block() has already synced PIR to vIRR and
* never blocks vcpu if vIRR is not cleared. Therefore,
* a blocked vcpu here does not wait for any requested
* interrupts in PIR, and sending a notification event
* which has no effect is safe here.
*/
apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
return true;
}
#endif
return false;
}
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu) &&
vector == vmx->nested.posted_intr_nv) {
/*
* If a posted intr is not recognized by hardware,
* we will accomplish it in the next vmentry.
*/
vmx->nested.pi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
/* the PIR and ON have been set by L1. */
if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
kvm_vcpu_kick(vcpu);
return 0;
}
return -1;
}
/*
* Send interrupt to vcpu via posted interrupt way.
* 1. If target vcpu is running(non-root mode), send posted interrupt
* notification to vcpu and hardware will sync PIR to vIRR atomically.
* 2. If target vcpu isn't running(root mode), kick it to pick up the
* interrupt from PIR in next vmentry.
*/
static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
if (!r)
return;
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return;
/* If a previous notification has sent the IPI, nothing to do. */
if (pi_test_and_set_on(&vmx->pi_desc))
return;
if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
kvm_vcpu_kick(vcpu);
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
{
u32 low32, high32;
unsigned long tmpl;
struct desc_ptr dt;
unsigned long cr0, cr3, cr4;
cr0 = read_cr0();
WARN_ON(cr0 & X86_CR0_TS);
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
/*
* Save the most likely value for this task's CR3 in the VMCS.
* We can't use __get_current_cr3_fast() because we're not atomic.
*/
cr3 = __read_cr3();
vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
vmx->loaded_vmcs->host_state.cr3 = cr3;
/* Save the most likely value for this task's CR4 in the VMCS. */
cr4 = cr4_read_shadow();
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
vmx->loaded_vmcs->host_state.cr4 = cr4;
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
#ifdef CONFIG_X86_64
/*
* Load null selectors, so we can avoid reloading them in
* vmx_prepare_switch_to_host(), in case userspace uses
* the null selectors too (the expected case).
*/
vmcs_write16(HOST_DS_SELECTOR, 0);
vmcs_write16(HOST_ES_SELECTOR, 0);
#else
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#endif
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
vmx->host_idt_base = dt.address;
vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
}
if (cpu_has_load_ia32_efer())
vmcs_write64(HOST_IA32_EFER, host_efer);
}
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
if (enable_ept)
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
if (is_guest_mode(&vmx->vcpu))
vmx->vcpu.arch.cr4_guest_owned_bits &=
~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
if (!enable_vnmi)
pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
/* Enable the preemption timer dynamically */
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
return pin_based_exec_ctrl;
}
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
if (cpu_has_secondary_exec_ctrls()) {
if (kvm_vcpu_apicv_active(vcpu))
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
else
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(vcpu);
}
u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
}
if (!enable_ept)
exec_control |= CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_INVLPG_EXITING;
if (kvm_mwait_in_guest(vmx->vcpu.kvm))
exec_control &= ~(CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING);
if (kvm_hlt_in_guest(vmx->vcpu.kvm))
exec_control &= ~CPU_BASED_HLT_EXITING;
return exec_control;
}
static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
{
struct kvm_vcpu *vcpu = &vmx->vcpu;
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (pt_mode == PT_MODE_SYSTEM)
exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
if (!cpu_need_virtualize_apic_accesses(vcpu))
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
if (!enable_ept) {
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
enable_unrestricted_guest = 0;
}
if (!enable_unrestricted_guest)
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (kvm_pause_in_guest(vmx->vcpu.kvm))
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
if (!kvm_vcpu_apicv_active(vcpu))
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
* in vmx_set_cr4. */
exec_control &= ~SECONDARY_EXEC_DESC;
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
(handle_vmptrld).
We can NOT enable shadow_vmcs here because we don't have yet
a current VMCS12
*/
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
if (!enable_pml)
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
if (vmx_xsaves_supported()) {
/* Exposing XSAVES only when XSAVE is exposed */
bool xsaves_enabled =
guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
if (!xsaves_enabled)
exec_control &= ~SECONDARY_EXEC_XSAVES;
if (nested) {
if (xsaves_enabled)
vmx->nested.msrs.secondary_ctls_high |=
SECONDARY_EXEC_XSAVES;
else
vmx->nested.msrs.secondary_ctls_high &=
~SECONDARY_EXEC_XSAVES;
}
}
if (vmx_rdtscp_supported()) {
bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
if (!rdtscp_enabled)
exec_control &= ~SECONDARY_EXEC_RDTSCP;
if (nested) {
if (rdtscp_enabled)
vmx->nested.msrs.secondary_ctls_high |=
SECONDARY_EXEC_RDTSCP;
else
vmx->nested.msrs.secondary_ctls_high &=
~SECONDARY_EXEC_RDTSCP;
}
}
if (vmx_invpcid_supported()) {
/* Exposing INVPCID only when PCID is exposed */
bool invpcid_enabled =
guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
guest_cpuid_has(vcpu, X86_FEATURE_PCID);
if (!invpcid_enabled) {
exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
}
if (nested) {
if (invpcid_enabled)
vmx->nested.msrs.secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_INVPCID;
else
vmx->nested.msrs.secondary_ctls_high &=
~SECONDARY_EXEC_ENABLE_INVPCID;
}
}
if (vmx_rdrand_supported()) {
bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
if (rdrand_enabled)
exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
if (nested) {
if (rdrand_enabled)
vmx->nested.msrs.secondary_ctls_high |=
SECONDARY_EXEC_RDRAND_EXITING;
else
vmx->nested.msrs.secondary_ctls_high &=
~SECONDARY_EXEC_RDRAND_EXITING;
}
}
if (vmx_rdseed_supported()) {
bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
if (rdseed_enabled)
exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
if (nested) {
if (rdseed_enabled)
vmx->nested.msrs.secondary_ctls_high |=
SECONDARY_EXEC_RDSEED_EXITING;
else
vmx->nested.msrs.secondary_ctls_high &=
~SECONDARY_EXEC_RDSEED_EXITING;
}
}
vmx->secondary_exec_control = exec_control;
}
static void ept_set_mmio_spte_mask(void)
{
/*
* EPT Misconfigurations can be generated if the value of bits 2:0
* of an EPT paging-structure entry is 110b (write/execute).
*/
kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
VMX_EPT_MISCONFIG_WX_VALUE);
}
#define VMX_XSS_EXIT_BITMAP 0
/*
* Sets up the vmcs for emulated real mode.
*/
static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
int i;
if (nested)
nested_vmx_vcpu_setup();
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
vmx->hv_deadline_tsc = -1;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls()) {
vmx_compute_secondary_exec_control(vmx);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
vmx->secondary_exec_control);
}
if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
vmcs_write64(EOI_EXIT_BITMAP0, 0);
vmcs_write64(EOI_EXIT_BITMAP1, 0);
vmcs_write64(EOI_EXIT_BITMAP2, 0);
vmcs_write64(EOI_EXIT_BITMAP3, 0);
vmcs_write16(GUEST_INTR_STATUS, 0);
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
}
if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
vmcs_write32(PLE_GAP, ple_gap);
vmx->ple_window = ple_window;
vmx->ple_window_dirty = true;
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
vmx_set_constant_host_state(vmx);
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
if (cpu_has_vmx_vmfunc())
vmcs_write64(VM_FUNCTION_CONTROL, 0);
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
int j = vmx->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
vmx->guest_msrs[j].index = i;
vmx->guest_msrs[j].data = 0;
vmx->guest_msrs[j].mask = -1ull;
++vmx->nmsrs;
}
vmx->arch_capabilities = kvm_get_arch_capabilities();
vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
/* 22.2.1, 20.8.1 */
vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
set_cr4_guest_host_mask(vmx);
if (vmx_xsaves_supported())
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
if (enable_pml) {
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
if (cpu_has_vmx_encls_vmexit())
vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
if (pt_mode == PT_MODE_HOST_GUEST) {
memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
/* Bit[6~0] are forced to 1, writes are ignored. */
vmx->pt_desc.guest.output_mask = 0x7F;
vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
}
}
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct msr_data apic_base_msr;
u64 cr0;
vmx->rmode.vm86_active = 0;
vmx->spec_ctrl = 0;
vcpu->arch.microcode_version = 0x100000000ULL;
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
kvm_set_cr8(vcpu, 0);
if (!init_event) {
apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_reset_bsp(vcpu))
apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
apic_base_msr.host_initiated = true;
kvm_set_apic_base(vcpu, &apic_base_msr);
}
vmx_segment_cache_clear(vmx);
seg_setup(VCPU_SREG_CS);
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
if (!init_event) {
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
}
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
kvm_rip_write(vcpu, 0xfff0);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
if (kvm_mpx_supported())
vmcs_write64(GUEST_BNDCFGS, 0);
setup_msrs(vmx);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
if (cpu_has_vmx_tpr_shadow() && !init_event) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (cpu_need_tpr_shadow(vcpu))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
__pa(vcpu->arch.apic->regs));
vmcs_write32(TPR_THRESHOLD, 0);
}
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
vmx->vcpu.arch.cr0 = cr0;
vmx_set_cr0(vcpu, cr0); /* enter rmode */
vmx_set_cr4(vcpu, 0);
vmx_set_efer(vcpu, 0);
update_exception_bitmap(vcpu);
vpid_sync_context(vmx->vpid);
if (init_event)
vmx_clear_hlt(vcpu);
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
if (!enable_vnmi ||
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
enable_irq_window(vcpu);
return;
}
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
uint32_t intr;
int irq = vcpu->arch.interrupt.nr;
trace_kvm_inj_virq(irq);
++vcpu->stat.irq_injections;
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (vcpu->arch.interrupt.soft)
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
intr = irq | INTR_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
intr |= INTR_TYPE_SOFT_INTR;
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
} else
intr |= INTR_TYPE_EXT_INTR;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
vmx_clear_hlt(vcpu);
}
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!enable_vnmi) {
/*
* Tracking the NMI-blocked state in software is built upon
* finding the next open IRQ window. This, in turn, depends on
* well-behaving guests: They have to keep IRQs disabled at
* least as long as the NMI handler runs. Otherwise we may
* cause NMI nesting, maybe breaking the guest. But as this is
* highly unlikely, we can live with the residual risk.
*/
vmx->loaded_vmcs->soft_vnmi_blocked = 1;
vmx->loaded_vmcs->vnmi_blocked_time = 0;
}
++vcpu->stat.nmi_injections;
vmx->loaded_vmcs->nmi_known_unmasked = false;
if (vmx->rmode.vm86_active) {
if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
vmx_clear_hlt(vcpu);
}
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool masked;
if (!enable_vnmi)
return vmx->loaded_vmcs->soft_vnmi_blocked;
if (vmx->loaded_vmcs->nmi_known_unmasked)
return false;
masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
return masked;
}
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!enable_vnmi) {
if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
vmx->loaded_vmcs->soft_vnmi_blocked = masked;
vmx->loaded_vmcs->vnmi_blocked_time = 0;
}
} else {
vmx->loaded_vmcs->nmi_known_unmasked = !masked;
if (masked)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
}
}
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
{
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
if (!enable_vnmi &&
to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
return 0;
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_NMI));
}
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return (!to_vmx(vcpu)->nested.nested_run_pending &&
vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
int ret;
if (enable_unrestricted_guest)
return 0;
ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
PAGE_SIZE * 3);
if (ret)
return ret;
to_kvm_vmx(kvm)->tss_addr = addr;
return init_rmode_tss(kvm);
}
static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
{
to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
return 0;
}
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
{
switch (vec) {
case BP_VECTOR:
/*
* Update instruction length as we may reinject the exception
* from user space while in guest debugging mode.
*/
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
/* fall through */
case DB_VECTOR:
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
/* fall through */
case DE_VECTOR:
case OF_VECTOR:
case BR_VECTOR:
case UD_VECTOR:
case DF_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case MF_VECTOR:
return true;
break;
}
return false;
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_vcpu_halt(vcpu);
}
return 1;
}
return 0;
}
/*
* Forward all other exceptions that are valid in real mode.
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
* the required debugging infrastructure rework.
*/
kvm_queue_exception(vcpu, vec);
return 1;
}
/*
* Trigger machine check on the host. We assume all the MSRs are already set up
* by the CPU and that we still run on the same CPU as the MCE occurred on.
* We pass a fake environment to the machine check handler because we want
* the guest to be always treated like user space, no matter what context
* it used internally.
*/
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
struct pt_regs regs = {
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
.flags = X86_EFLAGS_IF,
};
do_machine_check(&regs, 0);
#endif
}
static int handle_machine_check(struct kvm_vcpu *vcpu)
{
/* already handled by vcpu_run */
return 1;
}
static int handle_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 intr_info, ex_no, error_code;
unsigned long cr2, rip, dr6;
u32 vect_info;
enum emulation_result er;
vect_info = vmx->idt_vectoring_info;
intr_info = vmx->exit_intr_info;
if (is_machine_check(intr_info))
return handle_machine_check(vcpu);
if (is_nmi(intr_info))
return 1; /* already handled by vmx_vcpu_run() */
if (is_invalid_opcode(intr_info))
return handle_ud(vcpu);
error_code = 0;
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
WARN_ON_ONCE(!enable_vmware_backdoor);
er = kvm_emulate_instruction(vcpu,
EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
if (er == EMULATE_USER_EXIT)
return 0;
else if (er != EMULATE_DONE)
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
return 1;
}
/*
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
* MMIO, it is better to report an internal error.
* See the comments in vmx_handle_exit.
*/
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
vcpu->run->internal.ndata = 3;
vcpu->run->internal.data[0] = vect_info;
vcpu->run->internal.data[1] = intr_info;
vcpu->run->internal.data[2] = error_code;
return 0;
}
if (is_page_fault(intr_info)) {
cr2 = vmcs_readl(EXIT_QUALIFICATION);
/* EPT won't cause page fault directly */
WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
}
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
return handle_rmode_exception(vcpu, ex_no, error_code);
switch (ex_no) {
case AC_VECTOR:
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
return 1;
case DB_VECTOR:
dr6 = vmcs_readl(EXIT_QUALIFICATION);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= dr6 | DR6_RTM;
if (is_icebp(intr_info))
skip_emulated_instruction(vcpu);
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
/* fall through */
case BP_VECTOR:
/*
* Update instruction length as we may reinject #BP from
* user space while in guest debugging mode. Reading it for
* #DB as well causes no harm, it is not used in that case.
*/
vmx->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_run->exit_reason = KVM_EXIT_DEBUG;
rip = kvm_rip_read(vcpu);
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
kvm_run->debug.arch.exception = ex_no;
break;
default:
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = ex_no;
kvm_run->ex.error_code = error_code;
break;
}
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
vcpu->mmio_needed = 0;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int size, in, string;
unsigned port;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
string = (exit_qualification & 16) != 0;
++vcpu->stat.io_exits;
if (string)
return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
in = (exit_qualification & 8) != 0;
return kvm_fast_pio(vcpu, size, port, in);
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/*
* We get here when L2 changed cr0 in a way that did not change
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
* but did change L0 shadowed bits. So we first calculate the
* effective cr0 value that L1 would like to write into the
* hardware. It consists of the L2-owned bits from the new
* value combined with the L1-owned bits from L1's guest_cr0.
*/
val = (val & ~vmcs12->cr0_guest_host_mask) |
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
if (!nested_guest_cr0_valid(vcpu, val))
return 1;
if (kvm_set_cr0(vcpu, val))
return 1;
vmcs_writel(CR0_READ_SHADOW, orig_val);
return 0;
} else {
if (to_vmx(vcpu)->nested.vmxon &&
!nested_host_cr0_valid(vcpu, val))
return 1;
return kvm_set_cr0(vcpu, val);
}
}
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/* analogously to handle_set_cr0 */
val = (val & ~vmcs12->cr4_guest_host_mask) |
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
if (kvm_set_cr4(vcpu, val))
return 1;
vmcs_writel(CR4_READ_SHADOW, orig_val);
return 0;
} else
return kvm_set_cr4(vcpu, val);
}
static int handle_desc(struct kvm_vcpu *vcpu)
{
WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
int cr;
int reg;
int err;
int ret;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
val = kvm_register_readl(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
err = handle_set_cr0(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 3:
WARN_ON_ONCE(enable_unrestricted_guest);
err = kvm_set_cr3(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 4:
err = handle_set_cr4(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 8: {
u8 cr8_prev = kvm_get_cr8(vcpu);
u8 cr8 = (u8)val;
err = kvm_set_cr8(vcpu, cr8);
ret = kvm_complete_insn_gp(vcpu, err);
if (lapic_in_kernel(vcpu))
return ret;
if (cr8_prev <= cr8)
return ret;
/*
* TODO: we might be squashing a
* KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
}
break;
case 2: /* clts */
WARN_ONCE(1, "Guest should always own CR0.TS");
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
return kvm_skip_emulated_instruction(vcpu);
case 1: /*mov from cr*/
switch (cr) {
case 3:
WARN_ON_ONCE(enable_unrestricted_guest);
val = kvm_read_cr3(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
case 8:
val = kvm_get_cr8(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case 3: /* lmsw */
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
kvm_lmsw(vcpu, val);
return kvm_skip_emulated_instruction(vcpu);
default:
break;
}
vcpu->run->exit_reason = 0;
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int dr, dr7, reg;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
/* First, if DR does not exist, trigger UD */
if (!kvm_require_dr(vcpu, dr))
return 1;
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
if (!kvm_require_cpl(vcpu, 0))
return 1;
dr7 = vmcs_readl(GUEST_DR7);
if (dr7 & DR7_GD) {
/*
* As the vm-exit takes precedence over the debug trap, we
* need to emulate the latter, either for the host or the
* guest debugging itself.
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
vcpu->run->debug.arch.dr7 = dr7;
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
vcpu->run->debug.arch.exception = DB_VECTOR;
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
return 0;
} else {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
}
if (vcpu->guest_debug == 0) {
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_MOV_DR_EXITING);
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
if (exit_qualification & TYPE_MOV_FROM_DR) {
unsigned long val;
if (kvm_get_dr(vcpu, dr, &val))
return 1;
kvm_register_write(vcpu, reg, val);
} else
if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
return 1;
return kvm_skip_emulated_instruction(vcpu);
}
static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
{
return vcpu->arch.dr6;
}
static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
{
}
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
get_debugreg(vcpu->arch.dr6, 6);
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
}
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
vmcs_writel(GUEST_DR7, val);
}
static int handle_cpuid(struct kvm_vcpu *vcpu)
{
return kvm_emulate_cpuid(vcpu);
}
static int handle_rdmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
struct msr_data msr_info;
msr_info.index = ecx;
msr_info.host_initiated = false;
if (vmx_get_msr(vcpu, &msr_info)) {
trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_read(ecx, msr_info.data);
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_wrmsr(struct kvm_vcpu *vcpu)
{
struct msr_data msr;
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
msr.data = data;
msr.index = ecx;
msr.host_initiated = false;
if (kvm_set_msr(vcpu, &msr) != 0) {
trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_write(ecx, data);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
kvm_apic_update_ppr(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
kvm_make_request(KVM_REQ_EVENT, vcpu);
++vcpu->stat.irq_window_exits;
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu)
{
return kvm_emulate_halt(vcpu);
}
static int handle_vmcall(struct kvm_vcpu *vcpu)
{
return kvm_emulate_hypercall(vcpu);
}
static int handle_invd(struct kvm_vcpu *vcpu)
{
return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_invlpg(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
kvm_mmu_invlpg(vcpu, exit_qualification);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
int err;
err = kvm_rdpmc(vcpu);
return kvm_complete_insn_gp(vcpu, err);
}
static int handle_wbinvd(struct kvm_vcpu *vcpu)
{
return kvm_emulate_wbinvd(vcpu);
}
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
u64 new_bv = kvm_read_edx_eax(vcpu);
u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
if (kvm_set_xcr(vcpu, index, new_bv) == 0)
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
static int handle_xsaves(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_xrstors(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_apic_access(struct kvm_vcpu *vcpu)
{
if (likely(fasteoi)) {
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int access_type, offset;
access_type = exit_qualification & APIC_ACCESS_TYPE;
offset = exit_qualification & APIC_ACCESS_OFFSET;
/*
* Sane guest uses MOV to write EOI, with written value
* not cared. So make a short-circuit here by avoiding
* heavy instruction emulation.
*/
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
(offset == APIC_EOI)) {
kvm_lapic_set_eoi(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
}
return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int vector = exit_qualification & 0xff;
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
kvm_apic_set_eoi_accelerated(vcpu, vector);
return 1;
}
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 offset = exit_qualification & 0xfff;
/* APIC-write VM exit is trap-like and thus no need to adjust IP */
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static int handle_task_switch(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qualification;
bool has_error_code = false;
u32 error_code = 0;
u16 tss_selector;
int reason, type, idt_v, idt_index;
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
reason = (u32)exit_qualification >> 30;
if (reason == TASK_SWITCH_GATE && idt_v) {
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = false;
vmx_set_nmi_mask(vcpu, true);
break;
case INTR_TYPE_EXT_INTR:
case INTR_TYPE_SOFT_INTR:
kvm_clear_interrupt_queue(vcpu);
break;
case INTR_TYPE_HARD_EXCEPTION:
if (vmx->idt_vectoring_info &
VECTORING_INFO_DELIVER_CODE_MASK) {
has_error_code = true;
error_code =
vmcs_read32(IDT_VECTORING_ERROR_CODE);
}
/* fall through */
case INTR_TYPE_SOFT_EXCEPTION:
kvm_clear_exception_queue(vcpu);
break;
default:
break;
}
}
tss_selector = exit_qualification;
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
type != INTR_TYPE_EXT_INTR &&
type != INTR_TYPE_NMI_INTR))
skip_emulated_instruction(vcpu);
if (kvm_task_switch(vcpu, tss_selector,
type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
has_error_code, error_code) == EMULATE_FAIL) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
/*
* TODO: What about debug traps on tss switch?
* Are we supposed to inject them and update dr6?
*/
return 1;
}
static int handle_ept_violation(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
gpa_t gpa;
u64 error_code;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
/*
* EPT violation happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
* There are errata that may cause this bit to not be set:
* AAK134, BY25.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
enable_vnmi &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(gpa, exit_qualification);
/* Is it a read fault? */
error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
? PFERR_USER_MASK : 0;
/* Is it a write fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
? PFERR_WRITE_MASK : 0;
/* Is it a fetch fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
? PFERR_FETCH_MASK : 0;
/* ept page table entry is present? */
error_code |= (exit_qualification &
(EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
EPT_VIOLATION_EXECUTABLE))
? PFERR_PRESENT_MASK : 0;
error_code |= (exit_qualification & 0x100) != 0 ?
PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
vcpu->arch.exit_qualification = exit_qualification;
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
gpa_t gpa;
/*
* A nested guest cannot optimize MMIO vmexits, because we have an
* nGPA here instead of the required GPA.
*/
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
if (!is_guest_mode(vcpu) &&
!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
trace_kvm_fast_mmio(gpa);
/*
* Doing kvm_skip_emulated_instruction() depends on undefined
* behavior: Intel's manual doesn't mandate
* VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
* occurs and while on real hardware it was observed to be set,
* other hypervisors (namely Hyper-V) don't set it, we end up
* advancing IP with some random value. Disable fast mmio when
* running nested and keep it for real hardware in hope that
* VM_EXIT_INSTRUCTION_LEN will always be set correctly.
*/
if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
return kvm_skip_emulated_instruction(vcpu);
else
return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
EMULATE_DONE;
}
return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
}
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(!enable_vnmi);
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
enum emulation_result err = EMULATE_DONE;
int ret = 1;
u32 cpu_exec_ctrl;
bool intr_window_requested;
unsigned count = 130;
/*
* We should never reach the point where we are emulating L2
* due to invalid guest state as that means we incorrectly
* allowed a nested VMEntry with an invalid vmcs12.
*/
WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
while (vmx->emulation_required && count-- != 0) {
if (intr_window_requested && vmx_interrupt_allowed(vcpu))
return handle_interrupt_window(&vmx->vcpu);
if (kvm_test_request(KVM_REQ_EVENT, vcpu))
return 1;
err = kvm_emulate_instruction(vcpu, 0);
if (err == EMULATE_USER_EXIT) {
++vcpu->stat.mmio_exits;
ret = 0;
goto out;
}
if (err != EMULATE_DONE)
goto emulation_error;
if (vmx->emulation_required && !vmx->rmode.vm86_active &&
vcpu->arch.exception.pending)
goto emulation_error;
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
ret = kvm_vcpu_halt(vcpu);
goto out;
}
if (signal_pending(current))
goto out;
if (need_resched())
schedule();
}
out:
return ret;
emulation_error:
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __grow_ple_window(old, ple_window,
ple_window_grow,
ple_window_max);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __shrink_ple_window(old, ple_window,
ple_window_shrink,
ple_window);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
}
/*
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
*/
static void wakeup_handler(void)
{
struct kvm_vcpu *vcpu;
int cpu = smp_processor_id();
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
blocked_vcpu_list) {
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (pi_test_on(pi_desc) == 1)
kvm_vcpu_kick(vcpu);
}
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
}
static void vmx_enable_tdp(void)
{
kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
0ull, VMX_EPT_EXECUTABLE_MASK,
cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
VMX_EPT_RWX_MASK, 0ull);
ept_set_mmio_spte_mask();
kvm_enable_tdp();
}
/*
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
*/
static int handle_pause(struct kvm_vcpu *vcpu)
{
if (!kvm_pause_in_guest(vcpu->kvm))
grow_ple_window(vcpu);
/*
* Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
* VM-execution control is ignored if CPL > 0. OTOH, KVM
* never set PAUSE_EXITING and just set PLE if supported,
* so the vcpu must be CPL=0 if it gets a PAUSE exit.
*/
kvm_vcpu_on_spin(vcpu, true);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_nop(struct kvm_vcpu *vcpu)
{
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_mwait(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
static int handle_invalid_op(struct kvm_vcpu *vcpu)
{
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
{
return 1;
}
static int handle_monitor(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
static int handle_invpcid(struct kvm_vcpu *vcpu)
{
u32 vmx_instruction_info;
unsigned long type;
bool pcid_enabled;
gva_t gva;
struct x86_exception e;
unsigned i;
unsigned long roots_to_free = 0;
struct {
u64 pcid;
u64 gla;
} operand;
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
if (type > 3) {
kvm_inject_gp(vcpu, 0);
return 1;
}
/* According to the Intel instruction reference, the memory operand
* is read even if it isn't needed (e.g., for type==all)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
if (operand.pcid >> 12 != 0) {
kvm_inject_gp(vcpu, 0);
return 1;
}
pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
switch (type) {
case INVPCID_TYPE_INDIV_ADDR:
if ((!pcid_enabled && (operand.pcid != 0)) ||
is_noncanonical_address(operand.gla, vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
return kvm_skip_emulated_instruction(vcpu);
case INVPCID_TYPE_SINGLE_CTXT:
if (!pcid_enabled && (operand.pcid != 0)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (kvm_get_active_pcid(vcpu) == operand.pcid) {
kvm_mmu_sync_roots(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
== operand.pcid)
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
/*
* If neither the current cr3 nor any of the prev_roots use the
* given PCID, then nothing needs to be done here because a
* resync will happen anyway before switching to any other CR3.
*/
return kvm_skip_emulated_instruction(vcpu);
case INVPCID_TYPE_ALL_NON_GLOBAL:
/*
* Currently, KVM doesn't mark global entries in the shadow
* page tables, so a non-global flush just degenerates to a
* global flush. If needed, we could optimize this later by
* keeping track of global entries in shadow page tables.
*/
/* fall-through */
case INVPCID_TYPE_ALL_INCL_GLOBAL:
kvm_mmu_unload(vcpu);
return kvm_skip_emulated_instruction(vcpu);
default:
BUG(); /* We have already checked above that type <= 3 */
}
}
static int handle_pml_full(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
trace_kvm_pml_full(vcpu->vcpu_id);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
/*
* PML buffer FULL happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
enable_vnmi &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
/*
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
* here.., and there's no userspace involvement needed for PML.
*/
return 1;
}
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
{
if (!to_vmx(vcpu)->req_immediate_exit)
kvm_lapic_expired_hv_timer(vcpu);
return 1;
}
/*
* When nested=0, all VMX instruction VM Exits filter here. The handlers
* are overwritten by nested_vmx_setup() when nested=1.
*/
static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
{
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
static int handle_encls(struct kvm_vcpu *vcpu)
{
/*
* SGX virtualization is not yet supported. There is no software
* enable bit for SGX, so we have to trap ENCLS and inject a #UD
* to prevent the guest from executing ENCLS.
*/
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
[EXIT_REASON_INVD] = handle_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_RDPMC] = handle_rdpmc,
[EXIT_REASON_VMCALL] = handle_vmcall,
[EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
[EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
[EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
[EXIT_REASON_VMPTRST] = handle_vmx_instruction,
[EXIT_REASON_VMREAD] = handle_vmx_instruction,
[EXIT_REASON_VMRESUME] = handle_vmx_instruction,
[EXIT_REASON_VMWRITE] = handle_vmx_instruction,
[EXIT_REASON_VMOFF] = handle_vmx_instruction,
[EXIT_REASON_VMON] = handle_vmx_instruction,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
[EXIT_REASON_WBINVD] = handle_wbinvd,
[EXIT_REASON_XSETBV] = handle_xsetbv,
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
[EXIT_REASON_GDTR_IDTR] = handle_desc,
[EXIT_REASON_LDTR_TR] = handle_desc,
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
[EXIT_REASON_INVEPT] = handle_vmx_instruction,
[EXIT_REASON_INVVPID] = handle_vmx_instruction,
[EXIT_REASON_RDRAND] = handle_invalid_op,
[EXIT_REASON_RDSEED] = handle_invalid_op,
[EXIT_REASON_XSAVES] = handle_xsaves,
[EXIT_REASON_XRSTORS] = handle_xrstors,
[EXIT_REASON_PML_FULL] = handle_pml_full,
[EXIT_REASON_INVPCID] = handle_invpcid,
[EXIT_REASON_VMFUNC] = handle_vmx_instruction,
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
[EXIT_REASON_ENCLS] = handle_encls,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
{
if (vmx->pml_pg) {
__free_page(vmx->pml_pg);
vmx->pml_pg = NULL;
}
}
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 *pml_buf;
u16 pml_idx;
pml_idx = vmcs_read16(GUEST_PML_INDEX);
/* Do nothing if PML buffer is empty */
if (pml_idx == (PML_ENTITY_NUM - 1))
return;
/* PML index always points to next available PML buffer entity */
if (pml_idx >= PML_ENTITY_NUM)
pml_idx = 0;
else
pml_idx++;
pml_buf = page_address(vmx->pml_pg);
for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
u64 gpa;
gpa = pml_buf[pml_idx];
WARN_ON(gpa & (PAGE_SIZE - 1));
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
}
/* reset PML index */
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
/*
* Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
* Called before reporting dirty_bitmap to userspace.
*/
static void kvm_flush_pml_buffers(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
/*
* We only need to kick vcpu out of guest mode here, as PML buffer
* is flushed at beginning of all VMEXITs, and it's obvious that only
* vcpus running in guest are possible to have unflushed GPAs in PML
* buffer.
*/
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vcpu_kick(vcpu);
}
static void vmx_dump_sel(char *name, uint32_t sel)
{
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
name, vmcs_read16(sel),
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
}
static void vmx_dump_dtsel(char *name, uint32_t limit)
{
pr_err("%s limit=0x%08x, base=0x%016lx\n",
name, vmcs_read32(limit),
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
}
static void dump_vmcs(void)
{
u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
u32 secondary_exec_control = 0;
unsigned long cr4 = vmcs_readl(GUEST_CR4);
u64 efer = vmcs_read64(GUEST_IA32_EFER);
int i, n;
if (cpu_has_secondary_exec_ctrls())
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
pr_err("*** Guest State ***\n");
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
vmcs_readl(CR0_GUEST_HOST_MASK));
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
(cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
{
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
}
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(GUEST_SYSENTER_ESP),
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
(vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
efer, vmcs_read64(GUEST_IA32_PAT));
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
vmcs_read64(GUEST_IA32_DEBUGCTL),
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
if (cpu_has_load_perf_global_ctrl() &&
vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
pr_err("Interruptibility = %08x ActivityState = %08x\n",
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
vmcs_read32(GUEST_ACTIVITY_STATE));
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
pr_err("InterruptStatus = %04x\n",
vmcs_read16(GUEST_INTR_STATUS));
pr_err("*** Host State ***\n");
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
vmcs_read16(HOST_TR_SELECTOR));
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
vmcs_readl(HOST_TR_BASE));
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
vmcs_readl(HOST_CR4));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(HOST_IA32_SYSENTER_ESP),
vmcs_read32(HOST_IA32_SYSENTER_CS),
vmcs_readl(HOST_IA32_SYSENTER_EIP));
if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
vmcs_read64(HOST_IA32_EFER),
vmcs_read64(HOST_IA32_PAT));
if (cpu_has_load_perf_global_ctrl() &&
vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
pr_err("*** Control State ***\n");
pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
vmcs_read32(EXCEPTION_BITMAP),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
pr_err(" reason=%08x qualification=%016lx\n",
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
vmcs_read32(IDT_VECTORING_INFO_FIELD),
vmcs_read32(IDT_VECTORING_ERROR_CODE));
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
pr_err("TSC Multiplier = 0x%016llx\n",
vmcs_read64(TSC_MULTIPLIER));
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
n = vmcs_read32(CR3_TARGET_COUNT);
for (i = 0; i + 1 < n; i += 4)
pr_err("CR3 target%u=%016lx target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
if (i < n)
pr_err("CR3 target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
pr_err("PLE Gap=%08x Window=%08x\n",
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
pr_err("Virtual processor ID = 0x%04x\n",
vmcs_read16(VIRTUAL_PROCESSOR_ID));
}
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason = vmx->exit_reason;
u32 vectoring_info = vmx->idt_vectoring_info;
trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
/*
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
* querying dirty_bitmap, we only need to kick all vcpus out of guest
* mode as if vcpus is in root mode, the PML buffer must has been
* flushed already.
*/
if (enable_pml)
vmx_flush_pml_buffer(vcpu);
/* If guest state is invalid, start emulating */
if (vmx->emulation_required)
return handle_invalid_guest_state(vcpu);
if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
return nested_vmx_reflect_vmexit(vcpu, exit_reason);
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
dump_vmcs();
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= exit_reason;
return 0;
}
if (unlikely(vmx->fail)) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
return 0;
}
/*
* Note:
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
* delivery event since it indicates guest is accessing MMIO.
* The vm-exit can be triggered again after return to guest that
* will cause infinite loop.
*/
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
exit_reason != EXIT_REASON_EPT_VIOLATION &&
exit_reason != EXIT_REASON_PML_FULL &&
exit_reason != EXIT_REASON_TASK_SWITCH)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
vcpu->run->internal.ndata = 3;
vcpu->run->internal.data[0] = vectoring_info;
vcpu->run->internal.data[1] = exit_reason;
vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
vcpu->run->internal.ndata++;
vcpu->run->internal.data[3] =
vmcs_read64(GUEST_PHYSICAL_ADDRESS);
}
return 0;
}
if (unlikely(!enable_vnmi &&
vmx->loaded_vmcs->soft_vnmi_blocked)) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
vcpu->arch.nmi_pending) {
/*
* This CPU don't support us in finding the end of an
* NMI-blocked window if the guest runs with IRQs
* disabled. So we pull the trigger after 1 s of
* futile waiting, but inform the user about this.
*/
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
"state on VCPU %d after 1 s timeout\n",
__func__, vcpu->vcpu_id);
vmx->loaded_vmcs->soft_vnmi_blocked = 0;
}
}
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu);
else {
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
exit_reason);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
}
/*
* Software based L1D cache flush which is used when microcode providing
* the cache control MSR is not loaded.
*
* The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
* flush it is required to read in 64 KiB because the replacement algorithm
* is not exactly LRU. This could be sized at runtime via topology
* information but as all relevant affected CPUs have 32KiB L1D cache size
* there is no point in doing so.
*/
static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
{
int size = PAGE_SIZE << L1D_CACHE_ORDER;
/*
* This code is only executed when the the flush mode is 'cond' or
* 'always'
*/
if (static_branch_likely(&vmx_l1d_flush_cond)) {
bool flush_l1d;
/*
* Clear the per-vcpu flush bit, it gets set again
* either from vcpu_run() or from one of the unsafe
* VMEXIT handlers.
*/
flush_l1d = vcpu->arch.l1tf_flush_l1d;
vcpu->arch.l1tf_flush_l1d = false;
/*
* Clear the per-cpu flush bit, it gets set again from
* the interrupt handlers.
*/
flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
kvm_clear_cpu_l1tf_flush_l1d();
if (!flush_l1d)
return;
}
vcpu->stat.l1d_flush++;
if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
return;
}
asm volatile(
/* First ensure the pages are in the TLB */
"xorl %%eax, %%eax\n"
".Lpopulate_tlb:\n\t"
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
"addl $4096, %%eax\n\t"
"cmpl %%eax, %[size]\n\t"
"jne .Lpopulate_tlb\n\t"
"xorl %%eax, %%eax\n\t"
"cpuid\n\t"
/* Now fill the cache */
"xorl %%eax, %%eax\n"
".Lfill_cache:\n"
"movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
"addl $64, %%eax\n\t"
"cmpl %%eax, %[size]\n\t"
"jne .Lfill_cache\n\t"
"lfence\n"
:: [flush_pages] "r" (vmx_l1d_flush_pages),
[size] "r" (size)
: "eax", "ebx", "ecx", "edx");
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (is_guest_mode(vcpu) &&
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return;
if (irr == -1 || tpr < irr) {
vmcs_write32(TPR_THRESHOLD, 0);
return;
}
vmcs_write32(TPR_THRESHOLD, irr);
}
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
{
u32 sec_exec_control;
if (!lapic_in_kernel(vcpu))
return;
if (!flexpriority_enabled &&
!cpu_has_vmx_virtualize_x2apic_mode())
return;
/* Postpone execution until vmcs01 is the current VMCS. */
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
return;
}
sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
switch (kvm_get_apic_mode(vcpu)) {
case LAPIC_MODE_INVALID:
WARN_ONCE(true, "Invalid local APIC state");
case LAPIC_MODE_DISABLED:
break;
case LAPIC_MODE_XAPIC:
if (flexpriority_enabled) {
sec_exec_control |=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
vmx_flush_tlb(vcpu, true);
}
break;
case LAPIC_MODE_X2APIC:
if (cpu_has_vmx_virtualize_x2apic_mode())
sec_exec_control |=
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
break;
}
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
vmx_update_msr_bitmap(vcpu);
}
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
{
if (!is_guest_mode(vcpu)) {
vmcs_write64(APIC_ACCESS_ADDR, hpa);
vmx_flush_tlb(vcpu, true);
}
}
static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
{
u16 status;
u8 old;
if (max_isr == -1)
max_isr = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = status >> 8;
if (max_isr != old) {
status &= 0xff;
status |= max_isr << 8;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_set_rvi(int vector)
{
u16 status;
u8 old;
if (vector == -1)
vector = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = (u8)status & 0xff;
if ((u8)vector != old) {
status &= ~0xff;
status |= (u8)vector;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
/*
* When running L2, updating RVI is only relevant when
* vmcs12 virtual-interrupt-delivery enabled.
* However, it can be enabled only when L1 also
* intercepts external-interrupts and in that case
* we should not update vmcs02 RVI but instead intercept
* interrupt. Therefore, do nothing when running L2.
*/
if (!is_guest_mode(vcpu))
vmx_set_rvi(max_irr);
}
static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
bool max_irr_updated;
WARN_ON(!vcpu->arch.apicv_active);
if (pi_test_on(&vmx->pi_desc)) {
pi_clear_on(&vmx->pi_desc);
/*
* IOMMU can write to PIR.ON, so the barrier matters even on UP.
* But on x86 this is just a compiler barrier anyway.
*/
smp_mb__after_atomic();
max_irr_updated =
kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
/*
* If we are running L2 and L1 has a new pending interrupt
* which can be injected, we should re-evaluate
* what should be done with this new L1 interrupt.
* If L1 intercepts external-interrupts, we should
* exit from L2 to L1. Otherwise, interrupt should be
* delivered directly to L2.
*/
if (is_guest_mode(vcpu) && max_irr_updated) {
if (nested_exit_on_intr(vcpu))
kvm_vcpu_exiting_guest_mode(vcpu);
else
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
} else {
max_irr = kvm_lapic_find_highest_irr(vcpu);
}
vmx_hwapic_irr_update(vcpu, max_irr);
return max_irr;
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
pi_clear_on(&vmx->pi_desc);
memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
}
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
{
u32 exit_intr_info = 0;
u16 basic_exit_reason = (u16)vmx->exit_reason;
if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
|| basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
return;
if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
vmx->exit_intr_info = exit_intr_info;
/* if exit due to PF check for async PF */
if (is_page_fault(exit_intr_info))
vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
/* Handle machine checks before interrupts are enabled */
if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
is_machine_check(exit_intr_info))
kvm_machine_check();
/* We need to handle NMIs before interrupts are enabled */
if (is_nmi(exit_intr_info)) {
kvm_before_interrupt(&vmx->vcpu);
asm("int $2");
kvm_after_interrupt(&vmx->vcpu);
}
}
static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
{
u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
unsigned int vector;
unsigned long entry;
gate_desc *desc;
struct vcpu_vmx *vmx = to_vmx(vcpu);
#ifdef CONFIG_X86_64
unsigned long tmp;
#endif
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
desc = (gate_desc *)vmx->host_idt_base + vector;
entry = gate_offset(desc);
asm volatile(
#ifdef CONFIG_X86_64
"mov %%" _ASM_SP ", %[sp]\n\t"
"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
"push $%c[ss]\n\t"
"push %[sp]\n\t"
#endif
"pushf\n\t"
__ASM_SIZE(push) " $%c[cs]\n\t"
CALL_NOSPEC
:
#ifdef CONFIG_X86_64
[sp]"=&r"(tmp),
#endif
ASM_CALL_CONSTRAINT
:
THUNK_TARGET(entry),
[ss]"i"(__KERNEL_DS),
[cs]"i"(__KERNEL_CS)
);
}
}
STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
static bool vmx_has_emulated_msr(int index)
{
switch (index) {
case MSR_IA32_SMBASE:
/*
* We cannot do SMM unless we can run the guest in big
* real mode.
*/
return enable_unrestricted_guest || emulate_invalid_guest_state;
case MSR_AMD64_VIRT_SPEC_CTRL:
/* This is AMD only. */
return false;
default:
return true;
}
}
static bool vmx_pt_supported(void)
{
return pt_mode == PT_MODE_HOST_GUEST;
}
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
bool unblock_nmi;
u8 vector;
bool idtv_info_valid;
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
if (enable_vnmi) {
if (vmx->loaded_vmcs->nmi_known_unmasked)
return;
/*
* Can't use vmx->exit_intr_info since we're not sure what
* the exit reason is.
*/
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Re-set bit "block by NMI" before VM entry if vmexit caused by
* a guest IRET fault.
* SDM 3: 23.2.2 (September 2008)
* Bit 12 is undefined in any of the following cases:
* If the VM exit sets the valid bit in the IDT-vectoring
* information field.
* If the VM exit is due to a double fault.
*/
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
vector != DF_VECTOR && !idtv_info_valid)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmx->loaded_vmcs->nmi_known_unmasked =
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
& GUEST_INTR_STATE_NMI);
} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
vmx->loaded_vmcs->vnmi_blocked_time +=
ktime_to_ns(ktime_sub(ktime_get(),
vmx->loaded_vmcs->entry_time));
}
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
u32 idt_vectoring_info,
int instr_len_field,
int error_code_field)
{
u8 vector;
int type;
bool idtv_info_valid;
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!idtv_info_valid)
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = true;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Clear bit "block by NMI" before VM entry if a NMI
* delivery faulted.
*/
vmx_set_nmi_mask(vcpu, false);
break;
case INTR_TYPE_SOFT_EXCEPTION:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_HARD_EXCEPTION:
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
u32 err = vmcs_read32(error_code_field);
kvm_requeue_exception_e(vcpu, vector, err);
} else
kvm_requeue_exception(vcpu, vector);
break;
case INTR_TYPE_SOFT_INTR:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_EXT_INTR:
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
break;
default:
break;
}
}
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
}
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
__vmx_complete_interrupts(vcpu,
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
int i, nr_msrs;
struct perf_guest_switch_msr *msrs;
msrs = perf_guest_get_msrs(&nr_msrs);
if (!msrs)
return;
for (i = 0; i < nr_msrs; i++)
if (msrs[i].host == msrs[i].guest)
clear_atomic_switch_msr(vmx, msrs[i].msr);
else
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
msrs[i].host, false);
}
static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
{
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
if (!vmx->loaded_vmcs->hv_timer_armed)
vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
vmx->loaded_vmcs->hv_timer_armed = true;
}
static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl;
u32 delta_tsc;
if (vmx->req_immediate_exit) {
vmx_arm_hv_timer(vmx, 0);
return;
}
if (vmx->hv_deadline_tsc != -1) {
tscl = rdtsc();
if (vmx->hv_deadline_tsc > tscl)
/* set_hv_timer ensures the delta fits in 32-bits */
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
cpu_preemption_timer_multi);
else
delta_tsc = 0;
vmx_arm_hv_timer(vmx, delta_tsc);
return;
}
if (vmx->loaded_vmcs->hv_timer_armed)
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
vmx->loaded_vmcs->hv_timer_armed = false;
}
static void __vmx_vcpu_run(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
{
unsigned long evmcs_rsp;
vmx->__launched = vmx->loaded_vmcs->launched;
evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
(unsigned long)&current_evmcs->host_rsp : 0;
if (static_branch_unlikely(&vmx_l1d_should_flush))
vmx_l1d_flush(vcpu);
asm(
/* Store host registers */
"push %%" _ASM_DX "; push %%" _ASM_BP ";"
"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
"push %%" _ASM_CX " \n\t"
"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
"je 1f \n\t"
"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
/* Avoid VMWRITE when Enlightened VMCS is in use */
"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
"jz 2f \n\t"
"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
"jmp 1f \n\t"
"2: \n\t"
__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
"1: \n\t"
"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
/* Reload cr2 if changed */
"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
"mov %%cr2, %%" _ASM_DX " \n\t"
"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
"je 3f \n\t"
"mov %%" _ASM_AX", %%cr2 \n\t"
"3: \n\t"
/* Check if vmlaunch or vmresume is needed */
"cmpb $0, %c[launched](%%" _ASM_CX ") \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%%" _ASM_CX "), %%r8 \n\t"
"mov %c[r9](%%" _ASM_CX "), %%r9 \n\t"
"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
#endif
/* Load guest RCX. This kills the vmx_vcpu pointer! */
"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
/* Enter guest mode */
"call vmx_vmenter\n\t"
/* Save guest's RCX to the stack placeholder (see above) */
"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
/* Load host's RCX, i.e. the vmx_vcpu pointer */
"pop %%" _ASM_CX " \n\t"
/* Set vmx->fail based on EFLAGS.{CF,ZF} */
"setbe %c[fail](%%" _ASM_CX ")\n\t"
/* Save all guest registers, including RCX from the stack */
"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%%" _ASM_CX ") \n\t"
"mov %%r9, %c[r9](%%" _ASM_CX ") \n\t"
"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
/*
* Clear host registers marked as clobbered to prevent
* speculative use.
*/
"xor %%r8d, %%r8d \n\t"
"xor %%r9d, %%r9d \n\t"
"xor %%r10d, %%r10d \n\t"
"xor %%r11d, %%r11d \n\t"
"xor %%r12d, %%r12d \n\t"
"xor %%r13d, %%r13d \n\t"
"xor %%r14d, %%r14d \n\t"
"xor %%r15d, %%r15d \n\t"
#endif
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
"xor %%eax, %%eax \n\t"
"xor %%ebx, %%ebx \n\t"
"xor %%esi, %%esi \n\t"
"xor %%edi, %%edi \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
: ASM_CALL_CONSTRAINT
: "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
[wordsize]"i"(sizeof(ulong))
: "cc", "memory"
#ifdef CONFIG_X86_64
, "rax", "rbx", "rdi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "eax", "ebx", "edi"
#endif
);
}
STACK_FRAME_NON_STANDARD(__vmx_vcpu_run);
static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long cr3, cr4;
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!enable_vnmi &&
vmx->loaded_vmcs->soft_vnmi_blocked))
vmx->loaded_vmcs->entry_time = ktime_get();
/* Don't enter VMX if guest state is invalid, let the exit handler
start emulation until we arrive back to a valid state */
if (vmx->emulation_required)
return;
if (vmx->ple_window_dirty) {
vmx->ple_window_dirty = false;
vmcs_write32(PLE_WINDOW, vmx->ple_window);
}
if (vmx->nested.need_vmcs12_sync)
nested_sync_from_vmcs12(vcpu);
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
cr3 = __get_current_cr3_fast();
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
vmcs_writel(HOST_CR3, cr3);
vmx->loaded_vmcs->host_state.cr3 = cr3;
}
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->loaded_vmcs->host_state.cr4 = cr4;
}
/* When single-stepping over STI and MOV SS, we must clear the
* corresponding interruptibility bits in the guest state. Otherwise
* vmentry fails as it then expects bit 14 (BS) in pending debug
* exceptions being set, but that's not correct for the guest debugging
* case. */
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
if (static_cpu_has(X86_FEATURE_PKU) &&
kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
vcpu->arch.pkru != vmx->host_pkru)
__write_pkru(vcpu->arch.pkru);
pt_guest_enter(vmx);
atomic_switch_perf_msrs(vmx);
vmx_update_hv_timer(vcpu);
/*
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
* it's non-zero. Since vmentry is serialising on affected CPUs, there
* is no need to worry about the conditional branch over the wrmsr
* being speculatively taken.
*/
x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
__vmx_vcpu_run(vcpu, vmx);
/*
* We do not use IBRS in the kernel. If this vCPU has used the
* SPEC_CTRL MSR it may have left it on; save the value and
* turn it off. This is much more efficient than blindly adding
* it to the atomic save/restore list. Especially as the former
* (Saving guest MSRs on vmexit) doesn't even exist in KVM.
*
* For non-nested case:
* If the L01 MSR bitmap does not intercept the MSR, then we need to
* save it.
*
* For nested case:
* If the L02 MSR bitmap does not intercept the MSR, then we need to
* save it.
*/
if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
/* Eliminate branch target predictions from guest mode */
vmexit_fill_RSB();
/* All fields are clean at this point */
if (static_branch_unlikely(&enable_evmcs))
current_evmcs->hv_clean_fields |=
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (vmx->host_debugctlmsr)
update_debugctlmsr(vmx->host_debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
* a reasonable value ourselves.
*
* We can't defer this to vmx_prepare_switch_to_host() since that
* function may be executed in interrupt context, which saves and
* restore segments around it, nullifying its effect.
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR3));
vcpu->arch.regs_dirty = 0;
pt_guest_exit(vmx);
/*
* eager fpu is enabled if PKEY is supported and CR4 is switched
* back on host, so it is safe to read guest PKRU from current
* XSAVE.
*/
if (static_cpu_has(X86_FEATURE_PKU) &&
kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
vcpu->arch.pkru = __read_pkru();
if (vcpu->arch.pkru != vmx->host_pkru)
__write_pkru(vmx->host_pkru);
}
vmx->nested.nested_run_pending = 0;
vmx->idt_vectoring_info = 0;
vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
return;
vmx->loaded_vmcs->launched = 1;
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
vmx_complete_atomic_exit(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
}
static struct kvm *vmx_vm_alloc(void)
{
struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
return &kvm_vmx->kvm;
}
static void vmx_vm_free(struct kvm *kvm)
{
vfree(to_kvm_vmx(kvm));
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (enable_pml)
vmx_destroy_pml_buffer(vmx);
free_vpid(vmx->vpid);
leave_guest_mode(vcpu);
nested_vmx_free_vcpu(vcpu);
free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
unsigned long *msr_bitmap;
int cpu;
if (!vmx)
return ERR_PTR(-ENOMEM);
vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
if (!vmx->vcpu.arch.guest_fpu) {
printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
err = -ENOMEM;
goto free_partial_vcpu;
}
vmx->vpid = allocate_vpid();
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
if (err)
goto free_vcpu;
err = -ENOMEM;
/*
* If PML is turned on, failure on enabling PML just results in failure
* of creating the vcpu, therefore we can simplify PML logic (by
* avoiding dealing with cases, such as enabling PML partially on vcpus
* for the guest, etc.
*/
if (enable_pml) {
vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!vmx->pml_pg)
goto uninit_vcpu;
}
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
> PAGE_SIZE);
if (!vmx->guest_msrs)
goto free_pml;
err = alloc_loaded_vmcs(&vmx->vmcs01);
if (err < 0)
goto free_msrs;
msr_bitmap = vmx->vmcs01.msr_bitmap;
vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
vmx->msr_bitmap_mode = 0;
vmx->loaded_vmcs = &vmx->vmcs01;
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
vmx->vcpu.cpu = cpu;
vmx_vcpu_setup(vmx);
vmx_vcpu_put(&vmx->vcpu);
put_cpu();
if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
err = alloc_apic_access_page(kvm);
if (err)
goto free_vmcs;
}
if (enable_ept && !enable_unrestricted_guest) {
err = init_rmode_identity_map(kvm);
if (err)
goto free_vmcs;
}
if (nested)
nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
vmx_capability.ept,
kvm_vcpu_apicv_active(&vmx->vcpu));
else
memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
vmx->nested.posted_intr_nv = -1;
vmx->nested.current_vmptr = -1ull;
vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
/*
* Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
* or POSTED_INTR_WAKEUP_VECTOR.
*/
vmx->pi_desc.nv = POSTED_INTR_VECTOR;
vmx->pi_desc.sn = 1;
vmx->ept_pointer = INVALID_PAGE;
return &vmx->vcpu;
free_vmcs:
free_loaded_vmcs(vmx->loaded_vmcs);
free_msrs:
kfree(vmx->guest_msrs);
free_pml:
vmx_destroy_pml_buffer(vmx);
uninit_vcpu:
kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
free_vpid(vmx->vpid);
kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
free_partial_vcpu:
kmem_cache_free(kvm_vcpu_cache, vmx);
return ERR_PTR(err);
}
#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
static int vmx_vm_init(struct kvm *kvm)
{
spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
if (!ple_gap)
kvm->arch.pause_in_guest = true;
if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
switch (l1tf_mitigation) {
case L1TF_MITIGATION_OFF:
case L1TF_MITIGATION_FLUSH_NOWARN:
/* 'I explicitly don't care' is set */
break;
case L1TF_MITIGATION_FLUSH:
case L1TF_MITIGATION_FLUSH_NOSMT:
case L1TF_MITIGATION_FULL:
/*
* Warn upon starting the first VM in a potentially
* insecure environment.
*/
if (sched_smt_active())
pr_warn_once(L1TF_MSG_SMT);
if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
pr_warn_once(L1TF_MSG_L1D);
break;
case L1TF_MITIGATION_FULL_FORCE:
/* Flush is enforced */
break;
}
}
return 0;
}
static void __init vmx_check_processor_compat(void *rtn)
{
struct vmcs_config vmcs_conf;
struct vmx_capability vmx_cap;
*(int *)rtn = 0;
if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
*(int *)rtn = -EIO;
if (nested)
nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
enable_apicv);
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
smp_processor_id());
*(int *)rtn = -EIO;
}
}
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
u8 cache;
u64 ipat = 0;
/* For VT-d and EPT combination
* 1. MMIO: always map as UC
* 2. EPT with VT-d:
* a. VT-d without snooping control feature: can't guarantee the
* result, try to trust guest.
* b. VT-d with snooping control feature: snooping control feature of
* VT-d engine can guarantee the cache correctness. Just set it
* to WB to keep consistent with host. So the same as item 3.
* 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
* consistent with host MTRR
*/
if (is_mmio) {
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
ipat = VMX_EPT_IPAT_BIT;
cache = MTRR_TYPE_WRBACK;
goto exit;
}
if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
ipat = VMX_EPT_IPAT_BIT;
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
cache = MTRR_TYPE_WRBACK;
else
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
exit:
return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
}
static int vmx_get_lpage_level(void)
{
if (enable_ept && !cpu_has_vmx_ept_1g_page())
return PT_DIRECTORY_LEVEL;
else
/* For shadow and EPT supported 1GB page */
return PT_PDPE_LEVEL;
}
static void vmcs_set_secondary_exec_control(u32 new_ctl)
{
/*
* These bits in the secondary execution controls field
* are dynamic, the others are mostly based on the hypervisor
* architecture and the guest's CPUID. Do not touch the
* dynamic bits.
*/
u32 mask =
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_DESC;
u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
(new_ctl & ~mask) | (cur_ctl & mask));
}
/*
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
* (indicating "allowed-1") if they are supported in the guest's CPUID.
*/
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *entry;
vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
if (entry && (entry->_reg & (_cpuid_mask))) \
vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
} while (0)
entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
#undef cr4_fixed1_update
}
static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (kvm_mpx_supported()) {
bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
if (mpx_enabled) {
vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
} else {
vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
}
}
}
static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *best = NULL;
int i;
for (i = 0; i < PT_CPUID_LEAVES; i++) {
best = kvm_find_cpuid_entry(vcpu, 0x14, i);
if (!best)
return;
vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
}
/* Get the number of configurable Address Ranges for filtering */
vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
PT_CAP_num_address_ranges);
/* Initialize and clear the no dependency bits */
vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
/*
* If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
* will inject an #GP
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
/*
* If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
* PSBFreq can be set
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
/*
* If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
* MTCFreq can be set
*/
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
RTIT_CTL_PTW_EN);
/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
/* unmask address range configure area */
for (i = 0; i < vmx->pt_desc.addr_range; i++)
vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
}
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (cpu_has_secondary_exec_ctrls()) {
vmx_compute_secondary_exec_control(vmx);
vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
}
if (nested_vmx_allowed(vcpu))
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (nested_vmx_allowed(vcpu)) {
nested_vmx_cr_fixed1_bits_update(vcpu);
nested_vmx_entry_exit_ctls_update(vcpu);
}
if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
update_intel_pt_cfg(vcpu);
}
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
if (func == 1 && nested)
entry->ecx |= bit(X86_FEATURE_VMX);
}
static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
{
to_vmx(vcpu)->req_immediate_exit = true;
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
/*
* RDPID causes #UD if disabled through secondary execution controls.
* Because it is marked as EmulateOnUD, we need to intercept it here.
*/
if (info->intercept == x86_intercept_rdtscp &&
!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
ctxt->exception.vector = UD_VECTOR;
ctxt->exception.error_code_valid = false;
return X86EMUL_PROPAGATE_FAULT;
}
/* TODO: check more intercepts... */
return X86EMUL_CONTINUE;
}
#ifdef CONFIG_X86_64
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
u64 divisor, u64 *result)
{
u64 low = a << shift, high = a >> (64 - shift);
/* To avoid the overflow on divq */
if (high >= divisor)
return 1;
/* Low hold the result, high hold rem which is discarded */
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
"rm" (divisor), "0" (low), "1" (high));
*result = low;
return 0;
}
static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
{
struct vcpu_vmx *vmx;
u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
if (kvm_mwait_in_guest(vcpu->kvm))
return -EOPNOTSUPP;
vmx = to_vmx(vcpu);
tscl = rdtsc();
guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
if (delta_tsc > lapic_timer_advance_cycles)
delta_tsc -= lapic_timer_advance_cycles;
else
delta_tsc = 0;
/* Convert to host delta tsc if tsc scaling is enabled */
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
u64_shl_div_u64(delta_tsc,
kvm_tsc_scaling_ratio_frac_bits,
vcpu->arch.tsc_scaling_ratio,
&delta_tsc))
return -ERANGE;
/*
* If the delta tsc can't fit in the 32 bit after the multi shift,
* we can't use the preemption timer.
* It's possible that it fits on later vmentries, but checking
* on every vmentry is costly so we just use an hrtimer.
*/
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
return -ERANGE;
vmx->hv_deadline_tsc = tscl + delta_tsc;
return delta_tsc == 0;
}
static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
{
to_vmx(vcpu)->hv_deadline_tsc = -1;
}
#endif
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (!kvm_pause_in_guest(vcpu->kvm))
shrink_ple_window(vcpu);
}
static void vmx_slot_enable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
}
static void vmx_slot_disable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_set_dirty(kvm, slot);
}
static void vmx_flush_log_dirty(struct kvm *kvm)
{
kvm_flush_pml_buffers(kvm);
}
static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t gpa;
struct page *page = NULL;
u64 *pml_address;
if (is_guest_mode(vcpu)) {
WARN_ON_ONCE(vmx->nested.pml_full);
/*
* Check if PML is enabled for the nested guest.
* Whether eptp bit 6 is set is already checked
* as part of A/D emulation.
*/
vmcs12 = get_vmcs12(vcpu);
if (!nested_cpu_has_pml(vmcs12))
return 0;
if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
vmx->nested.pml_full = true;
return 1;
}
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
if (is_error_page(page))
return 0;
pml_address = kmap(page);
pml_address[vmcs12->guest_pml_index--] = gpa;
kunmap(page);
kvm_release_page_clean(page);
}
return 0;
}
static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *memslot,
gfn_t offset, unsigned long mask)
{
kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
}
static void __pi_post_block(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
do {
old.control = new.control = pi_desc->control;
WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
"Wakeup handler not enabled while the VCPU is blocked\n");
dest = cpu_physical_id(vcpu->cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* set 'NV' to 'notification vector' */
new.nv = POSTED_INTR_VECTOR;
} while (cmpxchg64(&pi_desc->control, old.control,
new.control) != old.control);
if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
list_del(&vcpu->blocked_vcpu_list);
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
vcpu->pre_pcpu = -1;
}
}
/*
* This routine does the following things for vCPU which is going
* to be blocked if VT-d PI is enabled.
* - Store the vCPU to the wakeup list, so when interrupts happen
* we can find the right vCPU to wake up.
* - Change the Posted-interrupt descriptor as below:
* 'NDST' <-- vcpu->pre_pcpu
* 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
* - If 'ON' is set during this process, which means at least one
* interrupt is posted for this vCPU, we cannot block it, in
* this case, return 1, otherwise, return 0.
*
*/
static int pi_pre_block(struct kvm_vcpu *vcpu)
{
unsigned int dest;
struct pi_desc old, new;
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return 0;
WARN_ON(irqs_disabled());
local_irq_disable();
if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
vcpu->pre_pcpu = vcpu->cpu;
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
list_add_tail(&vcpu->blocked_vcpu_list,
&per_cpu(blocked_vcpu_on_cpu,
vcpu->pre_pcpu));
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
}
do {
old.control = new.control = pi_desc->control;
WARN((pi_desc->sn == 1),
"Warning: SN field of posted-interrupts "
"is set before blocking\n");
/*
* Since vCPU can be preempted during this process,
* vcpu->cpu could be different with pre_pcpu, we
* need to set pre_pcpu as the destination of wakeup
* notification event, then we can find the right vCPU
* to wakeup in wakeup handler if interrupts happen
* when the vCPU is in blocked state.
*/
dest = cpu_physical_id(vcpu->pre_pcpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* set 'NV' to 'wakeup vector' */
new.nv = POSTED_INTR_WAKEUP_VECTOR;
} while (cmpxchg64(&pi_desc->control, old.control,
new.control) != old.control);
/* We should not block the vCPU if an interrupt is posted for it. */
if (pi_test_on(pi_desc) == 1)
__pi_post_block(vcpu);
local_irq_enable();
return (vcpu->pre_pcpu == -1);
}
static int vmx_pre_block(struct kvm_vcpu *vcpu)
{
if (pi_pre_block(vcpu))
return 1;
if (kvm_lapic_hv_timer_in_use(vcpu))
kvm_lapic_switch_to_sw_timer(vcpu);
return 0;
}
static void pi_post_block(struct kvm_vcpu *vcpu)
{
if (vcpu->pre_pcpu == -1)
return;
WARN_ON(irqs_disabled());
local_irq_disable();
__pi_post_block(vcpu);
local_irq_enable();
}
static void vmx_post_block(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->set_hv_timer)
kvm_lapic_switch_to_hv_timer(vcpu);
pi_post_block(vcpu);
}
/*
* vmx_update_pi_irte - set IRTE for Posted-Interrupts
*
* @kvm: kvm
* @host_irq: host irq of the interrupt
* @guest_irq: gsi of the interrupt
* @set: set or unset PI
* returns 0 on success, < 0 on failure
*/
static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
struct kvm_kernel_irq_routing_entry *e;
struct kvm_irq_routing_table *irq_rt;
struct kvm_lapic_irq irq;
struct kvm_vcpu *vcpu;
struct vcpu_data vcpu_info;
int idx, ret = 0;
if (!kvm_arch_has_assigned_device(kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(kvm->vcpus[0]))
return 0;
idx = srcu_read_lock(&kvm->irq_srcu);
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
if (guest_irq >= irq_rt->nr_rt_entries ||
hlist_empty(&irq_rt->map[guest_irq])) {
pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
guest_irq, irq_rt->nr_rt_entries);
goto out;
}
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
if (e->type != KVM_IRQ_ROUTING_MSI)
continue;
/*
* VT-d PI cannot support posting multicast/broadcast
* interrupts to a vCPU, we still use interrupt remapping
* for these kind of interrupts.
*
* For lowest-priority interrupts, we only support
* those with single CPU as the destination, e.g. user
* configures the interrupts via /proc/irq or uses
* irqbalance to make the interrupts single-CPU.
*
* We will support full lowest-priority interrupt later.
*/
kvm_set_msi_irq(kvm, e, &irq);
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
/*
* Make sure the IRTE is in remapped mode if
* we don't handle it in posted mode.
*/
ret = irq_set_vcpu_affinity(host_irq, NULL);
if (ret < 0) {
printk(KERN_INFO
"failed to back to remapped mode, irq: %u\n",
host_irq);
goto out;
}
continue;
}
vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
vcpu_info.vector = irq.vector;
trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
vcpu_info.vector, vcpu_info.pi_desc_addr, set);
if (set)
ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
else
ret = irq_set_vcpu_affinity(host_irq, NULL);
if (ret < 0) {
printk(KERN_INFO "%s: failed to update PI IRTE\n",
__func__);
goto out;
}
}
ret = 0;
out:
srcu_read_unlock(&kvm->irq_srcu, idx);
return ret;
}
static void vmx_setup_mce(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_LMCE;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_LMCE;
}
static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
{
/* we need a nested vmexit to enter SMM, postpone if run is pending */
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
return 1;
}
static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
if (vmx->nested.smm.guest_mode)
nested_vmx_vmexit(vcpu, -1, 0, 0);
vmx->nested.smm.vmxon = vmx->nested.vmxon;
vmx->nested.vmxon = false;
vmx_clear_hlt(vcpu);
return 0;
}
static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int ret;
if (vmx->nested.smm.vmxon) {
vmx->nested.vmxon = true;
vmx->nested.smm.vmxon = false;
}
if (vmx->nested.smm.guest_mode) {
vcpu->arch.hflags &= ~HF_SMM_MASK;
ret = nested_vmx_enter_non_root_mode(vcpu, false);
vcpu->arch.hflags |= HF_SMM_MASK;
if (ret)
return ret;
vmx->nested.smm.guest_mode = false;
}
return 0;
}
static int enable_smi_window(struct kvm_vcpu *vcpu)
{
return 0;
}
static __init int hardware_setup(void)
{
unsigned long host_bndcfgs;
int r, i;
rdmsrl_safe(MSR_EFER, &host_efer);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
kvm_define_shared_msr(i, vmx_msr_index[i]);
if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
return -EIO;
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (boot_cpu_has(X86_FEATURE_MPX)) {
rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
}
if (boot_cpu_has(X86_FEATURE_XSAVES))
rdmsrl(MSR_IA32_XSS, host_xss);
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
enable_vpid = 0;
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels() ||
!cpu_has_vmx_ept_mt_wb() ||
!cpu_has_vmx_invept_global())
enable_ept = 0;
if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
if (!cpu_has_virtual_nmis())
enable_vnmi = 0;
/*
* set_apic_access_page_addr() is used to reload apic access
* page upon invalidation. No need to do anything if not
* using the APIC_ACCESS_ADDR VMCS field.
*/
if (!flexpriority_enabled)
kvm_x86_ops->set_apic_access_page_addr = NULL;
if (!cpu_has_vmx_tpr_shadow())
kvm_x86_ops->update_cr8_intercept = NULL;
if (enable_ept && !cpu_has_vmx_ept_2m_page())
kvm_disable_largepages();
#if IS_ENABLED(CONFIG_HYPERV)
if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
&& enable_ept) {
kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
kvm_x86_ops->tlb_remote_flush_with_range =
hv_remote_flush_tlb_with_range;
}
#endif
if (!cpu_has_vmx_ple()) {
ple_gap = 0;
ple_window = 0;
ple_window_grow = 0;
ple_window_max = 0;
ple_window_shrink = 0;
}
if (!cpu_has_vmx_apicv()) {
enable_apicv = 0;
kvm_x86_ops->sync_pir_to_irr = NULL;
}
if (cpu_has_vmx_tsc_scaling()) {
kvm_has_tsc_control = true;
kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
kvm_tsc_scaling_ratio_frac_bits = 48;
}
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
if (enable_ept)
vmx_enable_tdp();
else
kvm_disable_tdp();
/*
* Only enable PML when hardware supports PML feature, and both EPT
* and EPT A/D bit features are enabled -- PML depends on them to work.
*/
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
enable_pml = 0;
if (!enable_pml) {
kvm_x86_ops->slot_enable_log_dirty = NULL;
kvm_x86_ops->slot_disable_log_dirty = NULL;
kvm_x86_ops->flush_log_dirty = NULL;
kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
}
if (!cpu_has_vmx_preemption_timer())
kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
cpu_preemption_timer_multi =
vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
} else {
kvm_x86_ops->set_hv_timer = NULL;
kvm_x86_ops->cancel_hv_timer = NULL;
}
kvm_set_posted_intr_wakeup_handler(wakeup_handler);
kvm_mce_cap_supported |= MCG_LMCE_P;
if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
return -EINVAL;
if (!enable_ept || !cpu_has_vmx_intel_pt())
pt_mode = PT_MODE_SYSTEM;
if (nested) {
nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
vmx_capability.ept, enable_apicv);
r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
if (r)
return r;
}
r = alloc_kvm_area();
if (r)
nested_vmx_hardware_unsetup();
return r;
}
static __exit void hardware_unsetup(void)
{
if (nested)
nested_vmx_hardware_unsetup();
free_kvm_area();
}
static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.cpu_has_accelerated_tpr = report_flexpriority,
.has_emulated_msr = vmx_has_emulated_msr,
.vm_init = vmx_vm_init,
.vm_alloc = vmx_vm_alloc,
.vm_free = vmx_vm_free,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_reset = vmx_vcpu_reset,
.prepare_guest_switch = vmx_prepare_switch_to_guest,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.update_bp_intercept = update_exception_bitmap,
.get_msr_feature = vmx_get_msr_feature,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cpl = vmx_get_cpl,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
.decache_cr3 = vmx_decache_cr3,
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.get_dr6 = vmx_get_dr6,
.set_dr6 = vmx_set_dr6,
.set_dr7 = vmx_set_dr7,
.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.tlb_flush = vmx_flush_tlb,
.tlb_flush_gva = vmx_flush_tlb_gva,
.run = vmx_vcpu_run,
.handle_exit = vmx_handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = vmx_set_interrupt_shadow,
.get_interrupt_shadow = vmx_get_interrupt_shadow,
.patch_hypercall = vmx_patch_hypercall,
.set_irq = vmx_inject_irq,
.set_nmi = vmx_inject_nmi,
.queue_exception = vmx_queue_exception,
.cancel_injection = vmx_cancel_injection,
.interrupt_allowed = vmx_interrupt_allowed,
.nmi_allowed = vmx_nmi_allowed,
.get_nmi_mask = vmx_get_nmi_mask,
.set_nmi_mask = vmx_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
.get_enable_apicv = vmx_get_enable_apicv,
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
.apicv_post_state_restore = vmx_apicv_post_state_restore,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
.set_tss_addr = vmx_set_tss_addr,
.set_identity_map_addr = vmx_set_identity_map_addr,
.get_tdp_level = get_ept_level,
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vmx_get_exit_info,
.get_lpage_level = vmx_get_lpage_level,
.cpuid_update = vmx_cpuid_update,
.rdtscp_supported = vmx_rdtscp_supported,
.invpcid_supported = vmx_invpcid_supported,
.set_supported_cpuid = vmx_set_supported_cpuid,
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
.set_tdp_cr3 = vmx_set_cr3,
.check_intercept = vmx_check_intercept,
.handle_external_intr = vmx_handle_external_intr,
.mpx_supported = vmx_mpx_supported,
.xsaves_supported = vmx_xsaves_supported,
.umip_emulated = vmx_umip_emulated,
.pt_supported = vmx_pt_supported,
.request_immediate_exit = vmx_request_immediate_exit,
.sched_in = vmx_sched_in,
.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
.flush_log_dirty = vmx_flush_log_dirty,
.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
.write_log_dirty = vmx_write_pml_buffer,
.pre_block = vmx_pre_block,
.post_block = vmx_post_block,
.pmu_ops = &intel_pmu_ops,
.update_pi_irte = vmx_update_pi_irte,
#ifdef CONFIG_X86_64
.set_hv_timer = vmx_set_hv_timer,
.cancel_hv_timer = vmx_cancel_hv_timer,
#endif
.setup_mce = vmx_setup_mce,
.smi_allowed = vmx_smi_allowed,
.pre_enter_smm = vmx_pre_enter_smm,
.pre_leave_smm = vmx_pre_leave_smm,
.enable_smi_window = enable_smi_window,
.check_nested_events = NULL,
.get_nested_state = NULL,
.set_nested_state = NULL,
.get_vmcs12_pages = NULL,
.nested_enable_evmcs = NULL,
};
static void vmx_cleanup_l1d_flush(void)
{
if (vmx_l1d_flush_pages) {
free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
vmx_l1d_flush_pages = NULL;
}
/* Restore state so sysfs ignores VMX */
l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
}
static void vmx_exit(void)
{
#ifdef CONFIG_KEXEC_CORE
RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
synchronize_rcu();
#endif
kvm_exit();
#if IS_ENABLED(CONFIG_HYPERV)
if (static_branch_unlikely(&enable_evmcs)) {
int cpu;
struct hv_vp_assist_page *vp_ap;
/*
* Reset everything to support using non-enlightened VMCS
* access later (e.g. when we reload the module with
* enlightened_vmcs=0)
*/
for_each_online_cpu(cpu) {
vp_ap = hv_get_vp_assist_page(cpu);
if (!vp_ap)
continue;
vp_ap->current_nested_vmcs = 0;
vp_ap->enlighten_vmentry = 0;
}
static_branch_disable(&enable_evmcs);
}
#endif
vmx_cleanup_l1d_flush();
}
module_exit(vmx_exit);
static int __init vmx_init(void)
{
int r;
#if IS_ENABLED(CONFIG_HYPERV)
/*
* Enlightened VMCS usage should be recommended and the host needs
* to support eVMCS v1 or above. We can also disable eVMCS support
* with module parameter.
*/
if (enlightened_vmcs &&
ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
(ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
KVM_EVMCS_VERSION) {
int cpu;
/* Check that we have assist pages on all online CPUs */
for_each_online_cpu(cpu) {
if (!hv_get_vp_assist_page(cpu)) {
enlightened_vmcs = false;
break;
}
}
if (enlightened_vmcs) {
pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
static_branch_enable(&enable_evmcs);
}
} else {
enlightened_vmcs = false;
}
#endif
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
__alignof__(struct vcpu_vmx), THIS_MODULE);
if (r)
return r;
/*
* Must be called after kvm_init() so enable_ept is properly set
* up. Hand the parameter mitigation value in which was stored in
* the pre module init parser. If no parameter was given, it will
* contain 'auto' which will be turned into the default 'cond'
* mitigation mode.
*/
if (boot_cpu_has(X86_BUG_L1TF)) {
r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
if (r) {
vmx_exit();
return r;
}
}
#ifdef CONFIG_KEXEC_CORE
rcu_assign_pointer(crash_vmclear_loaded_vmcss,
crash_vmclear_local_loaded_vmcss);
#endif
vmx_check_vmcs12_offsets();
return 0;
}
module_init(vmx_init);