mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-27 13:05:03 +08:00
b2869f28e1
In preparation to enabling -Wimplicit-fallthrough, mark switch cases where we are expecting to fall through. This patch fixes the following warnings: arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=] Warning level 3 was used: -Wimplicit-fallthrough=3 This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough. Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
7249 lines
184 KiB
C
7249 lines
184 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* AMD SVM support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "SVM: " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "pmu.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/frame.h>
|
|
#include <linux/psp-sev.h>
|
|
#include <linux/file.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kvm_para.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/spec-ctrl.h>
|
|
|
|
#include <asm/virtext.h>
|
|
#include "trace.h"
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static const struct x86_cpu_id svm_cpu_id[] = {
|
|
X86_FEATURE_MATCH(X86_FEATURE_SVM),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
|
|
|
|
#define IOPM_ALLOC_ORDER 2
|
|
#define MSRPM_ALLOC_ORDER 1
|
|
|
|
#define SEG_TYPE_LDT 2
|
|
#define SEG_TYPE_BUSY_TSS16 3
|
|
|
|
#define SVM_FEATURE_NPT (1 << 0)
|
|
#define SVM_FEATURE_LBRV (1 << 1)
|
|
#define SVM_FEATURE_SVML (1 << 2)
|
|
#define SVM_FEATURE_NRIP (1 << 3)
|
|
#define SVM_FEATURE_TSC_RATE (1 << 4)
|
|
#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
|
|
#define SVM_FEATURE_FLUSH_ASID (1 << 6)
|
|
#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
|
|
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
|
|
|
|
#define SVM_AVIC_DOORBELL 0xc001011b
|
|
|
|
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
|
|
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
|
|
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
|
|
|
|
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
|
|
|
|
#define TSC_RATIO_RSVD 0xffffff0000000000ULL
|
|
#define TSC_RATIO_MIN 0x0000000000000001ULL
|
|
#define TSC_RATIO_MAX 0x000000ffffffffffULL
|
|
|
|
#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
|
|
|
|
/*
|
|
* 0xff is broadcast, so the max index allowed for physical APIC ID
|
|
* table is 0xfe. APIC IDs above 0xff are reserved.
|
|
*/
|
|
#define AVIC_MAX_PHYSICAL_ID_COUNT 255
|
|
|
|
#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
|
|
#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
|
|
#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
|
|
|
|
/* AVIC GATAG is encoded using VM and VCPU IDs */
|
|
#define AVIC_VCPU_ID_BITS 8
|
|
#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
|
|
|
|
#define AVIC_VM_ID_BITS 24
|
|
#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
|
|
#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
|
|
|
|
#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
|
|
(y & AVIC_VCPU_ID_MASK))
|
|
#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
|
|
#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
|
|
|
|
static bool erratum_383_found __read_mostly;
|
|
|
|
static const u32 host_save_user_msrs[] = {
|
|
#ifdef CONFIG_X86_64
|
|
MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
|
|
MSR_FS_BASE,
|
|
#endif
|
|
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
|
|
MSR_TSC_AUX,
|
|
};
|
|
|
|
#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
|
|
|
|
struct kvm_sev_info {
|
|
bool active; /* SEV enabled guest */
|
|
unsigned int asid; /* ASID used for this guest */
|
|
unsigned int handle; /* SEV firmware handle */
|
|
int fd; /* SEV device fd */
|
|
unsigned long pages_locked; /* Number of pages locked */
|
|
struct list_head regions_list; /* List of registered regions */
|
|
};
|
|
|
|
struct kvm_svm {
|
|
struct kvm kvm;
|
|
|
|
/* Struct members for AVIC */
|
|
u32 avic_vm_id;
|
|
u32 ldr_mode;
|
|
struct page *avic_logical_id_table_page;
|
|
struct page *avic_physical_id_table_page;
|
|
struct hlist_node hnode;
|
|
|
|
struct kvm_sev_info sev_info;
|
|
};
|
|
|
|
struct kvm_vcpu;
|
|
|
|
struct nested_state {
|
|
struct vmcb *hsave;
|
|
u64 hsave_msr;
|
|
u64 vm_cr_msr;
|
|
u64 vmcb;
|
|
|
|
/* These are the merged vectors */
|
|
u32 *msrpm;
|
|
|
|
/* gpa pointers to the real vectors */
|
|
u64 vmcb_msrpm;
|
|
u64 vmcb_iopm;
|
|
|
|
/* A VMEXIT is required but not yet emulated */
|
|
bool exit_required;
|
|
|
|
/* cache for intercepts of the guest */
|
|
u32 intercept_cr;
|
|
u32 intercept_dr;
|
|
u32 intercept_exceptions;
|
|
u64 intercept;
|
|
|
|
/* Nested Paging related state */
|
|
u64 nested_cr3;
|
|
};
|
|
|
|
#define MSRPM_OFFSETS 16
|
|
static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
|
|
|
|
/*
|
|
* Set osvw_len to higher value when updated Revision Guides
|
|
* are published and we know what the new status bits are
|
|
*/
|
|
static uint64_t osvw_len = 4, osvw_status;
|
|
|
|
struct vcpu_svm {
|
|
struct kvm_vcpu vcpu;
|
|
struct vmcb *vmcb;
|
|
unsigned long vmcb_pa;
|
|
struct svm_cpu_data *svm_data;
|
|
uint64_t asid_generation;
|
|
uint64_t sysenter_esp;
|
|
uint64_t sysenter_eip;
|
|
uint64_t tsc_aux;
|
|
|
|
u64 msr_decfg;
|
|
|
|
u64 next_rip;
|
|
|
|
u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
|
|
struct {
|
|
u16 fs;
|
|
u16 gs;
|
|
u16 ldt;
|
|
u64 gs_base;
|
|
} host;
|
|
|
|
u64 spec_ctrl;
|
|
/*
|
|
* Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
|
|
* translated into the appropriate L2_CFG bits on the host to
|
|
* perform speculative control.
|
|
*/
|
|
u64 virt_spec_ctrl;
|
|
|
|
u32 *msrpm;
|
|
|
|
ulong nmi_iret_rip;
|
|
|
|
struct nested_state nested;
|
|
|
|
bool nmi_singlestep;
|
|
u64 nmi_singlestep_guest_rflags;
|
|
|
|
unsigned int3_injected;
|
|
unsigned long int3_rip;
|
|
|
|
/* cached guest cpuid flags for faster access */
|
|
bool nrips_enabled : 1;
|
|
|
|
u32 ldr_reg;
|
|
struct page *avic_backing_page;
|
|
u64 *avic_physical_id_cache;
|
|
bool avic_is_running;
|
|
|
|
/*
|
|
* Per-vcpu list of struct amd_svm_iommu_ir:
|
|
* This is used mainly to store interrupt remapping information used
|
|
* when update the vcpu affinity. This avoids the need to scan for
|
|
* IRTE and try to match ga_tag in the IOMMU driver.
|
|
*/
|
|
struct list_head ir_list;
|
|
spinlock_t ir_list_lock;
|
|
|
|
/* which host CPU was used for running this vcpu */
|
|
unsigned int last_cpu;
|
|
};
|
|
|
|
/*
|
|
* This is a wrapper of struct amd_iommu_ir_data.
|
|
*/
|
|
struct amd_svm_iommu_ir {
|
|
struct list_head node; /* Used by SVM for per-vcpu ir_list */
|
|
void *data; /* Storing pointer to struct amd_ir_data */
|
|
};
|
|
|
|
#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
|
|
#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
|
|
|
|
#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
|
|
#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
|
|
#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
|
|
#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
|
|
|
|
static DEFINE_PER_CPU(u64, current_tsc_ratio);
|
|
#define TSC_RATIO_DEFAULT 0x0100000000ULL
|
|
|
|
#define MSR_INVALID 0xffffffffU
|
|
|
|
static const struct svm_direct_access_msrs {
|
|
u32 index; /* Index of the MSR */
|
|
bool always; /* True if intercept is always on */
|
|
} direct_access_msrs[] = {
|
|
{ .index = MSR_STAR, .always = true },
|
|
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
|
|
#ifdef CONFIG_X86_64
|
|
{ .index = MSR_GS_BASE, .always = true },
|
|
{ .index = MSR_FS_BASE, .always = true },
|
|
{ .index = MSR_KERNEL_GS_BASE, .always = true },
|
|
{ .index = MSR_LSTAR, .always = true },
|
|
{ .index = MSR_CSTAR, .always = true },
|
|
{ .index = MSR_SYSCALL_MASK, .always = true },
|
|
#endif
|
|
{ .index = MSR_IA32_SPEC_CTRL, .always = false },
|
|
{ .index = MSR_IA32_PRED_CMD, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
|
|
{ .index = MSR_INVALID, .always = false },
|
|
};
|
|
|
|
/* enable NPT for AMD64 and X86 with PAE */
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
|
|
static bool npt_enabled = true;
|
|
#else
|
|
static bool npt_enabled;
|
|
#endif
|
|
|
|
/*
|
|
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
|
|
* pause_filter_count: On processors that support Pause filtering(indicated
|
|
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
|
|
* count value. On VMRUN this value is loaded into an internal counter.
|
|
* Each time a pause instruction is executed, this counter is decremented
|
|
* until it reaches zero at which time a #VMEXIT is generated if pause
|
|
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
|
|
* Intercept Filtering for more details.
|
|
* This also indicate if ple logic enabled.
|
|
*
|
|
* pause_filter_thresh: In addition, some processor families support advanced
|
|
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
|
|
* the amount of time a guest is allowed to execute in a pause loop.
|
|
* In this mode, a 16-bit pause filter threshold field is added in the
|
|
* VMCB. The threshold value is a cycle count that is used to reset the
|
|
* pause counter. As with simple pause filtering, VMRUN loads the pause
|
|
* count value from VMCB into an internal counter. Then, on each pause
|
|
* instruction the hardware checks the elapsed number of cycles since
|
|
* the most recent pause instruction against the pause filter threshold.
|
|
* If the elapsed cycle count is greater than the pause filter threshold,
|
|
* then the internal pause count is reloaded from the VMCB and execution
|
|
* continues. If the elapsed cycle count is less than the pause filter
|
|
* threshold, then the internal pause count is decremented. If the count
|
|
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
|
|
* triggered. If advanced pause filtering is supported and pause filter
|
|
* threshold field is set to zero, the filter will operate in the simpler,
|
|
* count only mode.
|
|
*/
|
|
|
|
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
|
|
module_param(pause_filter_thresh, ushort, 0444);
|
|
|
|
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
|
|
module_param(pause_filter_count, ushort, 0444);
|
|
|
|
/* Default doubles per-vcpu window every exit. */
|
|
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
|
|
module_param(pause_filter_count_grow, ushort, 0444);
|
|
|
|
/* Default resets per-vcpu window every exit to pause_filter_count. */
|
|
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
|
|
module_param(pause_filter_count_shrink, ushort, 0444);
|
|
|
|
/* Default is to compute the maximum so we can never overflow. */
|
|
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
|
|
module_param(pause_filter_count_max, ushort, 0444);
|
|
|
|
/* allow nested paging (virtualized MMU) for all guests */
|
|
static int npt = true;
|
|
module_param(npt, int, S_IRUGO);
|
|
|
|
/* allow nested virtualization in KVM/SVM */
|
|
static int nested = true;
|
|
module_param(nested, int, S_IRUGO);
|
|
|
|
/* enable / disable AVIC */
|
|
static int avic;
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
module_param(avic, int, S_IRUGO);
|
|
#endif
|
|
|
|
/* enable/disable Virtual VMLOAD VMSAVE */
|
|
static int vls = true;
|
|
module_param(vls, int, 0444);
|
|
|
|
/* enable/disable Virtual GIF */
|
|
static int vgif = true;
|
|
module_param(vgif, int, 0444);
|
|
|
|
/* enable/disable SEV support */
|
|
static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
|
|
module_param(sev, int, 0444);
|
|
|
|
static u8 rsm_ins_bytes[] = "\x0f\xaa";
|
|
|
|
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm);
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm);
|
|
static int nested_svm_intercept(struct vcpu_svm *svm);
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm);
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code);
|
|
|
|
enum {
|
|
VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
|
|
pause filter count */
|
|
VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
|
|
VMCB_ASID, /* ASID */
|
|
VMCB_INTR, /* int_ctl, int_vector */
|
|
VMCB_NPT, /* npt_en, nCR3, gPAT */
|
|
VMCB_CR, /* CR0, CR3, CR4, EFER */
|
|
VMCB_DR, /* DR6, DR7 */
|
|
VMCB_DT, /* GDT, IDT */
|
|
VMCB_SEG, /* CS, DS, SS, ES, CPL */
|
|
VMCB_CR2, /* CR2 only */
|
|
VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
|
|
VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
|
|
* AVIC PHYSICAL_TABLE pointer,
|
|
* AVIC LOGICAL_TABLE pointer
|
|
*/
|
|
VMCB_DIRTY_MAX,
|
|
};
|
|
|
|
/* TPR and CR2 are always written before VMRUN */
|
|
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
|
|
|
|
#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
|
|
|
|
static unsigned int max_sev_asid;
|
|
static unsigned int min_sev_asid;
|
|
static unsigned long *sev_asid_bitmap;
|
|
#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
|
|
|
|
struct enc_region {
|
|
struct list_head list;
|
|
unsigned long npages;
|
|
struct page **pages;
|
|
unsigned long uaddr;
|
|
unsigned long size;
|
|
};
|
|
|
|
|
|
static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
|
|
{
|
|
return container_of(kvm, struct kvm_svm, kvm);
|
|
}
|
|
|
|
static inline bool svm_sev_enabled(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
|
|
}
|
|
|
|
static inline bool sev_guest(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_KVM_AMD_SEV
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
return sev->active;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static inline int sev_get_asid(struct kvm *kvm)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
return sev->asid;
|
|
}
|
|
|
|
static inline void mark_all_dirty(struct vmcb *vmcb)
|
|
{
|
|
vmcb->control.clean = 0;
|
|
}
|
|
|
|
static inline void mark_all_clean(struct vmcb *vmcb)
|
|
{
|
|
vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
|
|
& ~VMCB_ALWAYS_DIRTY_MASK;
|
|
}
|
|
|
|
static inline void mark_dirty(struct vmcb *vmcb, int bit)
|
|
{
|
|
vmcb->control.clean &= ~(1 << bit);
|
|
}
|
|
|
|
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_svm, vcpu);
|
|
}
|
|
|
|
static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
|
|
{
|
|
svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
|
|
mark_dirty(svm->vmcb, VMCB_AVIC);
|
|
}
|
|
|
|
static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 *entry = svm->avic_physical_id_cache;
|
|
|
|
if (!entry)
|
|
return false;
|
|
|
|
return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
|
|
}
|
|
|
|
static void recalc_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *c, *h;
|
|
struct nested_state *g;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return;
|
|
|
|
c = &svm->vmcb->control;
|
|
h = &svm->nested.hsave->control;
|
|
g = &svm->nested;
|
|
|
|
c->intercept_cr = h->intercept_cr | g->intercept_cr;
|
|
c->intercept_dr = h->intercept_dr | g->intercept_dr;
|
|
c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
|
|
c->intercept = h->intercept | g->intercept;
|
|
}
|
|
|
|
static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
if (is_guest_mode(&svm->vcpu))
|
|
return svm->nested.hsave;
|
|
else
|
|
return svm->vmcb;
|
|
}
|
|
|
|
static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_cr |= (1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_cr &= ~(1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
return vmcb->control.intercept_cr & (1U << bit);
|
|
}
|
|
|
|
static inline void set_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
|
|
| (1 << INTERCEPT_DR1_READ)
|
|
| (1 << INTERCEPT_DR2_READ)
|
|
| (1 << INTERCEPT_DR3_READ)
|
|
| (1 << INTERCEPT_DR4_READ)
|
|
| (1 << INTERCEPT_DR5_READ)
|
|
| (1 << INTERCEPT_DR6_READ)
|
|
| (1 << INTERCEPT_DR7_READ)
|
|
| (1 << INTERCEPT_DR0_WRITE)
|
|
| (1 << INTERCEPT_DR1_WRITE)
|
|
| (1 << INTERCEPT_DR2_WRITE)
|
|
| (1 << INTERCEPT_DR3_WRITE)
|
|
| (1 << INTERCEPT_DR4_WRITE)
|
|
| (1 << INTERCEPT_DR5_WRITE)
|
|
| (1 << INTERCEPT_DR6_WRITE)
|
|
| (1 << INTERCEPT_DR7_WRITE);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_dr = 0;
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_exceptions |= (1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_exceptions &= ~(1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void set_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept |= (1ULL << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept &= ~(1ULL << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline bool vgif_enabled(struct vcpu_svm *svm)
|
|
{
|
|
return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
|
|
}
|
|
|
|
static inline void enable_gif(struct vcpu_svm *svm)
|
|
{
|
|
if (vgif_enabled(svm))
|
|
svm->vmcb->control.int_ctl |= V_GIF_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags |= HF_GIF_MASK;
|
|
}
|
|
|
|
static inline void disable_gif(struct vcpu_svm *svm)
|
|
{
|
|
if (vgif_enabled(svm))
|
|
svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
|
|
}
|
|
|
|
static inline bool gif_set(struct vcpu_svm *svm)
|
|
{
|
|
if (vgif_enabled(svm))
|
|
return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
|
|
else
|
|
return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
|
|
}
|
|
|
|
static unsigned long iopm_base;
|
|
|
|
struct kvm_ldttss_desc {
|
|
u16 limit0;
|
|
u16 base0;
|
|
unsigned base1:8, type:5, dpl:2, p:1;
|
|
unsigned limit1:4, zero0:3, g:1, base2:8;
|
|
u32 base3;
|
|
u32 zero1;
|
|
} __attribute__((packed));
|
|
|
|
struct svm_cpu_data {
|
|
int cpu;
|
|
|
|
u64 asid_generation;
|
|
u32 max_asid;
|
|
u32 next_asid;
|
|
u32 min_asid;
|
|
struct kvm_ldttss_desc *tss_desc;
|
|
|
|
struct page *save_area;
|
|
struct vmcb *current_vmcb;
|
|
|
|
/* index = sev_asid, value = vmcb pointer */
|
|
struct vmcb **sev_vmcbs;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
|
|
|
|
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
|
|
|
|
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
|
|
#define MSRS_RANGE_SIZE 2048
|
|
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
|
|
|
|
static u32 svm_msrpm_offset(u32 msr)
|
|
{
|
|
u32 offset;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_MSR_MAPS; i++) {
|
|
if (msr < msrpm_ranges[i] ||
|
|
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
|
|
continue;
|
|
|
|
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
|
|
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
|
|
|
|
/* Now we have the u8 offset - but need the u32 offset */
|
|
return offset / 4;
|
|
}
|
|
|
|
/* MSR not in any range */
|
|
return MSR_INVALID;
|
|
}
|
|
|
|
#define MAX_INST_SIZE 15
|
|
|
|
static inline void clgi(void)
|
|
{
|
|
asm volatile (__ex("clgi"));
|
|
}
|
|
|
|
static inline void stgi(void)
|
|
{
|
|
asm volatile (__ex("stgi"));
|
|
}
|
|
|
|
static inline void invlpga(unsigned long addr, u32 asid)
|
|
{
|
|
asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
|
|
}
|
|
|
|
static int get_npt_level(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return PT64_ROOT_4LEVEL;
|
|
#else
|
|
return PT32E_ROOT_LEVEL;
|
|
#endif
|
|
}
|
|
|
|
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
vcpu->arch.efer = efer;
|
|
if (!npt_enabled && !(efer & EFER_LMA))
|
|
efer &= ~EFER_LME;
|
|
|
|
to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
|
|
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static int is_external_interrupt(u32 info)
|
|
{
|
|
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
|
|
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
|
|
}
|
|
|
|
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ret = 0;
|
|
|
|
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
|
|
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
|
|
return ret;
|
|
}
|
|
|
|
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (mask == 0)
|
|
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
|
|
else
|
|
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
|
|
|
|
}
|
|
|
|
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm->vmcb->control.next_rip != 0) {
|
|
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
|
|
svm->next_rip = svm->vmcb->control.next_rip;
|
|
}
|
|
|
|
if (!svm->next_rip) {
|
|
if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) !=
|
|
EMULATE_DONE)
|
|
printk(KERN_DEBUG "%s: NOP\n", __func__);
|
|
return;
|
|
}
|
|
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
|
|
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
|
|
__func__, kvm_rip_read(vcpu), svm->next_rip);
|
|
|
|
kvm_rip_write(vcpu, svm->next_rip);
|
|
svm_set_interrupt_shadow(vcpu, 0);
|
|
}
|
|
|
|
static void svm_queue_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned nr = vcpu->arch.exception.nr;
|
|
bool has_error_code = vcpu->arch.exception.has_error_code;
|
|
bool reinject = vcpu->arch.exception.injected;
|
|
u32 error_code = vcpu->arch.exception.error_code;
|
|
|
|
/*
|
|
* If we are within a nested VM we'd better #VMEXIT and let the guest
|
|
* handle the exception
|
|
*/
|
|
if (!reinject &&
|
|
nested_svm_check_exception(svm, nr, has_error_code, error_code))
|
|
return;
|
|
|
|
kvm_deliver_exception_payload(&svm->vcpu);
|
|
|
|
if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
|
|
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
|
|
|
|
/*
|
|
* For guest debugging where we have to reinject #BP if some
|
|
* INT3 is guest-owned:
|
|
* Emulate nRIP by moving RIP forward. Will fail if injection
|
|
* raises a fault that is not intercepted. Still better than
|
|
* failing in all cases.
|
|
*/
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
rip = kvm_rip_read(&svm->vcpu);
|
|
svm->int3_rip = rip + svm->vmcb->save.cs.base;
|
|
svm->int3_injected = rip - old_rip;
|
|
}
|
|
|
|
svm->vmcb->control.event_inj = nr
|
|
| SVM_EVTINJ_VALID
|
|
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
|
|
| SVM_EVTINJ_TYPE_EXEPT;
|
|
svm->vmcb->control.event_inj_err = error_code;
|
|
}
|
|
|
|
static void svm_init_erratum_383(void)
|
|
{
|
|
u32 low, high;
|
|
int err;
|
|
u64 val;
|
|
|
|
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
|
|
return;
|
|
|
|
/* Use _safe variants to not break nested virtualization */
|
|
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
|
|
if (err)
|
|
return;
|
|
|
|
val |= (1ULL << 47);
|
|
|
|
low = lower_32_bits(val);
|
|
high = upper_32_bits(val);
|
|
|
|
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
|
|
|
|
erratum_383_found = true;
|
|
}
|
|
|
|
static void svm_init_osvw(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Guests should see errata 400 and 415 as fixed (assuming that
|
|
* HLT and IO instructions are intercepted).
|
|
*/
|
|
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
|
|
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
|
|
|
|
/*
|
|
* By increasing VCPU's osvw.length to 3 we are telling the guest that
|
|
* all osvw.status bits inside that length, including bit 0 (which is
|
|
* reserved for erratum 298), are valid. However, if host processor's
|
|
* osvw_len is 0 then osvw_status[0] carries no information. We need to
|
|
* be conservative here and therefore we tell the guest that erratum 298
|
|
* is present (because we really don't know).
|
|
*/
|
|
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
|
|
vcpu->arch.osvw.status |= 1;
|
|
}
|
|
|
|
static int has_svm(void)
|
|
{
|
|
const char *msg;
|
|
|
|
if (!cpu_has_svm(&msg)) {
|
|
printk(KERN_INFO "has_svm: %s\n", msg);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_hardware_disable(void)
|
|
{
|
|
/* Make sure we clean up behind us */
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
|
|
cpu_svm_disable();
|
|
|
|
amd_pmu_disable_virt();
|
|
}
|
|
|
|
static int svm_hardware_enable(void)
|
|
{
|
|
|
|
struct svm_cpu_data *sd;
|
|
uint64_t efer;
|
|
struct desc_struct *gdt;
|
|
int me = raw_smp_processor_id();
|
|
|
|
rdmsrl(MSR_EFER, efer);
|
|
if (efer & EFER_SVME)
|
|
return -EBUSY;
|
|
|
|
if (!has_svm()) {
|
|
pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
sd = per_cpu(svm_data, me);
|
|
if (!sd) {
|
|
pr_err("%s: svm_data is NULL on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sd->asid_generation = 1;
|
|
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
|
|
sd->next_asid = sd->max_asid + 1;
|
|
sd->min_asid = max_sev_asid + 1;
|
|
|
|
gdt = get_current_gdt_rw();
|
|
sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
|
|
|
|
wrmsrl(MSR_EFER, efer | EFER_SVME);
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get OSVW bits.
|
|
*
|
|
* Note that it is possible to have a system with mixed processor
|
|
* revisions and therefore different OSVW bits. If bits are not the same
|
|
* on different processors then choose the worst case (i.e. if erratum
|
|
* is present on one processor and not on another then assume that the
|
|
* erratum is present everywhere).
|
|
*/
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
|
|
uint64_t len, status = 0;
|
|
int err;
|
|
|
|
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
|
|
if (!err)
|
|
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
|
|
&err);
|
|
|
|
if (err)
|
|
osvw_status = osvw_len = 0;
|
|
else {
|
|
if (len < osvw_len)
|
|
osvw_len = len;
|
|
osvw_status |= status;
|
|
osvw_status &= (1ULL << osvw_len) - 1;
|
|
}
|
|
} else
|
|
osvw_status = osvw_len = 0;
|
|
|
|
svm_init_erratum_383();
|
|
|
|
amd_pmu_enable_virt();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpu_uninit(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
|
|
|
|
if (!sd)
|
|
return;
|
|
|
|
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
|
|
kfree(sd->sev_vmcbs);
|
|
__free_page(sd->save_area);
|
|
kfree(sd);
|
|
}
|
|
|
|
static int svm_cpu_init(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd;
|
|
int r;
|
|
|
|
sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
|
|
if (!sd)
|
|
return -ENOMEM;
|
|
sd->cpu = cpu;
|
|
r = -ENOMEM;
|
|
sd->save_area = alloc_page(GFP_KERNEL);
|
|
if (!sd->save_area)
|
|
goto err_1;
|
|
|
|
if (svm_sev_enabled()) {
|
|
r = -ENOMEM;
|
|
sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
|
|
sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!sd->sev_vmcbs)
|
|
goto err_1;
|
|
}
|
|
|
|
per_cpu(svm_data, cpu) = sd;
|
|
|
|
return 0;
|
|
|
|
err_1:
|
|
kfree(sd);
|
|
return r;
|
|
|
|
}
|
|
|
|
static bool valid_msr_intercept(u32 index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
|
|
if (direct_access_msrs[i].index == index)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
|
|
{
|
|
u8 bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
u32 *msrpm;
|
|
|
|
msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
|
|
to_svm(vcpu)->msrpm;
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
return !!test_bit(bit_write, &tmp);
|
|
}
|
|
|
|
static void set_msr_interception(u32 *msrpm, unsigned msr,
|
|
int read, int write)
|
|
{
|
|
u8 bit_read, bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
|
|
/*
|
|
* If this warning triggers extend the direct_access_msrs list at the
|
|
* beginning of the file
|
|
*/
|
|
WARN_ON(!valid_msr_intercept(msr));
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_read = 2 * (msr & 0x0f);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
|
|
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
|
|
|
|
msrpm[offset] = tmp;
|
|
}
|
|
|
|
static void svm_vcpu_init_msrpm(u32 *msrpm)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
if (!direct_access_msrs[i].always)
|
|
continue;
|
|
|
|
set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
|
|
}
|
|
}
|
|
|
|
static void add_msr_offset(u32 offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; ++i) {
|
|
|
|
/* Offset already in list? */
|
|
if (msrpm_offsets[i] == offset)
|
|
return;
|
|
|
|
/* Slot used by another offset? */
|
|
if (msrpm_offsets[i] != MSR_INVALID)
|
|
continue;
|
|
|
|
/* Add offset to list */
|
|
msrpm_offsets[i] = offset;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this BUG triggers the msrpm_offsets table has an overflow. Just
|
|
* increase MSRPM_OFFSETS in this case.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
static void init_msrpm_offsets(void)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 offset;
|
|
|
|
offset = svm_msrpm_offset(direct_access_msrs[i].index);
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
add_msr_offset(offset);
|
|
}
|
|
}
|
|
|
|
static void svm_enable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
}
|
|
|
|
static void svm_disable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
|
|
}
|
|
|
|
static void disable_nmi_singlestep(struct vcpu_svm *svm)
|
|
{
|
|
svm->nmi_singlestep = false;
|
|
|
|
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
|
|
/* Clear our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
}
|
|
|
|
/* Note:
|
|
* This hash table is used to map VM_ID to a struct kvm_svm,
|
|
* when handling AMD IOMMU GALOG notification to schedule in
|
|
* a particular vCPU.
|
|
*/
|
|
#define SVM_VM_DATA_HASH_BITS 8
|
|
static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
|
|
static u32 next_vm_id = 0;
|
|
static bool next_vm_id_wrapped = 0;
|
|
static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
|
|
|
|
/* Note:
|
|
* This function is called from IOMMU driver to notify
|
|
* SVM to schedule in a particular vCPU of a particular VM.
|
|
*/
|
|
static int avic_ga_log_notifier(u32 ga_tag)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_svm *kvm_svm;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
|
|
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
|
|
|
|
pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
|
|
if (kvm_svm->avic_vm_id != vm_id)
|
|
continue;
|
|
vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
|
|
/* Note:
|
|
* At this point, the IOMMU should have already set the pending
|
|
* bit in the vAPIC backing page. So, we just need to schedule
|
|
* in the vcpu.
|
|
*/
|
|
if (vcpu)
|
|
kvm_vcpu_wake_up(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int sev_hardware_setup(void)
|
|
{
|
|
struct sev_user_data_status *status;
|
|
int rc;
|
|
|
|
/* Maximum number of encrypted guests supported simultaneously */
|
|
max_sev_asid = cpuid_ecx(0x8000001F);
|
|
|
|
if (!max_sev_asid)
|
|
return 1;
|
|
|
|
/* Minimum ASID value that should be used for SEV guest */
|
|
min_sev_asid = cpuid_edx(0x8000001F);
|
|
|
|
/* Initialize SEV ASID bitmap */
|
|
sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
|
|
if (!sev_asid_bitmap)
|
|
return 1;
|
|
|
|
status = kmalloc(sizeof(*status), GFP_KERNEL);
|
|
if (!status)
|
|
return 1;
|
|
|
|
/*
|
|
* Check SEV platform status.
|
|
*
|
|
* PLATFORM_STATUS can be called in any state, if we failed to query
|
|
* the PLATFORM status then either PSP firmware does not support SEV
|
|
* feature or SEV firmware is dead.
|
|
*/
|
|
rc = sev_platform_status(status, NULL);
|
|
if (rc)
|
|
goto err;
|
|
|
|
pr_info("SEV supported\n");
|
|
|
|
err:
|
|
kfree(status);
|
|
return rc;
|
|
}
|
|
|
|
static void grow_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
control->pause_filter_count = __grow_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_grow,
|
|
pause_filter_count_max);
|
|
|
|
if (control->pause_filter_count != old)
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
|
|
trace_kvm_ple_window_grow(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
|
|
static void shrink_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
control->pause_filter_count =
|
|
__shrink_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_shrink,
|
|
pause_filter_count);
|
|
if (control->pause_filter_count != old)
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
|
|
trace_kvm_ple_window_shrink(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
|
|
static __init int svm_hardware_setup(void)
|
|
{
|
|
int cpu;
|
|
struct page *iopm_pages;
|
|
void *iopm_va;
|
|
int r;
|
|
|
|
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
|
|
|
|
if (!iopm_pages)
|
|
return -ENOMEM;
|
|
|
|
iopm_va = page_address(iopm_pages);
|
|
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
|
|
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
|
|
|
|
init_msrpm_offsets();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
|
|
kvm_enable_efer_bits(EFER_FFXSR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
kvm_has_tsc_control = true;
|
|
kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
|
|
kvm_tsc_scaling_ratio_frac_bits = 32;
|
|
}
|
|
|
|
/* Check for pause filtering support */
|
|
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
|
|
pause_filter_count = 0;
|
|
pause_filter_thresh = 0;
|
|
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
|
|
pause_filter_thresh = 0;
|
|
}
|
|
|
|
if (nested) {
|
|
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
|
|
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
|
|
}
|
|
|
|
if (sev) {
|
|
if (boot_cpu_has(X86_FEATURE_SEV) &&
|
|
IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
|
|
r = sev_hardware_setup();
|
|
if (r)
|
|
sev = false;
|
|
} else {
|
|
sev = false;
|
|
}
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
r = svm_cpu_init(cpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_NPT))
|
|
npt_enabled = false;
|
|
|
|
if (npt_enabled && !npt) {
|
|
printk(KERN_INFO "kvm: Nested Paging disabled\n");
|
|
npt_enabled = false;
|
|
}
|
|
|
|
if (npt_enabled) {
|
|
printk(KERN_INFO "kvm: Nested Paging enabled\n");
|
|
kvm_enable_tdp();
|
|
} else
|
|
kvm_disable_tdp();
|
|
|
|
if (avic) {
|
|
if (!npt_enabled ||
|
|
!boot_cpu_has(X86_FEATURE_AVIC) ||
|
|
!IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
|
|
avic = false;
|
|
} else {
|
|
pr_info("AVIC enabled\n");
|
|
|
|
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
|
|
}
|
|
}
|
|
|
|
if (vls) {
|
|
if (!npt_enabled ||
|
|
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
|
|
!IS_ENABLED(CONFIG_X86_64)) {
|
|
vls = false;
|
|
} else {
|
|
pr_info("Virtual VMLOAD VMSAVE supported\n");
|
|
}
|
|
}
|
|
|
|
if (vgif) {
|
|
if (!boot_cpu_has(X86_FEATURE_VGIF))
|
|
vgif = false;
|
|
else
|
|
pr_info("Virtual GIF supported\n");
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
return r;
|
|
}
|
|
|
|
static __exit void svm_hardware_unsetup(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (svm_sev_enabled())
|
|
bitmap_free(sev_asid_bitmap);
|
|
|
|
for_each_possible_cpu(cpu)
|
|
svm_cpu_uninit(cpu);
|
|
|
|
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
}
|
|
|
|
static void init_seg(struct vmcb_seg *seg)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
|
|
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | type;
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return svm->nested.hsave->control.tsc_offset;
|
|
|
|
return vcpu->arch.tsc_offset;
|
|
}
|
|
|
|
static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 g_tsc_offset = 0;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* Write L1's TSC offset. */
|
|
g_tsc_offset = svm->vmcb->control.tsc_offset -
|
|
svm->nested.hsave->control.tsc_offset;
|
|
svm->nested.hsave->control.tsc_offset = offset;
|
|
}
|
|
|
|
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
|
|
svm->vmcb->control.tsc_offset - g_tsc_offset,
|
|
offset);
|
|
|
|
svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
return svm->vmcb->control.tsc_offset;
|
|
}
|
|
|
|
static void avic_init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
|
|
phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
|
|
phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
|
|
phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
|
|
|
|
vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
|
|
vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
|
|
vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
|
|
}
|
|
|
|
static void init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
set_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR3_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR4_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
|
|
if (!kvm_vcpu_apicv_active(&svm->vcpu))
|
|
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
set_dr_intercepts(svm);
|
|
|
|
set_exception_intercept(svm, PF_VECTOR);
|
|
set_exception_intercept(svm, UD_VECTOR);
|
|
set_exception_intercept(svm, MC_VECTOR);
|
|
set_exception_intercept(svm, AC_VECTOR);
|
|
set_exception_intercept(svm, DB_VECTOR);
|
|
/*
|
|
* Guest access to VMware backdoor ports could legitimately
|
|
* trigger #GP because of TSS I/O permission bitmap.
|
|
* We intercept those #GP and allow access to them anyway
|
|
* as VMware does.
|
|
*/
|
|
if (enable_vmware_backdoor)
|
|
set_exception_intercept(svm, GP_VECTOR);
|
|
|
|
set_intercept(svm, INTERCEPT_INTR);
|
|
set_intercept(svm, INTERCEPT_NMI);
|
|
set_intercept(svm, INTERCEPT_SMI);
|
|
set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
|
|
set_intercept(svm, INTERCEPT_RDPMC);
|
|
set_intercept(svm, INTERCEPT_CPUID);
|
|
set_intercept(svm, INTERCEPT_INVD);
|
|
set_intercept(svm, INTERCEPT_INVLPG);
|
|
set_intercept(svm, INTERCEPT_INVLPGA);
|
|
set_intercept(svm, INTERCEPT_IOIO_PROT);
|
|
set_intercept(svm, INTERCEPT_MSR_PROT);
|
|
set_intercept(svm, INTERCEPT_TASK_SWITCH);
|
|
set_intercept(svm, INTERCEPT_SHUTDOWN);
|
|
set_intercept(svm, INTERCEPT_VMRUN);
|
|
set_intercept(svm, INTERCEPT_VMMCALL);
|
|
set_intercept(svm, INTERCEPT_VMLOAD);
|
|
set_intercept(svm, INTERCEPT_VMSAVE);
|
|
set_intercept(svm, INTERCEPT_STGI);
|
|
set_intercept(svm, INTERCEPT_CLGI);
|
|
set_intercept(svm, INTERCEPT_SKINIT);
|
|
set_intercept(svm, INTERCEPT_WBINVD);
|
|
set_intercept(svm, INTERCEPT_XSETBV);
|
|
set_intercept(svm, INTERCEPT_RSM);
|
|
|
|
if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
|
|
set_intercept(svm, INTERCEPT_MONITOR);
|
|
set_intercept(svm, INTERCEPT_MWAIT);
|
|
}
|
|
|
|
if (!kvm_hlt_in_guest(svm->vcpu.kvm))
|
|
set_intercept(svm, INTERCEPT_HLT);
|
|
|
|
control->iopm_base_pa = __sme_set(iopm_base);
|
|
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
|
|
control->int_ctl = V_INTR_MASKING_MASK;
|
|
|
|
init_seg(&save->es);
|
|
init_seg(&save->ss);
|
|
init_seg(&save->ds);
|
|
init_seg(&save->fs);
|
|
init_seg(&save->gs);
|
|
|
|
save->cs.selector = 0xf000;
|
|
save->cs.base = 0xffff0000;
|
|
/* Executable/Readable Code Segment */
|
|
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
|
|
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
|
|
save->cs.limit = 0xffff;
|
|
|
|
save->gdtr.limit = 0xffff;
|
|
save->idtr.limit = 0xffff;
|
|
|
|
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
|
|
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
|
|
|
|
svm_set_efer(&svm->vcpu, 0);
|
|
save->dr6 = 0xffff0ff0;
|
|
kvm_set_rflags(&svm->vcpu, 2);
|
|
save->rip = 0x0000fff0;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
|
|
|
|
/*
|
|
* svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
|
|
* It also updates the guest-visible cr0 value.
|
|
*/
|
|
svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
|
|
save->cr4 = X86_CR4_PAE;
|
|
/* rdx = ?? */
|
|
|
|
if (npt_enabled) {
|
|
/* Setup VMCB for Nested Paging */
|
|
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
|
|
clr_intercept(svm, INTERCEPT_INVLPG);
|
|
clr_exception_intercept(svm, PF_VECTOR);
|
|
clr_cr_intercept(svm, INTERCEPT_CR3_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
save->g_pat = svm->vcpu.arch.pat;
|
|
save->cr3 = 0;
|
|
save->cr4 = 0;
|
|
}
|
|
svm->asid_generation = 0;
|
|
|
|
svm->nested.vmcb = 0;
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
if (pause_filter_count) {
|
|
control->pause_filter_count = pause_filter_count;
|
|
if (pause_filter_thresh)
|
|
control->pause_filter_thresh = pause_filter_thresh;
|
|
set_intercept(svm, INTERCEPT_PAUSE);
|
|
} else {
|
|
clr_intercept(svm, INTERCEPT_PAUSE);
|
|
}
|
|
|
|
if (kvm_vcpu_apicv_active(&svm->vcpu))
|
|
avic_init_vmcb(svm);
|
|
|
|
/*
|
|
* If hardware supports Virtual VMLOAD VMSAVE then enable it
|
|
* in VMCB and clear intercepts to avoid #VMEXIT.
|
|
*/
|
|
if (vls) {
|
|
clr_intercept(svm, INTERCEPT_VMLOAD);
|
|
clr_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
|
|
}
|
|
|
|
if (vgif) {
|
|
clr_intercept(svm, INTERCEPT_STGI);
|
|
clr_intercept(svm, INTERCEPT_CLGI);
|
|
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
|
|
}
|
|
|
|
if (sev_guest(svm->vcpu.kvm)) {
|
|
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
|
|
clr_exception_intercept(svm, UD_VECTOR);
|
|
}
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
|
|
enable_gif(svm);
|
|
|
|
}
|
|
|
|
static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
|
|
unsigned int index)
|
|
{
|
|
u64 *avic_physical_id_table;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
|
|
|
|
if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
|
|
return NULL;
|
|
|
|
avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
|
|
|
|
return &avic_physical_id_table[index];
|
|
}
|
|
|
|
/**
|
|
* Note:
|
|
* AVIC hardware walks the nested page table to check permissions,
|
|
* but does not use the SPA address specified in the leaf page
|
|
* table entry since it uses address in the AVIC_BACKING_PAGE pointer
|
|
* field of the VMCB. Therefore, we set up the
|
|
* APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
|
|
*/
|
|
static int avic_init_access_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
if (kvm->arch.apic_access_page_done)
|
|
goto out;
|
|
|
|
ret = __x86_set_memory_region(kvm,
|
|
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
|
|
APIC_DEFAULT_PHYS_BASE,
|
|
PAGE_SIZE);
|
|
if (ret)
|
|
goto out;
|
|
|
|
kvm->arch.apic_access_page_done = true;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int avic_init_backing_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
u64 *entry, new_entry;
|
|
int id = vcpu->vcpu_id;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
ret = avic_init_access_page(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
|
|
return -EINVAL;
|
|
|
|
if (!svm->vcpu.arch.apic->regs)
|
|
return -EINVAL;
|
|
|
|
svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
|
|
|
|
/* Setting AVIC backing page address in the phy APIC ID table */
|
|
entry = avic_get_physical_id_entry(vcpu, id);
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
new_entry = READ_ONCE(*entry);
|
|
new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
|
|
AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
|
|
AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
|
|
WRITE_ONCE(*entry, new_entry);
|
|
|
|
svm->avic_physical_id_cache = entry;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __sev_asid_free(int asid)
|
|
{
|
|
struct svm_cpu_data *sd;
|
|
int cpu, pos;
|
|
|
|
pos = asid - 1;
|
|
clear_bit(pos, sev_asid_bitmap);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
sd = per_cpu(svm_data, cpu);
|
|
sd->sev_vmcbs[pos] = NULL;
|
|
}
|
|
}
|
|
|
|
static void sev_asid_free(struct kvm *kvm)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
__sev_asid_free(sev->asid);
|
|
}
|
|
|
|
static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
|
|
{
|
|
struct sev_data_decommission *decommission;
|
|
struct sev_data_deactivate *data;
|
|
|
|
if (!handle)
|
|
return;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return;
|
|
|
|
/* deactivate handle */
|
|
data->handle = handle;
|
|
sev_guest_deactivate(data, NULL);
|
|
|
|
wbinvd_on_all_cpus();
|
|
sev_guest_df_flush(NULL);
|
|
kfree(data);
|
|
|
|
decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
|
|
if (!decommission)
|
|
return;
|
|
|
|
/* decommission handle */
|
|
decommission->handle = handle;
|
|
sev_guest_decommission(decommission, NULL);
|
|
|
|
kfree(decommission);
|
|
}
|
|
|
|
static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
|
|
unsigned long ulen, unsigned long *n,
|
|
int write)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
unsigned long npages, npinned, size;
|
|
unsigned long locked, lock_limit;
|
|
struct page **pages;
|
|
unsigned long first, last;
|
|
|
|
if (ulen == 0 || uaddr + ulen < uaddr)
|
|
return NULL;
|
|
|
|
/* Calculate number of pages. */
|
|
first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
|
|
last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
|
|
npages = (last - first + 1);
|
|
|
|
locked = sev->pages_locked + npages;
|
|
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
|
if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
|
|
pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
|
|
return NULL;
|
|
}
|
|
|
|
/* Avoid using vmalloc for smaller buffers. */
|
|
size = npages * sizeof(struct page *);
|
|
if (size > PAGE_SIZE)
|
|
pages = vmalloc(size);
|
|
else
|
|
pages = kmalloc(size, GFP_KERNEL);
|
|
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
/* Pin the user virtual address. */
|
|
npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
|
|
if (npinned != npages) {
|
|
pr_err("SEV: Failure locking %lu pages.\n", npages);
|
|
goto err;
|
|
}
|
|
|
|
*n = npages;
|
|
sev->pages_locked = locked;
|
|
|
|
return pages;
|
|
|
|
err:
|
|
if (npinned > 0)
|
|
release_pages(pages, npinned);
|
|
|
|
kvfree(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
|
|
unsigned long npages)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
release_pages(pages, npages);
|
|
kvfree(pages);
|
|
sev->pages_locked -= npages;
|
|
}
|
|
|
|
static void sev_clflush_pages(struct page *pages[], unsigned long npages)
|
|
{
|
|
uint8_t *page_virtual;
|
|
unsigned long i;
|
|
|
|
if (npages == 0 || pages == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
page_virtual = kmap_atomic(pages[i]);
|
|
clflush_cache_range(page_virtual, PAGE_SIZE);
|
|
kunmap_atomic(page_virtual);
|
|
}
|
|
}
|
|
|
|
static void __unregister_enc_region_locked(struct kvm *kvm,
|
|
struct enc_region *region)
|
|
{
|
|
/*
|
|
* The guest may change the memory encryption attribute from C=0 -> C=1
|
|
* or vice versa for this memory range. Lets make sure caches are
|
|
* flushed to ensure that guest data gets written into memory with
|
|
* correct C-bit.
|
|
*/
|
|
sev_clflush_pages(region->pages, region->npages);
|
|
|
|
sev_unpin_memory(kvm, region->pages, region->npages);
|
|
list_del(®ion->list);
|
|
kfree(region);
|
|
}
|
|
|
|
static struct kvm *svm_vm_alloc(void)
|
|
{
|
|
struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm));
|
|
return &kvm_svm->kvm;
|
|
}
|
|
|
|
static void svm_vm_free(struct kvm *kvm)
|
|
{
|
|
vfree(to_kvm_svm(kvm));
|
|
}
|
|
|
|
static void sev_vm_destroy(struct kvm *kvm)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct list_head *head = &sev->regions_list;
|
|
struct list_head *pos, *q;
|
|
|
|
if (!sev_guest(kvm))
|
|
return;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
/*
|
|
* if userspace was terminated before unregistering the memory regions
|
|
* then lets unpin all the registered memory.
|
|
*/
|
|
if (!list_empty(head)) {
|
|
list_for_each_safe(pos, q, head) {
|
|
__unregister_enc_region_locked(kvm,
|
|
list_entry(pos, struct enc_region, list));
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
sev_unbind_asid(kvm, sev->handle);
|
|
sev_asid_free(kvm);
|
|
}
|
|
|
|
static void avic_vm_destroy(struct kvm *kvm)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
|
|
|
|
if (!avic)
|
|
return;
|
|
|
|
if (kvm_svm->avic_logical_id_table_page)
|
|
__free_page(kvm_svm->avic_logical_id_table_page);
|
|
if (kvm_svm->avic_physical_id_table_page)
|
|
__free_page(kvm_svm->avic_physical_id_table_page);
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
hash_del(&kvm_svm->hnode);
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
}
|
|
|
|
static void svm_vm_destroy(struct kvm *kvm)
|
|
{
|
|
avic_vm_destroy(kvm);
|
|
sev_vm_destroy(kvm);
|
|
}
|
|
|
|
static int avic_vm_init(struct kvm *kvm)
|
|
{
|
|
unsigned long flags;
|
|
int err = -ENOMEM;
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
|
|
struct kvm_svm *k2;
|
|
struct page *p_page;
|
|
struct page *l_page;
|
|
u32 vm_id;
|
|
|
|
if (!avic)
|
|
return 0;
|
|
|
|
/* Allocating physical APIC ID table (4KB) */
|
|
p_page = alloc_page(GFP_KERNEL);
|
|
if (!p_page)
|
|
goto free_avic;
|
|
|
|
kvm_svm->avic_physical_id_table_page = p_page;
|
|
clear_page(page_address(p_page));
|
|
|
|
/* Allocating logical APIC ID table (4KB) */
|
|
l_page = alloc_page(GFP_KERNEL);
|
|
if (!l_page)
|
|
goto free_avic;
|
|
|
|
kvm_svm->avic_logical_id_table_page = l_page;
|
|
clear_page(page_address(l_page));
|
|
|
|
spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
|
|
again:
|
|
vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
|
|
if (vm_id == 0) { /* id is 1-based, zero is not okay */
|
|
next_vm_id_wrapped = 1;
|
|
goto again;
|
|
}
|
|
/* Is it still in use? Only possible if wrapped at least once */
|
|
if (next_vm_id_wrapped) {
|
|
hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
|
|
if (k2->avic_vm_id == vm_id)
|
|
goto again;
|
|
}
|
|
}
|
|
kvm_svm->avic_vm_id = vm_id;
|
|
hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
|
|
spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
|
|
|
|
return 0;
|
|
|
|
free_avic:
|
|
avic_vm_destroy(kvm);
|
|
return err;
|
|
}
|
|
|
|
static inline int
|
|
avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *ir;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!kvm_arch_has_assigned_device(vcpu->kvm))
|
|
return 0;
|
|
|
|
/*
|
|
* Here, we go through the per-vcpu ir_list to update all existing
|
|
* interrupt remapping table entry targeting this vcpu.
|
|
*/
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
|
|
if (list_empty(&svm->ir_list))
|
|
goto out;
|
|
|
|
list_for_each_entry(ir, &svm->ir_list, node) {
|
|
ret = amd_iommu_update_ga(cpu, r, ir->data);
|
|
if (ret)
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
u64 entry;
|
|
/* ID = 0xff (broadcast), ID > 0xff (reserved) */
|
|
int h_physical_id = kvm_cpu_get_apicid(cpu);
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
|
|
return;
|
|
|
|
entry = READ_ONCE(*(svm->avic_physical_id_cache));
|
|
WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
|
|
|
|
entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
|
|
entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
|
|
|
|
entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
|
|
if (svm->avic_is_running)
|
|
entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
|
|
|
|
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
|
|
avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
|
|
svm->avic_is_running);
|
|
}
|
|
|
|
static void avic_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 entry;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
entry = READ_ONCE(*(svm->avic_physical_id_cache));
|
|
if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
|
|
avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
|
|
|
|
entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
|
|
WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
|
|
}
|
|
|
|
/**
|
|
* This function is called during VCPU halt/unhalt.
|
|
*/
|
|
static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->avic_is_running = is_run;
|
|
if (is_run)
|
|
avic_vcpu_load(vcpu, vcpu->cpu);
|
|
else
|
|
avic_vcpu_put(vcpu);
|
|
}
|
|
|
|
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 dummy;
|
|
u32 eax = 1;
|
|
|
|
vcpu->arch.microcode_version = 0x01000065;
|
|
svm->spec_ctrl = 0;
|
|
svm->virt_spec_ctrl = 0;
|
|
|
|
if (!init_event) {
|
|
svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
|
|
MSR_IA32_APICBASE_ENABLE;
|
|
if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
|
|
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
|
|
}
|
|
init_vmcb(svm);
|
|
|
|
kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu) && !init_event)
|
|
avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
|
|
}
|
|
|
|
static int avic_init_vcpu(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
|
|
if (!kvm_vcpu_apicv_active(&svm->vcpu))
|
|
return 0;
|
|
|
|
ret = avic_init_backing_page(&svm->vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_LIST_HEAD(&svm->ir_list);
|
|
spin_lock_init(&svm->ir_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
struct page *page;
|
|
struct page *msrpm_pages;
|
|
struct page *hsave_page;
|
|
struct page *nested_msrpm_pages;
|
|
int err;
|
|
|
|
svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!svm) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
|
|
if (!svm->vcpu.arch.guest_fpu) {
|
|
printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
|
|
err = -ENOMEM;
|
|
goto free_partial_svm;
|
|
}
|
|
|
|
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
|
|
if (err)
|
|
goto free_svm;
|
|
|
|
err = -ENOMEM;
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
goto uninit;
|
|
|
|
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!msrpm_pages)
|
|
goto free_page1;
|
|
|
|
nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!nested_msrpm_pages)
|
|
goto free_page2;
|
|
|
|
hsave_page = alloc_page(GFP_KERNEL);
|
|
if (!hsave_page)
|
|
goto free_page3;
|
|
|
|
err = avic_init_vcpu(svm);
|
|
if (err)
|
|
goto free_page4;
|
|
|
|
/* We initialize this flag to true to make sure that the is_running
|
|
* bit would be set the first time the vcpu is loaded.
|
|
*/
|
|
svm->avic_is_running = true;
|
|
|
|
svm->nested.hsave = page_address(hsave_page);
|
|
|
|
svm->msrpm = page_address(msrpm_pages);
|
|
svm_vcpu_init_msrpm(svm->msrpm);
|
|
|
|
svm->nested.msrpm = page_address(nested_msrpm_pages);
|
|
svm_vcpu_init_msrpm(svm->nested.msrpm);
|
|
|
|
svm->vmcb = page_address(page);
|
|
clear_page(svm->vmcb);
|
|
svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
|
|
svm->asid_generation = 0;
|
|
init_vmcb(svm);
|
|
|
|
svm_init_osvw(&svm->vcpu);
|
|
|
|
return &svm->vcpu;
|
|
|
|
free_page4:
|
|
__free_page(hsave_page);
|
|
free_page3:
|
|
__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
|
|
free_page2:
|
|
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
|
|
free_page1:
|
|
__free_page(page);
|
|
uninit:
|
|
kvm_vcpu_uninit(&svm->vcpu);
|
|
free_svm:
|
|
kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
|
|
free_partial_svm:
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void svm_clear_current_vmcb(struct vmcb *vmcb)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
|
|
}
|
|
|
|
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* The vmcb page can be recycled, causing a false negative in
|
|
* svm_vcpu_load(). So, ensure that no logical CPU has this
|
|
* vmcb page recorded as its current vmcb.
|
|
*/
|
|
svm_clear_current_vmcb(svm->vmcb);
|
|
|
|
__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
|
|
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
|
|
__free_page(virt_to_page(svm->nested.hsave));
|
|
__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
}
|
|
|
|
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
int i;
|
|
|
|
if (unlikely(cpu != vcpu->cpu)) {
|
|
svm->asid_generation = 0;
|
|
mark_all_dirty(svm->vmcb);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
|
|
#endif
|
|
savesegment(fs, svm->host.fs);
|
|
savesegment(gs, svm->host.gs);
|
|
svm->host.ldt = kvm_read_ldt();
|
|
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
|
|
if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
|
|
__this_cpu_write(current_tsc_ratio, tsc_ratio);
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
|
|
}
|
|
}
|
|
/* This assumes that the kernel never uses MSR_TSC_AUX */
|
|
if (static_cpu_has(X86_FEATURE_RDTSCP))
|
|
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
|
|
|
|
if (sd->current_vmcb != svm->vmcb) {
|
|
sd->current_vmcb = svm->vmcb;
|
|
indirect_branch_prediction_barrier();
|
|
}
|
|
avic_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
avic_vcpu_put(vcpu);
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
kvm_load_ldt(svm->host.ldt);
|
|
#ifdef CONFIG_X86_64
|
|
loadsegment(fs, svm->host.fs);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
|
|
load_gs_index(svm->host.gs);
|
|
#else
|
|
#ifdef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
}
|
|
|
|
static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
avic_set_running(vcpu, false);
|
|
}
|
|
|
|
static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
avic_set_running(vcpu, true);
|
|
}
|
|
|
|
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long rflags = svm->vmcb->save.rflags;
|
|
|
|
if (svm->nmi_singlestep) {
|
|
/* Hide our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
return rflags;
|
|
}
|
|
|
|
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (to_svm(vcpu)->nmi_singlestep)
|
|
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
|
|
/*
|
|
* Any change of EFLAGS.VM is accompanied by a reload of SS
|
|
* (caused by either a task switch or an inter-privilege IRET),
|
|
* so we do not need to update the CPL here.
|
|
*/
|
|
to_svm(vcpu)->vmcb->save.rflags = rflags;
|
|
}
|
|
|
|
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
switch (reg) {
|
|
case VCPU_EXREG_PDPTR:
|
|
BUG_ON(!npt_enabled);
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void svm_set_vintr(struct vcpu_svm *svm)
|
|
{
|
|
set_intercept(svm, INTERCEPT_VINTR);
|
|
}
|
|
|
|
static void svm_clear_vintr(struct vcpu_svm *svm)
|
|
{
|
|
clr_intercept(svm, INTERCEPT_VINTR);
|
|
}
|
|
|
|
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS: return &save->cs;
|
|
case VCPU_SREG_DS: return &save->ds;
|
|
case VCPU_SREG_ES: return &save->es;
|
|
case VCPU_SREG_FS: return &save->fs;
|
|
case VCPU_SREG_GS: return &save->gs;
|
|
case VCPU_SREG_SS: return &save->ss;
|
|
case VCPU_SREG_TR: return &save->tr;
|
|
case VCPU_SREG_LDTR: return &save->ldtr;
|
|
}
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
return s->base;
|
|
}
|
|
|
|
static void svm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
var->base = s->base;
|
|
var->limit = s->limit;
|
|
var->selector = s->selector;
|
|
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
|
|
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
|
|
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
|
|
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
|
|
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
|
|
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
|
|
|
|
/*
|
|
* AMD CPUs circa 2014 track the G bit for all segments except CS.
|
|
* However, the SVM spec states that the G bit is not observed by the
|
|
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
|
|
* So let's synthesize a legal G bit for all segments, this helps
|
|
* running KVM nested. It also helps cross-vendor migration, because
|
|
* Intel's vmentry has a check on the 'G' bit.
|
|
*/
|
|
var->g = s->limit > 0xfffff;
|
|
|
|
/*
|
|
* AMD's VMCB does not have an explicit unusable field, so emulate it
|
|
* for cross vendor migration purposes by "not present"
|
|
*/
|
|
var->unusable = !var->present;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_TR:
|
|
/*
|
|
* Work around a bug where the busy flag in the tr selector
|
|
* isn't exposed
|
|
*/
|
|
var->type |= 0x2;
|
|
break;
|
|
case VCPU_SREG_DS:
|
|
case VCPU_SREG_ES:
|
|
case VCPU_SREG_FS:
|
|
case VCPU_SREG_GS:
|
|
/*
|
|
* The accessed bit must always be set in the segment
|
|
* descriptor cache, although it can be cleared in the
|
|
* descriptor, the cached bit always remains at 1. Since
|
|
* Intel has a check on this, set it here to support
|
|
* cross-vendor migration.
|
|
*/
|
|
if (!var->unusable)
|
|
var->type |= 0x1;
|
|
break;
|
|
case VCPU_SREG_SS:
|
|
/*
|
|
* On AMD CPUs sometimes the DB bit in the segment
|
|
* descriptor is left as 1, although the whole segment has
|
|
* been made unusable. Clear it here to pass an Intel VMX
|
|
* entry check when cross vendor migrating.
|
|
*/
|
|
if (var->unusable)
|
|
var->db = 0;
|
|
/* This is symmetric with svm_set_segment() */
|
|
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
return save->cpl;
|
|
}
|
|
|
|
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.idtr.limit;
|
|
dt->address = svm->vmcb->save.idtr.base;
|
|
}
|
|
|
|
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.idtr.limit = dt->size;
|
|
svm->vmcb->save.idtr.base = dt->address ;
|
|
mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.gdtr.limit;
|
|
dt->address = svm->vmcb->save.gdtr.base;
|
|
}
|
|
|
|
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.gdtr.limit = dt->size;
|
|
svm->vmcb->save.gdtr.base = dt->address ;
|
|
mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_decache_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void update_cr0_intercept(struct vcpu_svm *svm)
|
|
{
|
|
ulong gcr0 = svm->vcpu.arch.cr0;
|
|
u64 *hcr0 = &svm->vmcb->save.cr0;
|
|
|
|
*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
|
|
| (gcr0 & SVM_CR0_SELECTIVE_MASK);
|
|
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
|
|
if (gcr0 == *hcr0) {
|
|
clr_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
} else {
|
|
set_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
}
|
|
}
|
|
|
|
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer |= EFER_LMA;
|
|
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
|
|
}
|
|
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer &= ~EFER_LMA;
|
|
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
|
|
}
|
|
}
|
|
#endif
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
if (!npt_enabled)
|
|
cr0 |= X86_CR0_PG | X86_CR0_WP;
|
|
|
|
/*
|
|
* re-enable caching here because the QEMU bios
|
|
* does not do it - this results in some delay at
|
|
* reboot
|
|
*/
|
|
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
|
|
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
|
svm->vmcb->save.cr0 = cr0;
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
update_cr0_intercept(svm);
|
|
}
|
|
|
|
static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
|
|
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
|
|
|
|
if (cr4 & X86_CR4_VMXE)
|
|
return 1;
|
|
|
|
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
|
|
svm_flush_tlb(vcpu, true);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (!npt_enabled)
|
|
cr4 |= X86_CR4_PAE;
|
|
cr4 |= host_cr4_mce;
|
|
to_svm(vcpu)->vmcb->save.cr4 = cr4;
|
|
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
return 0;
|
|
}
|
|
|
|
static void svm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
s->base = var->base;
|
|
s->limit = var->limit;
|
|
s->selector = var->selector;
|
|
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
|
|
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
|
|
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
|
|
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
|
|
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
|
|
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
|
|
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
|
|
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
|
|
|
|
/*
|
|
* This is always accurate, except if SYSRET returned to a segment
|
|
* with SS.DPL != 3. Intel does not have this quirk, and always
|
|
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
|
|
* would entail passing the CPL to userspace and back.
|
|
*/
|
|
if (seg == VCPU_SREG_SS)
|
|
/* This is symmetric with svm_get_segment() */
|
|
svm->vmcb->save.cpl = (var->dpl & 3);
|
|
|
|
mark_dirty(svm->vmcb, VMCB_SEG);
|
|
}
|
|
|
|
static void update_bp_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
clr_exception_intercept(svm, BP_VECTOR);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
set_exception_intercept(svm, BP_VECTOR);
|
|
} else
|
|
vcpu->guest_debug = 0;
|
|
}
|
|
|
|
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
|
|
{
|
|
if (sd->next_asid > sd->max_asid) {
|
|
++sd->asid_generation;
|
|
sd->next_asid = sd->min_asid;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
|
|
}
|
|
|
|
svm->asid_generation = sd->asid_generation;
|
|
svm->vmcb->control.asid = sd->next_asid++;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_svm(vcpu)->vmcb->save.dr6;
|
|
}
|
|
|
|
static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.dr6 = value;
|
|
mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
get_debugreg(vcpu->arch.db[0], 0);
|
|
get_debugreg(vcpu->arch.db[1], 1);
|
|
get_debugreg(vcpu->arch.db[2], 2);
|
|
get_debugreg(vcpu->arch.db[3], 3);
|
|
vcpu->arch.dr6 = svm_get_dr6(vcpu);
|
|
vcpu->arch.dr7 = svm->vmcb->save.dr7;
|
|
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
|
|
set_dr_intercepts(svm);
|
|
}
|
|
|
|
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.dr7 = value;
|
|
mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static int pf_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
}
|
|
|
|
static int npf_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
trace_kvm_page_fault(fault_address, error_code);
|
|
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
}
|
|
|
|
static int db_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
if (!(svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
|
|
!svm->nmi_singlestep) {
|
|
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->nmi_singlestep) {
|
|
disable_nmi_singlestep(svm);
|
|
}
|
|
|
|
if (svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc =
|
|
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bp_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = BP_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
static int ud_interception(struct vcpu_svm *svm)
|
|
{
|
|
return handle_ud(&svm->vcpu);
|
|
}
|
|
|
|
static int ac_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
|
|
return 1;
|
|
}
|
|
|
|
static int gp_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u32 error_code = svm->vmcb->control.exit_info_1;
|
|
int er;
|
|
|
|
WARN_ON_ONCE(!enable_vmware_backdoor);
|
|
|
|
er = kvm_emulate_instruction(vcpu,
|
|
EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
|
|
if (er == EMULATE_USER_EXIT)
|
|
return 0;
|
|
else if (er != EMULATE_DONE)
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_erratum_383(void)
|
|
{
|
|
int err, i;
|
|
u64 value;
|
|
|
|
if (!erratum_383_found)
|
|
return false;
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
|
|
if (err)
|
|
return false;
|
|
|
|
/* Bit 62 may or may not be set for this mce */
|
|
value &= ~(1ULL << 62);
|
|
|
|
if (value != 0xb600000000010015ULL)
|
|
return false;
|
|
|
|
/* Clear MCi_STATUS registers */
|
|
for (i = 0; i < 6; ++i)
|
|
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
|
|
if (!err) {
|
|
u32 low, high;
|
|
|
|
value &= ~(1ULL << 2);
|
|
low = lower_32_bits(value);
|
|
high = upper_32_bits(value);
|
|
|
|
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
|
|
}
|
|
|
|
/* Flush tlb to evict multi-match entries */
|
|
__flush_tlb_all();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_handle_mce(struct vcpu_svm *svm)
|
|
{
|
|
if (is_erratum_383()) {
|
|
/*
|
|
* Erratum 383 triggered. Guest state is corrupt so kill the
|
|
* guest.
|
|
*/
|
|
pr_err("KVM: Guest triggered AMD Erratum 383\n");
|
|
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* On an #MC intercept the MCE handler is not called automatically in
|
|
* the host. So do it by hand here.
|
|
*/
|
|
asm volatile (
|
|
"int $0x12\n");
|
|
/* not sure if we ever come back to this point */
|
|
|
|
return;
|
|
}
|
|
|
|
static int mc_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int shutdown_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
/*
|
|
* VMCB is undefined after a SHUTDOWN intercept
|
|
* so reinitialize it.
|
|
*/
|
|
clear_page(svm->vmcb);
|
|
init_vmcb(svm);
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int io_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++svm->vcpu.stat.io_exits;
|
|
string = (io_info & SVM_IOIO_STR_MASK) != 0;
|
|
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
|
|
if (string)
|
|
return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
|
|
|
|
port = io_info >> 16;
|
|
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
|
|
svm->next_rip = svm->vmcb->control.exit_info_2;
|
|
|
|
return kvm_fast_pio(&svm->vcpu, size, port, in);
|
|
}
|
|
|
|
static int nmi_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int intr_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int nop_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int halt_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
|
|
return kvm_emulate_halt(&svm->vcpu);
|
|
}
|
|
|
|
static int vmmcall_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
return kvm_emulate_hypercall(&svm->vcpu);
|
|
}
|
|
|
|
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return svm->nested.nested_cr3;
|
|
}
|
|
|
|
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr3 = svm->nested.nested_cr3;
|
|
u64 pdpte;
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
|
|
offset_in_page(cr3) + index * 8, 8);
|
|
if (ret)
|
|
return 0;
|
|
return pdpte;
|
|
}
|
|
|
|
static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
|
|
unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.nested_cr3 = __sme_set(root);
|
|
mark_dirty(svm->vmcb, VMCB_NPT);
|
|
}
|
|
|
|
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
|
|
/*
|
|
* TODO: track the cause of the nested page fault, and
|
|
* correctly fill in the high bits of exit_info_1.
|
|
*/
|
|
svm->vmcb->control.exit_code = SVM_EXIT_NPF;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = (1ULL << 32);
|
|
svm->vmcb->control.exit_info_2 = fault->address;
|
|
}
|
|
|
|
svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
|
|
svm->vmcb->control.exit_info_1 |= fault->error_code;
|
|
|
|
/*
|
|
* The present bit is always zero for page structure faults on real
|
|
* hardware.
|
|
*/
|
|
if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
|
|
svm->vmcb->control.exit_info_1 &= ~1;
|
|
|
|
nested_svm_vmexit(svm);
|
|
}
|
|
|
|
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
WARN_ON(mmu_is_nested(vcpu));
|
|
|
|
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
|
|
kvm_init_shadow_mmu(vcpu);
|
|
vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
|
|
vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
|
|
vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
|
|
vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
|
|
vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
|
|
reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
|
|
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
|
|
}
|
|
|
|
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.mmu = &vcpu->arch.root_mmu;
|
|
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
|
|
}
|
|
|
|
static int nested_svm_check_permissions(struct vcpu_svm *svm)
|
|
{
|
|
if (!(svm->vcpu.arch.efer & EFER_SVME) ||
|
|
!is_paging(&svm->vcpu)) {
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vmcb->save.cpl) {
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
int vmexit;
|
|
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return 0;
|
|
|
|
vmexit = nested_svm_intercept(svm);
|
|
if (vmexit != NESTED_EXIT_DONE)
|
|
return 0;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = error_code;
|
|
|
|
/*
|
|
* EXITINFO2 is undefined for all exception intercepts other
|
|
* than #PF.
|
|
*/
|
|
if (svm->vcpu.arch.exception.nested_apf)
|
|
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
|
|
else if (svm->vcpu.arch.exception.has_payload)
|
|
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
|
|
else
|
|
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
|
|
|
|
svm->nested.exit_required = true;
|
|
return vmexit;
|
|
}
|
|
|
|
/* This function returns true if it is save to enable the irq window */
|
|
static inline bool nested_svm_intr(struct vcpu_svm *svm)
|
|
{
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return true;
|
|
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
return true;
|
|
|
|
if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
|
|
return false;
|
|
|
|
/*
|
|
* if vmexit was already requested (by intercepted exception
|
|
* for instance) do not overwrite it with "external interrupt"
|
|
* vmexit.
|
|
*/
|
|
if (svm->nested.exit_required)
|
|
return false;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
|
|
svm->vmcb->control.exit_info_1 = 0;
|
|
svm->vmcb->control.exit_info_2 = 0;
|
|
|
|
if (svm->nested.intercept & 1ULL) {
|
|
/*
|
|
* The #vmexit can't be emulated here directly because this
|
|
* code path runs with irqs and preemption disabled. A
|
|
* #vmexit emulation might sleep. Only signal request for
|
|
* the #vmexit here.
|
|
*/
|
|
svm->nested.exit_required = true;
|
|
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function returns true if it is save to enable the nmi window */
|
|
static inline bool nested_svm_nmi(struct vcpu_svm *svm)
|
|
{
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return true;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
|
|
return true;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_NMI;
|
|
svm->nested.exit_required = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
|
|
{
|
|
struct page *page;
|
|
|
|
might_sleep();
|
|
|
|
page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
|
|
if (is_error_page(page))
|
|
goto error;
|
|
|
|
*_page = page;
|
|
|
|
return kmap(page);
|
|
|
|
error:
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void nested_svm_unmap(struct page *page)
|
|
{
|
|
kunmap(page);
|
|
kvm_release_page_dirty(page);
|
|
}
|
|
|
|
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
|
|
{
|
|
unsigned port, size, iopm_len;
|
|
u16 val, mask;
|
|
u8 start_bit;
|
|
u64 gpa;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
|
|
return NESTED_EXIT_HOST;
|
|
|
|
port = svm->vmcb->control.exit_info_1 >> 16;
|
|
size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
|
|
SVM_IOIO_SIZE_SHIFT;
|
|
gpa = svm->nested.vmcb_iopm + (port / 8);
|
|
start_bit = port % 8;
|
|
iopm_len = (start_bit + size > 8) ? 2 : 1;
|
|
mask = (0xf >> (4 - size)) << start_bit;
|
|
val = 0;
|
|
|
|
if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
|
|
return NESTED_EXIT_DONE;
|
|
|
|
return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
|
|
}
|
|
|
|
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
|
|
{
|
|
u32 offset, msr, value;
|
|
int write, mask;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
|
|
return NESTED_EXIT_HOST;
|
|
|
|
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
offset = svm_msrpm_offset(msr);
|
|
write = svm->vmcb->control.exit_info_1 & 1;
|
|
mask = 1 << ((2 * (msr & 0xf)) + write);
|
|
|
|
if (offset == MSR_INVALID)
|
|
return NESTED_EXIT_DONE;
|
|
|
|
/* Offset is in 32 bit units but need in 8 bit units */
|
|
offset *= 4;
|
|
|
|
if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
|
|
return NESTED_EXIT_DONE;
|
|
|
|
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
|
|
}
|
|
|
|
/* DB exceptions for our internal use must not cause vmexit */
|
|
static int nested_svm_intercept_db(struct vcpu_svm *svm)
|
|
{
|
|
unsigned long dr6;
|
|
|
|
/* if we're not singlestepping, it's not ours */
|
|
if (!svm->nmi_singlestep)
|
|
return NESTED_EXIT_DONE;
|
|
|
|
/* if it's not a singlestep exception, it's not ours */
|
|
if (kvm_get_dr(&svm->vcpu, 6, &dr6))
|
|
return NESTED_EXIT_DONE;
|
|
if (!(dr6 & DR6_BS))
|
|
return NESTED_EXIT_DONE;
|
|
|
|
/* if the guest is singlestepping, it should get the vmexit */
|
|
if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
|
|
disable_nmi_singlestep(svm);
|
|
return NESTED_EXIT_DONE;
|
|
}
|
|
|
|
/* it's ours, the nested hypervisor must not see this one */
|
|
return NESTED_EXIT_HOST;
|
|
}
|
|
|
|
static int nested_svm_exit_special(struct vcpu_svm *svm)
|
|
{
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_INTR:
|
|
case SVM_EXIT_NMI:
|
|
case SVM_EXIT_EXCP_BASE + MC_VECTOR:
|
|
return NESTED_EXIT_HOST;
|
|
case SVM_EXIT_NPF:
|
|
/* For now we are always handling NPFs when using them */
|
|
if (npt_enabled)
|
|
return NESTED_EXIT_HOST;
|
|
break;
|
|
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
|
|
/* When we're shadowing, trap PFs, but not async PF */
|
|
if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
|
|
return NESTED_EXIT_HOST;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NESTED_EXIT_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* If this function returns true, this #vmexit was already handled
|
|
*/
|
|
static int nested_svm_intercept(struct vcpu_svm *svm)
|
|
{
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
int vmexit = NESTED_EXIT_HOST;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_MSR:
|
|
vmexit = nested_svm_exit_handled_msr(svm);
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
vmexit = nested_svm_intercept_ioio(svm);
|
|
break;
|
|
case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
|
|
u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
|
|
if (svm->nested.intercept_cr & bit)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
|
|
u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
|
|
if (svm->nested.intercept_dr & bit)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
|
|
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
|
|
if (svm->nested.intercept_exceptions & excp_bits) {
|
|
if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
|
|
vmexit = nested_svm_intercept_db(svm);
|
|
else
|
|
vmexit = NESTED_EXIT_DONE;
|
|
}
|
|
/* async page fault always cause vmexit */
|
|
else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
|
|
svm->vcpu.arch.exception.nested_apf != 0)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_ERR: {
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
default: {
|
|
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
|
|
if (svm->nested.intercept & exit_bits)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
}
|
|
}
|
|
|
|
return vmexit;
|
|
}
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm)
|
|
{
|
|
int vmexit;
|
|
|
|
vmexit = nested_svm_intercept(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
nested_svm_vmexit(svm);
|
|
|
|
return vmexit;
|
|
}
|
|
|
|
static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
|
|
{
|
|
struct vmcb_control_area *dst = &dst_vmcb->control;
|
|
struct vmcb_control_area *from = &from_vmcb->control;
|
|
|
|
dst->intercept_cr = from->intercept_cr;
|
|
dst->intercept_dr = from->intercept_dr;
|
|
dst->intercept_exceptions = from->intercept_exceptions;
|
|
dst->intercept = from->intercept;
|
|
dst->iopm_base_pa = from->iopm_base_pa;
|
|
dst->msrpm_base_pa = from->msrpm_base_pa;
|
|
dst->tsc_offset = from->tsc_offset;
|
|
dst->asid = from->asid;
|
|
dst->tlb_ctl = from->tlb_ctl;
|
|
dst->int_ctl = from->int_ctl;
|
|
dst->int_vector = from->int_vector;
|
|
dst->int_state = from->int_state;
|
|
dst->exit_code = from->exit_code;
|
|
dst->exit_code_hi = from->exit_code_hi;
|
|
dst->exit_info_1 = from->exit_info_1;
|
|
dst->exit_info_2 = from->exit_info_2;
|
|
dst->exit_int_info = from->exit_int_info;
|
|
dst->exit_int_info_err = from->exit_int_info_err;
|
|
dst->nested_ctl = from->nested_ctl;
|
|
dst->event_inj = from->event_inj;
|
|
dst->event_inj_err = from->event_inj_err;
|
|
dst->nested_cr3 = from->nested_cr3;
|
|
dst->virt_ext = from->virt_ext;
|
|
dst->pause_filter_count = from->pause_filter_count;
|
|
dst->pause_filter_thresh = from->pause_filter_thresh;
|
|
}
|
|
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct vmcb *hsave = svm->nested.hsave;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct page *page;
|
|
|
|
trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
|
|
vmcb->control.exit_info_1,
|
|
vmcb->control.exit_info_2,
|
|
vmcb->control.exit_int_info,
|
|
vmcb->control.exit_int_info_err,
|
|
KVM_ISA_SVM);
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
/* Exit Guest-Mode */
|
|
leave_guest_mode(&svm->vcpu);
|
|
svm->nested.vmcb = 0;
|
|
|
|
/* Give the current vmcb to the guest */
|
|
disable_gif(svm);
|
|
|
|
nested_vmcb->save.es = vmcb->save.es;
|
|
nested_vmcb->save.cs = vmcb->save.cs;
|
|
nested_vmcb->save.ss = vmcb->save.ss;
|
|
nested_vmcb->save.ds = vmcb->save.ds;
|
|
nested_vmcb->save.gdtr = vmcb->save.gdtr;
|
|
nested_vmcb->save.idtr = vmcb->save.idtr;
|
|
nested_vmcb->save.efer = svm->vcpu.arch.efer;
|
|
nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
|
|
nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
|
|
nested_vmcb->save.cr2 = vmcb->save.cr2;
|
|
nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
|
|
nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
|
|
nested_vmcb->save.rip = vmcb->save.rip;
|
|
nested_vmcb->save.rsp = vmcb->save.rsp;
|
|
nested_vmcb->save.rax = vmcb->save.rax;
|
|
nested_vmcb->save.dr7 = vmcb->save.dr7;
|
|
nested_vmcb->save.dr6 = vmcb->save.dr6;
|
|
nested_vmcb->save.cpl = vmcb->save.cpl;
|
|
|
|
nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
|
|
nested_vmcb->control.int_vector = vmcb->control.int_vector;
|
|
nested_vmcb->control.int_state = vmcb->control.int_state;
|
|
nested_vmcb->control.exit_code = vmcb->control.exit_code;
|
|
nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
|
|
nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
|
|
nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
|
|
nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
|
|
nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
|
|
|
|
if (svm->nrips_enabled)
|
|
nested_vmcb->control.next_rip = vmcb->control.next_rip;
|
|
|
|
/*
|
|
* If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
|
|
* to make sure that we do not lose injected events. So check event_inj
|
|
* here and copy it to exit_int_info if it is valid.
|
|
* Exit_int_info and event_inj can't be both valid because the case
|
|
* below only happens on a VMRUN instruction intercept which has
|
|
* no valid exit_int_info set.
|
|
*/
|
|
if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
|
|
struct vmcb_control_area *nc = &nested_vmcb->control;
|
|
|
|
nc->exit_int_info = vmcb->control.event_inj;
|
|
nc->exit_int_info_err = vmcb->control.event_inj_err;
|
|
}
|
|
|
|
nested_vmcb->control.tlb_ctl = 0;
|
|
nested_vmcb->control.event_inj = 0;
|
|
nested_vmcb->control.event_inj_err = 0;
|
|
|
|
nested_vmcb->control.pause_filter_count =
|
|
svm->vmcb->control.pause_filter_count;
|
|
nested_vmcb->control.pause_filter_thresh =
|
|
svm->vmcb->control.pause_filter_thresh;
|
|
|
|
/* We always set V_INTR_MASKING and remember the old value in hflags */
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
|
|
|
|
/* Restore the original control entries */
|
|
copy_vmcb_control_area(vmcb, hsave);
|
|
|
|
svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
svm->nested.nested_cr3 = 0;
|
|
|
|
/* Restore selected save entries */
|
|
svm->vmcb->save.es = hsave->save.es;
|
|
svm->vmcb->save.cs = hsave->save.cs;
|
|
svm->vmcb->save.ss = hsave->save.ss;
|
|
svm->vmcb->save.ds = hsave->save.ds;
|
|
svm->vmcb->save.gdtr = hsave->save.gdtr;
|
|
svm->vmcb->save.idtr = hsave->save.idtr;
|
|
kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
|
|
svm_set_efer(&svm->vcpu, hsave->save.efer);
|
|
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
|
|
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = hsave->save.cr3;
|
|
svm->vcpu.arch.cr3 = hsave->save.cr3;
|
|
} else {
|
|
(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
|
|
}
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
|
|
svm->vmcb->save.dr7 = 0;
|
|
svm->vmcb->save.cpl = 0;
|
|
svm->vmcb->control.exit_int_info = 0;
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
nested_svm_uninit_mmu_context(&svm->vcpu);
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
kvm_mmu_load(&svm->vcpu);
|
|
|
|
/*
|
|
* Drop what we picked up for L2 via svm_complete_interrupts() so it
|
|
* doesn't end up in L1.
|
|
*/
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* This function merges the msr permission bitmaps of kvm and the
|
|
* nested vmcb. It is optimized in that it only merges the parts where
|
|
* the kvm msr permission bitmap may contain zero bits
|
|
*/
|
|
int i;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
|
|
return true;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; i++) {
|
|
u32 value, p;
|
|
u64 offset;
|
|
|
|
if (msrpm_offsets[i] == 0xffffffff)
|
|
break;
|
|
|
|
p = msrpm_offsets[i];
|
|
offset = svm->nested.vmcb_msrpm + (p * 4);
|
|
|
|
if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
|
|
return false;
|
|
|
|
svm->nested.msrpm[p] = svm->msrpm[p] | value;
|
|
}
|
|
|
|
svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool nested_vmcb_checks(struct vmcb *vmcb)
|
|
{
|
|
if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
|
|
return false;
|
|
|
|
if (vmcb->control.asid == 0)
|
|
return false;
|
|
|
|
if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
|
|
!npt_enabled)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
|
|
struct vmcb *nested_vmcb, struct page *page)
|
|
{
|
|
if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
|
|
svm->vcpu.arch.hflags |= HF_HIF_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
|
|
|
|
if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
|
|
svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
|
|
nested_svm_init_mmu_context(&svm->vcpu);
|
|
}
|
|
|
|
/* Load the nested guest state */
|
|
svm->vmcb->save.es = nested_vmcb->save.es;
|
|
svm->vmcb->save.cs = nested_vmcb->save.cs;
|
|
svm->vmcb->save.ss = nested_vmcb->save.ss;
|
|
svm->vmcb->save.ds = nested_vmcb->save.ds;
|
|
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
|
|
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
|
|
kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
|
|
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
|
|
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
|
|
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
|
|
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
|
|
} else
|
|
(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
|
|
|
|
/* Guest paging mode is active - reset mmu */
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
|
|
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
|
|
|
|
/* In case we don't even reach vcpu_run, the fields are not updated */
|
|
svm->vmcb->save.rax = nested_vmcb->save.rax;
|
|
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
|
|
svm->vmcb->save.rip = nested_vmcb->save.rip;
|
|
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
|
|
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
|
|
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
|
|
|
|
svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
|
|
svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
|
|
|
|
/* cache intercepts */
|
|
svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
|
|
svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
|
|
svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
|
|
svm->nested.intercept = nested_vmcb->control.intercept;
|
|
|
|
svm_flush_tlb(&svm->vcpu, true);
|
|
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
|
|
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
|
|
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
|
|
|
|
if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
|
|
/* We only want the cr8 intercept bits of the guest */
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
/* We don't want to see VMMCALLs from a nested guest */
|
|
clr_intercept(svm, INTERCEPT_VMMCALL);
|
|
|
|
svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
|
|
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
|
|
|
|
svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
|
|
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
|
|
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
|
|
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
|
|
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
|
|
|
|
svm->vmcb->control.pause_filter_count =
|
|
nested_vmcb->control.pause_filter_count;
|
|
svm->vmcb->control.pause_filter_thresh =
|
|
nested_vmcb->control.pause_filter_thresh;
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
/* Enter Guest-Mode */
|
|
enter_guest_mode(&svm->vcpu);
|
|
|
|
/*
|
|
* Merge guest and host intercepts - must be called with vcpu in
|
|
* guest-mode to take affect here
|
|
*/
|
|
recalc_intercepts(svm);
|
|
|
|
svm->nested.vmcb = vmcb_gpa;
|
|
|
|
enable_gif(svm);
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
}
|
|
|
|
static bool nested_svm_vmrun(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct vmcb *hsave = svm->nested.hsave;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct page *page;
|
|
u64 vmcb_gpa;
|
|
|
|
vmcb_gpa = svm->vmcb->save.rax;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return false;
|
|
|
|
if (!nested_vmcb_checks(nested_vmcb)) {
|
|
nested_vmcb->control.exit_code = SVM_EXIT_ERR;
|
|
nested_vmcb->control.exit_code_hi = 0;
|
|
nested_vmcb->control.exit_info_1 = 0;
|
|
nested_vmcb->control.exit_info_2 = 0;
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
return false;
|
|
}
|
|
|
|
trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
|
|
nested_vmcb->save.rip,
|
|
nested_vmcb->control.int_ctl,
|
|
nested_vmcb->control.event_inj,
|
|
nested_vmcb->control.nested_ctl);
|
|
|
|
trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
|
|
nested_vmcb->control.intercept_cr >> 16,
|
|
nested_vmcb->control.intercept_exceptions,
|
|
nested_vmcb->control.intercept);
|
|
|
|
/* Clear internal status */
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
/*
|
|
* Save the old vmcb, so we don't need to pick what we save, but can
|
|
* restore everything when a VMEXIT occurs
|
|
*/
|
|
hsave->save.es = vmcb->save.es;
|
|
hsave->save.cs = vmcb->save.cs;
|
|
hsave->save.ss = vmcb->save.ss;
|
|
hsave->save.ds = vmcb->save.ds;
|
|
hsave->save.gdtr = vmcb->save.gdtr;
|
|
hsave->save.idtr = vmcb->save.idtr;
|
|
hsave->save.efer = svm->vcpu.arch.efer;
|
|
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
|
|
hsave->save.cr4 = svm->vcpu.arch.cr4;
|
|
hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
|
|
hsave->save.rip = kvm_rip_read(&svm->vcpu);
|
|
hsave->save.rsp = vmcb->save.rsp;
|
|
hsave->save.rax = vmcb->save.rax;
|
|
if (npt_enabled)
|
|
hsave->save.cr3 = vmcb->save.cr3;
|
|
else
|
|
hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
|
|
|
|
copy_vmcb_control_area(hsave, vmcb);
|
|
|
|
enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
|
|
{
|
|
to_vmcb->save.fs = from_vmcb->save.fs;
|
|
to_vmcb->save.gs = from_vmcb->save.gs;
|
|
to_vmcb->save.tr = from_vmcb->save.tr;
|
|
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
|
|
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
|
|
to_vmcb->save.star = from_vmcb->save.star;
|
|
to_vmcb->save.lstar = from_vmcb->save.lstar;
|
|
to_vmcb->save.cstar = from_vmcb->save.cstar;
|
|
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
|
|
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
|
|
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
|
|
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
|
|
}
|
|
|
|
static int vmload_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
|
|
nested_svm_unmap(page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vmsave_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
|
|
nested_svm_unmap(page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vmrun_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
/* Save rip after vmrun instruction */
|
|
kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
|
|
|
|
if (!nested_svm_vmrun(svm))
|
|
return 1;
|
|
|
|
if (!nested_svm_vmrun_msrpm(svm))
|
|
goto failed;
|
|
|
|
return 1;
|
|
|
|
failed:
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = 0;
|
|
svm->vmcb->control.exit_info_2 = 0;
|
|
|
|
nested_svm_vmexit(svm);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
/*
|
|
* If VGIF is enabled, the STGI intercept is only added to
|
|
* detect the opening of the SMI/NMI window; remove it now.
|
|
*/
|
|
if (vgif_enabled(svm))
|
|
clr_intercept(svm, INTERCEPT_STGI);
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
|
|
enable_gif(svm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int clgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
|
|
disable_gif(svm);
|
|
|
|
/* After a CLGI no interrupts should come */
|
|
if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int invlpga_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
|
|
kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
|
|
|
|
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
|
|
kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int skinit_interception(struct vcpu_svm *svm)
|
|
{
|
|
trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
|
|
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int wbinvd_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_wbinvd(&svm->vcpu);
|
|
}
|
|
|
|
static int xsetbv_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
|
|
u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
|
|
|
|
if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int task_switch_interception(struct vcpu_svm *svm)
|
|
{
|
|
u16 tss_selector;
|
|
int reason;
|
|
int int_type = svm->vmcb->control.exit_int_info &
|
|
SVM_EXITINTINFO_TYPE_MASK;
|
|
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
|
|
uint32_t type =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
|
|
uint32_t idt_v =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
|
|
bool has_error_code = false;
|
|
u32 error_code = 0;
|
|
|
|
tss_selector = (u16)svm->vmcb->control.exit_info_1;
|
|
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
|
|
reason = TASK_SWITCH_IRET;
|
|
else if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
|
|
reason = TASK_SWITCH_JMP;
|
|
else if (idt_v)
|
|
reason = TASK_SWITCH_GATE;
|
|
else
|
|
reason = TASK_SWITCH_CALL;
|
|
|
|
if (reason == TASK_SWITCH_GATE) {
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
|
|
has_error_code = true;
|
|
error_code =
|
|
(u32)svm->vmcb->control.exit_info_2;
|
|
}
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reason != TASK_SWITCH_GATE ||
|
|
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
|
|
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
|
|
(int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
|
|
int_vec = -1;
|
|
|
|
if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
|
|
has_error_code, error_code) == EMULATE_FAIL) {
|
|
svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
svm->vcpu.run->internal.ndata = 0;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int cpuid_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
return kvm_emulate_cpuid(&svm->vcpu);
|
|
}
|
|
|
|
static int iret_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.nmi_window_exits;
|
|
clr_intercept(svm, INTERCEPT_IRET);
|
|
svm->vcpu.arch.hflags |= HF_IRET_MASK;
|
|
svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int invlpg_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
|
|
|
|
kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int emulate_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
|
|
}
|
|
|
|
static int rsm_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_instruction_from_buffer(&svm->vcpu,
|
|
rsm_ins_bytes, 2) == EMULATE_DONE;
|
|
}
|
|
|
|
static int rdpmc_interception(struct vcpu_svm *svm)
|
|
{
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_NRIPS))
|
|
return emulate_on_interception(svm);
|
|
|
|
err = kvm_rdpmc(&svm->vcpu);
|
|
return kvm_complete_insn_gp(&svm->vcpu, err);
|
|
}
|
|
|
|
static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
|
|
unsigned long val)
|
|
{
|
|
unsigned long cr0 = svm->vcpu.arch.cr0;
|
|
bool ret = false;
|
|
u64 intercept;
|
|
|
|
intercept = svm->nested.intercept;
|
|
|
|
if (!is_guest_mode(&svm->vcpu) ||
|
|
(!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
|
|
return false;
|
|
|
|
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
|
|
val &= ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (cr0 ^ val) {
|
|
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define CR_VALID (1ULL << 63)
|
|
|
|
static int cr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, cr;
|
|
unsigned long val;
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
|
|
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
|
|
else
|
|
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
|
|
|
|
err = 0;
|
|
if (cr >= 16) { /* mov to cr */
|
|
cr -= 16;
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
switch (cr) {
|
|
case 0:
|
|
if (!check_selective_cr0_intercepted(svm, val))
|
|
err = kvm_set_cr0(&svm->vcpu, val);
|
|
else
|
|
return 1;
|
|
|
|
break;
|
|
case 3:
|
|
err = kvm_set_cr3(&svm->vcpu, val);
|
|
break;
|
|
case 4:
|
|
err = kvm_set_cr4(&svm->vcpu, val);
|
|
break;
|
|
case 8:
|
|
err = kvm_set_cr8(&svm->vcpu, val);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled write to CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
} else { /* mov from cr */
|
|
switch (cr) {
|
|
case 0:
|
|
val = kvm_read_cr0(&svm->vcpu);
|
|
break;
|
|
case 2:
|
|
val = svm->vcpu.arch.cr2;
|
|
break;
|
|
case 3:
|
|
val = kvm_read_cr3(&svm->vcpu);
|
|
break;
|
|
case 4:
|
|
val = kvm_read_cr4(&svm->vcpu);
|
|
break;
|
|
case 8:
|
|
val = kvm_get_cr8(&svm->vcpu);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled read from CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
}
|
|
return kvm_complete_insn_gp(&svm->vcpu, err);
|
|
}
|
|
|
|
static int dr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, dr;
|
|
unsigned long val;
|
|
|
|
if (svm->vcpu.guest_debug == 0) {
|
|
/*
|
|
* No more DR vmexits; force a reload of the debug registers
|
|
* and reenter on this instruction. The next vmexit will
|
|
* retrieve the full state of the debug registers.
|
|
*/
|
|
clr_dr_intercepts(svm);
|
|
svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
|
|
return 1;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
|
|
|
|
if (dr >= 16) { /* mov to DRn */
|
|
if (!kvm_require_dr(&svm->vcpu, dr - 16))
|
|
return 1;
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
kvm_set_dr(&svm->vcpu, dr - 16, val);
|
|
} else {
|
|
if (!kvm_require_dr(&svm->vcpu, dr))
|
|
return 1;
|
|
kvm_get_dr(&svm->vcpu, dr, &val);
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
}
|
|
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int cr8_write_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
int r;
|
|
|
|
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
|
|
/* instruction emulation calls kvm_set_cr8() */
|
|
r = cr_interception(svm);
|
|
if (lapic_in_kernel(&svm->vcpu))
|
|
return r;
|
|
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
|
|
return r;
|
|
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
|
|
static int svm_get_msr_feature(struct kvm_msr_entry *msr)
|
|
{
|
|
msr->data = 0;
|
|
|
|
switch (msr->index) {
|
|
case MSR_F10H_DECFG:
|
|
if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
|
|
msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
switch (msr_info->index) {
|
|
case MSR_STAR:
|
|
msr_info->data = svm->vmcb->save.star;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
msr_info->data = svm->vmcb->save.lstar;
|
|
break;
|
|
case MSR_CSTAR:
|
|
msr_info->data = svm->vmcb->save.cstar;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
msr_info->data = svm->vmcb->save.kernel_gs_base;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
msr_info->data = svm->vmcb->save.sfmask;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
msr_info->data = svm->vmcb->save.sysenter_cs;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
msr_info->data = svm->sysenter_eip;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
msr_info->data = svm->sysenter_esp;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
|
|
return 1;
|
|
msr_info->data = svm->tsc_aux;
|
|
break;
|
|
/*
|
|
* Nobody will change the following 5 values in the VMCB so we can
|
|
* safely return them on rdmsr. They will always be 0 until LBRV is
|
|
* implemented.
|
|
*/
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
msr_info->data = svm->vmcb->save.dbgctl;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
msr_info->data = svm->vmcb->save.br_from;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
msr_info->data = svm->vmcb->save.br_to;
|
|
break;
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
msr_info->data = svm->vmcb->save.last_excp_from;
|
|
break;
|
|
case MSR_IA32_LASTINTTOIP:
|
|
msr_info->data = svm->vmcb->save.last_excp_to;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
msr_info->data = svm->nested.hsave_msr;
|
|
break;
|
|
case MSR_VM_CR:
|
|
msr_info->data = svm->nested.vm_cr_msr;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
|
|
return 1;
|
|
|
|
msr_info->data = svm->spec_ctrl;
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
msr_info->data = svm->virt_spec_ctrl;
|
|
break;
|
|
case MSR_F15H_IC_CFG: {
|
|
|
|
int family, model;
|
|
|
|
family = guest_cpuid_family(vcpu);
|
|
model = guest_cpuid_model(vcpu);
|
|
|
|
if (family < 0 || model < 0)
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
|
|
msr_info->data = 0;
|
|
|
|
if (family == 0x15 &&
|
|
(model >= 0x2 && model < 0x20))
|
|
msr_info->data = 0x1E;
|
|
}
|
|
break;
|
|
case MSR_F10H_DECFG:
|
|
msr_info->data = svm->msr_decfg;
|
|
break;
|
|
default:
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rdmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
|
|
struct msr_data msr_info;
|
|
|
|
msr_info.index = ecx;
|
|
msr_info.host_initiated = false;
|
|
if (svm_get_msr(&svm->vcpu, &msr_info)) {
|
|
trace_kvm_msr_read_ex(ecx);
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
} else {
|
|
trace_kvm_msr_read(ecx, msr_info.data);
|
|
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
|
|
msr_info.data & 0xffffffff);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
|
|
msr_info.data >> 32);
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
}
|
|
|
|
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int svm_dis, chg_mask;
|
|
|
|
if (data & ~SVM_VM_CR_VALID_MASK)
|
|
return 1;
|
|
|
|
chg_mask = SVM_VM_CR_VALID_MASK;
|
|
|
|
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
|
|
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
|
|
|
|
svm->nested.vm_cr_msr &= ~chg_mask;
|
|
svm->nested.vm_cr_msr |= (data & chg_mask);
|
|
|
|
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
|
|
|
|
/* check for svm_disable while efer.svme is set */
|
|
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
u32 ecx = msr->index;
|
|
u64 data = msr->data;
|
|
switch (ecx) {
|
|
case MSR_IA32_CR_PAT:
|
|
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
|
|
return 1;
|
|
vcpu->arch.pat = data;
|
|
svm->vmcb->save.g_pat = data;
|
|
mark_dirty(svm->vmcb, VMCB_NPT);
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
|
|
return 1;
|
|
|
|
/* The STIBP bit doesn't fault even if it's not advertised */
|
|
if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
|
|
return 1;
|
|
|
|
svm->spec_ctrl = data;
|
|
|
|
if (!data)
|
|
break;
|
|
|
|
/*
|
|
* For non-nested:
|
|
* When it's written (to non-zero) for the first time, pass
|
|
* it through.
|
|
*
|
|
* For nested:
|
|
* The handling of the MSR bitmap for L2 guests is done in
|
|
* nested_svm_vmrun_msrpm.
|
|
* We update the L1 MSR bit as well since it will end up
|
|
* touching the MSR anyway now.
|
|
*/
|
|
set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
|
|
break;
|
|
case MSR_IA32_PRED_CMD:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
|
|
return 1;
|
|
|
|
if (data & ~PRED_CMD_IBPB)
|
|
return 1;
|
|
|
|
if (!data)
|
|
break;
|
|
|
|
wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
|
|
if (is_guest_mode(vcpu))
|
|
break;
|
|
set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
if (data & ~SPEC_CTRL_SSBD)
|
|
return 1;
|
|
|
|
svm->virt_spec_ctrl = data;
|
|
break;
|
|
case MSR_STAR:
|
|
svm->vmcb->save.star = data;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
svm->vmcb->save.lstar = data;
|
|
break;
|
|
case MSR_CSTAR:
|
|
svm->vmcb->save.cstar = data;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
svm->vmcb->save.kernel_gs_base = data;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
svm->vmcb->save.sfmask = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
svm->vmcb->save.sysenter_cs = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
svm->sysenter_eip = data;
|
|
svm->vmcb->save.sysenter_eip = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
svm->sysenter_esp = data;
|
|
svm->vmcb->save.sysenter_esp = data;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
|
|
return 1;
|
|
|
|
/*
|
|
* This is rare, so we update the MSR here instead of using
|
|
* direct_access_msrs. Doing that would require a rdmsr in
|
|
* svm_vcpu_put.
|
|
*/
|
|
svm->tsc_aux = data;
|
|
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!boot_cpu_has(X86_FEATURE_LBRV)) {
|
|
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
}
|
|
if (data & DEBUGCTL_RESERVED_BITS)
|
|
return 1;
|
|
|
|
svm->vmcb->save.dbgctl = data;
|
|
mark_dirty(svm->vmcb, VMCB_LBR);
|
|
if (data & (1ULL<<0))
|
|
svm_enable_lbrv(svm);
|
|
else
|
|
svm_disable_lbrv(svm);
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
svm->nested.hsave_msr = data;
|
|
break;
|
|
case MSR_VM_CR:
|
|
return svm_set_vm_cr(vcpu, data);
|
|
case MSR_VM_IGNNE:
|
|
vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
|
|
break;
|
|
case MSR_F10H_DECFG: {
|
|
struct kvm_msr_entry msr_entry;
|
|
|
|
msr_entry.index = msr->index;
|
|
if (svm_get_msr_feature(&msr_entry))
|
|
return 1;
|
|
|
|
/* Check the supported bits */
|
|
if (data & ~msr_entry.data)
|
|
return 1;
|
|
|
|
/* Don't allow the guest to change a bit, #GP */
|
|
if (!msr->host_initiated && (data ^ msr_entry.data))
|
|
return 1;
|
|
|
|
svm->msr_decfg = data;
|
|
break;
|
|
}
|
|
case MSR_IA32_APICBASE:
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
avic_update_vapic_bar(to_svm(vcpu), data);
|
|
/* Fall through */
|
|
default:
|
|
return kvm_set_msr_common(vcpu, msr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int wrmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct msr_data msr;
|
|
u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
|
|
u64 data = kvm_read_edx_eax(&svm->vcpu);
|
|
|
|
msr.data = data;
|
|
msr.index = ecx;
|
|
msr.host_initiated = false;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
if (kvm_set_msr(&svm->vcpu, &msr)) {
|
|
trace_kvm_msr_write_ex(ecx, data);
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
} else {
|
|
trace_kvm_msr_write(ecx, data);
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
}
|
|
|
|
static int msr_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (svm->vmcb->control.exit_info_1)
|
|
return wrmsr_interception(svm);
|
|
else
|
|
return rdmsr_interception(svm);
|
|
}
|
|
|
|
static int interrupt_window_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
++svm->vcpu.stat.irq_window_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int pause_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
bool in_kernel = (svm_get_cpl(vcpu) == 0);
|
|
|
|
if (pause_filter_thresh)
|
|
grow_ple_window(vcpu);
|
|
|
|
kvm_vcpu_on_spin(vcpu, in_kernel);
|
|
return 1;
|
|
}
|
|
|
|
static int nop_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_skip_emulated_instruction(&(svm->vcpu));
|
|
}
|
|
|
|
static int monitor_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
static int mwait_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
enum avic_ipi_failure_cause {
|
|
AVIC_IPI_FAILURE_INVALID_INT_TYPE,
|
|
AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
|
|
AVIC_IPI_FAILURE_INVALID_TARGET,
|
|
AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
|
|
};
|
|
|
|
static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
|
|
{
|
|
u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
|
|
u32 icrl = svm->vmcb->control.exit_info_1;
|
|
u32 id = svm->vmcb->control.exit_info_2 >> 32;
|
|
u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
|
|
struct kvm_lapic *apic = svm->vcpu.arch.apic;
|
|
|
|
trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
|
|
|
|
switch (id) {
|
|
case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
|
|
/*
|
|
* AVIC hardware handles the generation of
|
|
* IPIs when the specified Message Type is Fixed
|
|
* (also known as fixed delivery mode) and
|
|
* the Trigger Mode is edge-triggered. The hardware
|
|
* also supports self and broadcast delivery modes
|
|
* specified via the Destination Shorthand(DSH)
|
|
* field of the ICRL. Logical and physical APIC ID
|
|
* formats are supported. All other IPI types cause
|
|
* a #VMEXIT, which needs to emulated.
|
|
*/
|
|
kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
|
|
kvm_lapic_reg_write(apic, APIC_ICR, icrl);
|
|
break;
|
|
case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
|
|
struct kvm_lapic *apic = svm->vcpu.arch.apic;
|
|
|
|
/*
|
|
* Update ICR high and low, then emulate sending IPI,
|
|
* which is handled when writing APIC_ICR.
|
|
*/
|
|
kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
|
|
kvm_lapic_reg_write(apic, APIC_ICR, icrl);
|
|
break;
|
|
}
|
|
case AVIC_IPI_FAILURE_INVALID_TARGET:
|
|
WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
|
|
index, svm->vcpu.vcpu_id, icrh, icrl);
|
|
break;
|
|
case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
|
|
WARN_ONCE(1, "Invalid backing page\n");
|
|
break;
|
|
default:
|
|
pr_err("Unknown IPI interception\n");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
|
|
{
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
|
|
int index;
|
|
u32 *logical_apic_id_table;
|
|
int dlid = GET_APIC_LOGICAL_ID(ldr);
|
|
|
|
if (!dlid)
|
|
return NULL;
|
|
|
|
if (flat) { /* flat */
|
|
index = ffs(dlid) - 1;
|
|
if (index > 7)
|
|
return NULL;
|
|
} else { /* cluster */
|
|
int cluster = (dlid & 0xf0) >> 4;
|
|
int apic = ffs(dlid & 0x0f) - 1;
|
|
|
|
if ((apic < 0) || (apic > 7) ||
|
|
(cluster >= 0xf))
|
|
return NULL;
|
|
index = (cluster << 2) + apic;
|
|
}
|
|
|
|
logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
|
|
|
|
return &logical_apic_id_table[index];
|
|
}
|
|
|
|
static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
|
|
bool valid)
|
|
{
|
|
bool flat;
|
|
u32 *entry, new_entry;
|
|
|
|
flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
|
|
entry = avic_get_logical_id_entry(vcpu, ldr, flat);
|
|
if (!entry)
|
|
return -EINVAL;
|
|
|
|
new_entry = READ_ONCE(*entry);
|
|
new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
|
|
new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
|
|
if (valid)
|
|
new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
|
|
else
|
|
new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
|
|
WRITE_ONCE(*entry, new_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
|
|
|
|
if (!ldr)
|
|
return 1;
|
|
|
|
ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
|
|
if (ret && svm->ldr_reg) {
|
|
avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
|
|
svm->ldr_reg = 0;
|
|
} else {
|
|
svm->ldr_reg = ldr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 *old, *new;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
|
|
u32 id = (apic_id_reg >> 24) & 0xff;
|
|
|
|
if (vcpu->vcpu_id == id)
|
|
return 0;
|
|
|
|
old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
|
|
new = avic_get_physical_id_entry(vcpu, id);
|
|
if (!new || !old)
|
|
return 1;
|
|
|
|
/* We need to move physical_id_entry to new offset */
|
|
*new = *old;
|
|
*old = 0ULL;
|
|
to_svm(vcpu)->avic_physical_id_cache = new;
|
|
|
|
/*
|
|
* Also update the guest physical APIC ID in the logical
|
|
* APIC ID table entry if already setup the LDR.
|
|
*/
|
|
if (svm->ldr_reg)
|
|
avic_handle_ldr_update(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
|
|
u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
|
|
u32 mod = (dfr >> 28) & 0xf;
|
|
|
|
/*
|
|
* We assume that all local APICs are using the same type.
|
|
* If this changes, we need to flush the AVIC logical
|
|
* APID id table.
|
|
*/
|
|
if (kvm_svm->ldr_mode == mod)
|
|
return 0;
|
|
|
|
clear_page(page_address(kvm_svm->avic_logical_id_table_page));
|
|
kvm_svm->ldr_mode = mod;
|
|
|
|
if (svm->ldr_reg)
|
|
avic_handle_ldr_update(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int avic_unaccel_trap_write(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_lapic *apic = svm->vcpu.arch.apic;
|
|
u32 offset = svm->vmcb->control.exit_info_1 &
|
|
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
|
|
|
|
switch (offset) {
|
|
case APIC_ID:
|
|
if (avic_handle_apic_id_update(&svm->vcpu))
|
|
return 0;
|
|
break;
|
|
case APIC_LDR:
|
|
if (avic_handle_ldr_update(&svm->vcpu))
|
|
return 0;
|
|
break;
|
|
case APIC_DFR:
|
|
avic_handle_dfr_update(&svm->vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool is_avic_unaccelerated_access_trap(u32 offset)
|
|
{
|
|
bool ret = false;
|
|
|
|
switch (offset) {
|
|
case APIC_ID:
|
|
case APIC_EOI:
|
|
case APIC_RRR:
|
|
case APIC_LDR:
|
|
case APIC_DFR:
|
|
case APIC_SPIV:
|
|
case APIC_ESR:
|
|
case APIC_ICR:
|
|
case APIC_LVTT:
|
|
case APIC_LVTTHMR:
|
|
case APIC_LVTPC:
|
|
case APIC_LVT0:
|
|
case APIC_LVT1:
|
|
case APIC_LVTERR:
|
|
case APIC_TMICT:
|
|
case APIC_TDCR:
|
|
ret = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
|
|
{
|
|
int ret = 0;
|
|
u32 offset = svm->vmcb->control.exit_info_1 &
|
|
AVIC_UNACCEL_ACCESS_OFFSET_MASK;
|
|
u32 vector = svm->vmcb->control.exit_info_2 &
|
|
AVIC_UNACCEL_ACCESS_VECTOR_MASK;
|
|
bool write = (svm->vmcb->control.exit_info_1 >> 32) &
|
|
AVIC_UNACCEL_ACCESS_WRITE_MASK;
|
|
bool trap = is_avic_unaccelerated_access_trap(offset);
|
|
|
|
trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
|
|
trap, write, vector);
|
|
if (trap) {
|
|
/* Handling Trap */
|
|
WARN_ONCE(!write, "svm: Handling trap read.\n");
|
|
ret = avic_unaccel_trap_write(svm);
|
|
} else {
|
|
/* Handling Fault */
|
|
ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
|
|
[SVM_EXIT_READ_CR0] = cr_interception,
|
|
[SVM_EXIT_READ_CR3] = cr_interception,
|
|
[SVM_EXIT_READ_CR4] = cr_interception,
|
|
[SVM_EXIT_READ_CR8] = cr_interception,
|
|
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR0] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR3] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR4] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
|
|
[SVM_EXIT_READ_DR0] = dr_interception,
|
|
[SVM_EXIT_READ_DR1] = dr_interception,
|
|
[SVM_EXIT_READ_DR2] = dr_interception,
|
|
[SVM_EXIT_READ_DR3] = dr_interception,
|
|
[SVM_EXIT_READ_DR4] = dr_interception,
|
|
[SVM_EXIT_READ_DR5] = dr_interception,
|
|
[SVM_EXIT_READ_DR6] = dr_interception,
|
|
[SVM_EXIT_READ_DR7] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR0] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR1] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR2] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR3] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR4] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR5] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR6] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR7] = dr_interception,
|
|
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
|
|
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
|
|
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
|
|
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
|
|
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
|
|
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
|
|
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
|
|
[SVM_EXIT_INTR] = intr_interception,
|
|
[SVM_EXIT_NMI] = nmi_interception,
|
|
[SVM_EXIT_SMI] = nop_on_interception,
|
|
[SVM_EXIT_INIT] = nop_on_interception,
|
|
[SVM_EXIT_VINTR] = interrupt_window_interception,
|
|
[SVM_EXIT_RDPMC] = rdpmc_interception,
|
|
[SVM_EXIT_CPUID] = cpuid_interception,
|
|
[SVM_EXIT_IRET] = iret_interception,
|
|
[SVM_EXIT_INVD] = emulate_on_interception,
|
|
[SVM_EXIT_PAUSE] = pause_interception,
|
|
[SVM_EXIT_HLT] = halt_interception,
|
|
[SVM_EXIT_INVLPG] = invlpg_interception,
|
|
[SVM_EXIT_INVLPGA] = invlpga_interception,
|
|
[SVM_EXIT_IOIO] = io_interception,
|
|
[SVM_EXIT_MSR] = msr_interception,
|
|
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
|
|
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
|
|
[SVM_EXIT_VMRUN] = vmrun_interception,
|
|
[SVM_EXIT_VMMCALL] = vmmcall_interception,
|
|
[SVM_EXIT_VMLOAD] = vmload_interception,
|
|
[SVM_EXIT_VMSAVE] = vmsave_interception,
|
|
[SVM_EXIT_STGI] = stgi_interception,
|
|
[SVM_EXIT_CLGI] = clgi_interception,
|
|
[SVM_EXIT_SKINIT] = skinit_interception,
|
|
[SVM_EXIT_WBINVD] = wbinvd_interception,
|
|
[SVM_EXIT_MONITOR] = monitor_interception,
|
|
[SVM_EXIT_MWAIT] = mwait_interception,
|
|
[SVM_EXIT_XSETBV] = xsetbv_interception,
|
|
[SVM_EXIT_NPF] = npf_interception,
|
|
[SVM_EXIT_RSM] = rsm_interception,
|
|
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
|
|
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
|
|
};
|
|
|
|
static void dump_vmcb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
pr_err("VMCB Control Area:\n");
|
|
pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
|
|
pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
|
|
pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
|
|
pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
|
|
pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
|
|
pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
|
|
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
|
|
pr_err("%-20s%d\n", "pause filter threshold:",
|
|
control->pause_filter_thresh);
|
|
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
|
|
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
|
|
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
|
|
pr_err("%-20s%d\n", "asid:", control->asid);
|
|
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
|
|
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
|
|
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
|
|
pr_err("%-20s%08x\n", "int_state:", control->int_state);
|
|
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
|
|
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
|
|
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
|
|
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
|
|
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
|
|
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
|
|
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
|
|
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
|
|
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
|
|
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
|
|
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
|
|
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
|
|
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
|
|
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
|
|
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
|
|
pr_err("VMCB State Save Area:\n");
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"es:",
|
|
save->es.selector, save->es.attrib,
|
|
save->es.limit, save->es.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"cs:",
|
|
save->cs.selector, save->cs.attrib,
|
|
save->cs.limit, save->cs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ss:",
|
|
save->ss.selector, save->ss.attrib,
|
|
save->ss.limit, save->ss.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ds:",
|
|
save->ds.selector, save->ds.attrib,
|
|
save->ds.limit, save->ds.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"fs:",
|
|
save->fs.selector, save->fs.attrib,
|
|
save->fs.limit, save->fs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gs:",
|
|
save->gs.selector, save->gs.attrib,
|
|
save->gs.limit, save->gs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gdtr:",
|
|
save->gdtr.selector, save->gdtr.attrib,
|
|
save->gdtr.limit, save->gdtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ldtr:",
|
|
save->ldtr.selector, save->ldtr.attrib,
|
|
save->ldtr.limit, save->ldtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"idtr:",
|
|
save->idtr.selector, save->idtr.attrib,
|
|
save->idtr.limit, save->idtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"tr:",
|
|
save->tr.selector, save->tr.attrib,
|
|
save->tr.limit, save->tr.base);
|
|
pr_err("cpl: %d efer: %016llx\n",
|
|
save->cpl, save->efer);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr0:", save->cr0, "cr2:", save->cr2);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr3:", save->cr3, "cr4:", save->cr4);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"dr6:", save->dr6, "dr7:", save->dr7);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rip:", save->rip, "rflags:", save->rflags);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rsp:", save->rsp, "rax:", save->rax);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"star:", save->star, "lstar:", save->lstar);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cstar:", save->cstar, "sfmask:", save->sfmask);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"kernel_gs_base:", save->kernel_gs_base,
|
|
"sysenter_cs:", save->sysenter_cs);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"sysenter_esp:", save->sysenter_esp,
|
|
"sysenter_eip:", save->sysenter_eip);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"br_from:", save->br_from, "br_to:", save->br_to);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"excp_from:", save->last_excp_from,
|
|
"excp_to:", save->last_excp_to);
|
|
}
|
|
|
|
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
|
|
{
|
|
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
|
|
|
|
*info1 = control->exit_info_1;
|
|
*info2 = control->exit_info_2;
|
|
}
|
|
|
|
static int handle_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
|
|
|
|
if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
|
|
vcpu->arch.cr0 = svm->vmcb->save.cr0;
|
|
if (npt_enabled)
|
|
vcpu->arch.cr3 = svm->vmcb->save.cr3;
|
|
|
|
if (unlikely(svm->nested.exit_required)) {
|
|
nested_svm_vmexit(svm);
|
|
svm->nested.exit_required = false;
|
|
|
|
return 1;
|
|
}
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
int vmexit;
|
|
|
|
trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
|
|
svm->vmcb->control.exit_info_1,
|
|
svm->vmcb->control.exit_info_2,
|
|
svm->vmcb->control.exit_int_info,
|
|
svm->vmcb->control.exit_int_info_err,
|
|
KVM_ISA_SVM);
|
|
|
|
vmexit = nested_svm_exit_special(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_CONTINUE)
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
return 1;
|
|
}
|
|
|
|
svm_complete_interrupts(svm);
|
|
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= svm->vmcb->control.exit_code;
|
|
pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
|
|
dump_vmcb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
|
|
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
|
|
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
|
|
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
|
|
printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
|
|
"exit_code 0x%x\n",
|
|
__func__, svm->vmcb->control.exit_int_info,
|
|
exit_code);
|
|
|
|
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|
|
|| !svm_exit_handlers[exit_code]) {
|
|
WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
return svm_exit_handlers[exit_code](svm);
|
|
}
|
|
|
|
static void reload_tss(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
sd->tss_desc->type = 9; /* available 32/64-bit TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static void pre_sev_run(struct vcpu_svm *svm, int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
int asid = sev_get_asid(svm->vcpu.kvm);
|
|
|
|
/* Assign the asid allocated with this SEV guest */
|
|
svm->vmcb->control.asid = asid;
|
|
|
|
/*
|
|
* Flush guest TLB:
|
|
*
|
|
* 1) when different VMCB for the same ASID is to be run on the same host CPU.
|
|
* 2) or this VMCB was executed on different host CPU in previous VMRUNs.
|
|
*/
|
|
if (sd->sev_vmcbs[asid] == svm->vmcb &&
|
|
svm->last_cpu == cpu)
|
|
return;
|
|
|
|
svm->last_cpu = cpu;
|
|
sd->sev_vmcbs[asid] = svm->vmcb;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
static void pre_svm_run(struct vcpu_svm *svm)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
|
|
if (sev_guest(svm->vcpu.kvm))
|
|
return pre_sev_run(svm, cpu);
|
|
|
|
/* FIXME: handle wraparound of asid_generation */
|
|
if (svm->asid_generation != sd->asid_generation)
|
|
new_asid(svm, sd);
|
|
}
|
|
|
|
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
|
|
vcpu->arch.hflags |= HF_NMI_MASK;
|
|
set_intercept(svm, INTERCEPT_IRET);
|
|
++vcpu->stat.nmi_injections;
|
|
}
|
|
|
|
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
|
|
{
|
|
struct vmcb_control_area *control;
|
|
|
|
/* The following fields are ignored when AVIC is enabled */
|
|
control = &svm->vmcb->control;
|
|
control->int_vector = irq;
|
|
control->int_ctl &= ~V_INTR_PRIO_MASK;
|
|
control->int_ctl |= V_IRQ_MASK |
|
|
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static void svm_set_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
BUG_ON(!(gif_set(svm)));
|
|
|
|
trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
|
|
++vcpu->stat.irq_injections;
|
|
|
|
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
|
|
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
|
|
}
|
|
|
|
static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm_nested_virtualize_tpr(vcpu) ||
|
|
kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
if (irr == -1)
|
|
return;
|
|
|
|
if (tpr >= irr)
|
|
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
|
|
{
|
|
return avic && irqchip_split(vcpu->kvm);
|
|
}
|
|
|
|
static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
|
|
{
|
|
}
|
|
|
|
static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
|
|
{
|
|
}
|
|
|
|
/* Note: Currently only used by Hyper-V. */
|
|
static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (!kvm_vcpu_apicv_active(&svm->vcpu))
|
|
return;
|
|
|
|
vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
|
|
mark_dirty(vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
|
|
{
|
|
kvm_lapic_set_irr(vec, vcpu->arch.apic);
|
|
smp_mb__after_atomic();
|
|
|
|
if (avic_vcpu_is_running(vcpu))
|
|
wrmsrl(SVM_AVIC_DOORBELL,
|
|
kvm_cpu_get_apicid(vcpu->cpu));
|
|
else
|
|
kvm_vcpu_wake_up(vcpu);
|
|
}
|
|
|
|
static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
|
|
{
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *cur;
|
|
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
list_for_each_entry(cur, &svm->ir_list, node) {
|
|
if (cur->data != pi->ir_data)
|
|
continue;
|
|
list_del(&cur->node);
|
|
kfree(cur);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
}
|
|
|
|
static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
struct amd_svm_iommu_ir *ir;
|
|
|
|
/**
|
|
* In some cases, the existing irte is updaed and re-set,
|
|
* so we need to check here if it's already been * added
|
|
* to the ir_list.
|
|
*/
|
|
if (pi->ir_data && (pi->prev_ga_tag != 0)) {
|
|
struct kvm *kvm = svm->vcpu.kvm;
|
|
u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
|
|
struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
|
|
struct vcpu_svm *prev_svm;
|
|
|
|
if (!prev_vcpu) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
prev_svm = to_svm(prev_vcpu);
|
|
svm_ir_list_del(prev_svm, pi);
|
|
}
|
|
|
|
/**
|
|
* Allocating new amd_iommu_pi_data, which will get
|
|
* add to the per-vcpu ir_list.
|
|
*/
|
|
ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
|
|
if (!ir) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ir->data = pi->ir_data;
|
|
|
|
spin_lock_irqsave(&svm->ir_list_lock, flags);
|
|
list_add(&ir->node, &svm->ir_list);
|
|
spin_unlock_irqrestore(&svm->ir_list_lock, flags);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Note:
|
|
* The HW cannot support posting multicast/broadcast
|
|
* interrupts to a vCPU. So, we still use legacy interrupt
|
|
* remapping for these kind of interrupts.
|
|
*
|
|
* For lowest-priority interrupts, we only support
|
|
* those with single CPU as the destination, e.g. user
|
|
* configures the interrupts via /proc/irq or uses
|
|
* irqbalance to make the interrupts single-CPU.
|
|
*/
|
|
static int
|
|
get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
|
|
struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
|
|
{
|
|
struct kvm_lapic_irq irq;
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
|
|
kvm_set_msi_irq(kvm, e, &irq);
|
|
|
|
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
|
|
pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
|
|
__func__, irq.vector);
|
|
return -1;
|
|
}
|
|
|
|
pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
|
|
irq.vector);
|
|
*svm = to_svm(vcpu);
|
|
vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
|
|
vcpu_info->vector = irq.vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* svm_update_pi_irte - set IRTE for Posted-Interrupts
|
|
*
|
|
* @kvm: kvm
|
|
* @host_irq: host irq of the interrupt
|
|
* @guest_irq: gsi of the interrupt
|
|
* @set: set or unset PI
|
|
* returns 0 on success, < 0 on failure
|
|
*/
|
|
static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
|
|
uint32_t guest_irq, bool set)
|
|
{
|
|
struct kvm_kernel_irq_routing_entry *e;
|
|
struct kvm_irq_routing_table *irq_rt;
|
|
int idx, ret = -EINVAL;
|
|
|
|
if (!kvm_arch_has_assigned_device(kvm) ||
|
|
!irq_remapping_cap(IRQ_POSTING_CAP))
|
|
return 0;
|
|
|
|
pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
|
|
__func__, host_irq, guest_irq, set);
|
|
|
|
idx = srcu_read_lock(&kvm->irq_srcu);
|
|
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
|
|
WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
|
|
|
|
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
|
|
struct vcpu_data vcpu_info;
|
|
struct vcpu_svm *svm = NULL;
|
|
|
|
if (e->type != KVM_IRQ_ROUTING_MSI)
|
|
continue;
|
|
|
|
/**
|
|
* Here, we setup with legacy mode in the following cases:
|
|
* 1. When cannot target interrupt to a specific vcpu.
|
|
* 2. Unsetting posted interrupt.
|
|
* 3. APIC virtialization is disabled for the vcpu.
|
|
*/
|
|
if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
|
|
kvm_vcpu_apicv_active(&svm->vcpu)) {
|
|
struct amd_iommu_pi_data pi;
|
|
|
|
/* Try to enable guest_mode in IRTE */
|
|
pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
|
|
AVIC_HPA_MASK);
|
|
pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
|
|
svm->vcpu.vcpu_id);
|
|
pi.is_guest_mode = true;
|
|
pi.vcpu_data = &vcpu_info;
|
|
ret = irq_set_vcpu_affinity(host_irq, &pi);
|
|
|
|
/**
|
|
* Here, we successfully setting up vcpu affinity in
|
|
* IOMMU guest mode. Now, we need to store the posted
|
|
* interrupt information in a per-vcpu ir_list so that
|
|
* we can reference to them directly when we update vcpu
|
|
* scheduling information in IOMMU irte.
|
|
*/
|
|
if (!ret && pi.is_guest_mode)
|
|
svm_ir_list_add(svm, &pi);
|
|
} else {
|
|
/* Use legacy mode in IRTE */
|
|
struct amd_iommu_pi_data pi;
|
|
|
|
/**
|
|
* Here, pi is used to:
|
|
* - Tell IOMMU to use legacy mode for this interrupt.
|
|
* - Retrieve ga_tag of prior interrupt remapping data.
|
|
*/
|
|
pi.is_guest_mode = false;
|
|
ret = irq_set_vcpu_affinity(host_irq, &pi);
|
|
|
|
/**
|
|
* Check if the posted interrupt was previously
|
|
* setup with the guest_mode by checking if the ga_tag
|
|
* was cached. If so, we need to clean up the per-vcpu
|
|
* ir_list.
|
|
*/
|
|
if (!ret && pi.prev_ga_tag) {
|
|
int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = kvm_get_vcpu_by_id(kvm, id);
|
|
if (vcpu)
|
|
svm_ir_list_del(to_svm(vcpu), &pi);
|
|
}
|
|
}
|
|
|
|
if (!ret && svm) {
|
|
trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
|
|
e->gsi, vcpu_info.vector,
|
|
vcpu_info.pi_desc_addr, set);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
pr_err("%s: failed to update PI IRTE\n", __func__);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
srcu_read_unlock(&kvm->irq_srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
int ret;
|
|
ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
|
|
!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
ret = ret && gif_set(svm) && nested_svm_nmi(svm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
}
|
|
|
|
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (masked) {
|
|
svm->vcpu.arch.hflags |= HF_NMI_MASK;
|
|
set_intercept(svm, INTERCEPT_IRET);
|
|
} else {
|
|
svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
|
|
clr_intercept(svm, INTERCEPT_IRET);
|
|
}
|
|
}
|
|
|
|
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
int ret;
|
|
|
|
if (!gif_set(svm) ||
|
|
(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
|
|
return 0;
|
|
|
|
ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
|
|
* 1, because that's a separate STGI/VMRUN intercept. The next time we
|
|
* get that intercept, this function will be called again though and
|
|
* we'll get the vintr intercept. However, if the vGIF feature is
|
|
* enabled, the STGI interception will not occur. Enable the irq
|
|
* window under the assumption that the hardware will set the GIF.
|
|
*/
|
|
if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
|
|
svm_set_vintr(svm);
|
|
svm_inject_irq(svm, 0x0);
|
|
}
|
|
}
|
|
|
|
static void enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
|
|
== HF_NMI_MASK)
|
|
return; /* IRET will cause a vm exit */
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif_enabled(svm))
|
|
set_intercept(svm, INTERCEPT_STGI);
|
|
return; /* STGI will cause a vm exit */
|
|
}
|
|
|
|
if (svm->nested.exit_required)
|
|
return; /* we're not going to run the guest yet */
|
|
|
|
/*
|
|
* Something prevents NMI from been injected. Single step over possible
|
|
* problem (IRET or exception injection or interrupt shadow)
|
|
*/
|
|
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
|
|
svm->nmi_singlestep = true;
|
|
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
}
|
|
|
|
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
else
|
|
svm->asid_generation--;
|
|
}
|
|
|
|
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
invlpga(gva, svm->vmcb->control.asid);
|
|
}
|
|
|
|
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm_nested_virtualize_tpr(vcpu))
|
|
return;
|
|
|
|
if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
|
|
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
|
|
kvm_set_cr8(vcpu, cr8);
|
|
}
|
|
}
|
|
|
|
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr8;
|
|
|
|
if (svm_nested_virtualize_tpr(vcpu) ||
|
|
kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
cr8 = kvm_get_cr8(vcpu);
|
|
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
|
|
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
|
|
}
|
|
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm)
|
|
{
|
|
u8 vector;
|
|
int type;
|
|
u32 exitintinfo = svm->vmcb->control.exit_int_info;
|
|
unsigned int3_injected = svm->int3_injected;
|
|
|
|
svm->int3_injected = 0;
|
|
|
|
/*
|
|
* If we've made progress since setting HF_IRET_MASK, we've
|
|
* executed an IRET and can allow NMI injection.
|
|
*/
|
|
if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
|
|
&& kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
|
|
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
}
|
|
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
|
|
return;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
|
|
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
|
|
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = true;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
/*
|
|
* In case of software exceptions, do not reinject the vector,
|
|
* but re-execute the instruction instead. Rewind RIP first
|
|
* if we emulated INT3 before.
|
|
*/
|
|
if (kvm_exception_is_soft(vector)) {
|
|
if (vector == BP_VECTOR && int3_injected &&
|
|
kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
|
|
kvm_rip_write(&svm->vcpu,
|
|
kvm_rip_read(&svm->vcpu) -
|
|
int3_injected);
|
|
break;
|
|
}
|
|
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
|
|
u32 err = svm->vmcb->control.exit_int_info_err;
|
|
kvm_requeue_exception_e(&svm->vcpu, vector, err);
|
|
|
|
} else
|
|
kvm_requeue_exception(&svm->vcpu, vector);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_queue_interrupt(&svm->vcpu, vector, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
|
|
control->exit_int_info = control->event_inj;
|
|
control->exit_int_info_err = control->event_inj_err;
|
|
control->event_inj = 0;
|
|
svm_complete_interrupts(svm);
|
|
}
|
|
|
|
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
/*
|
|
* A vmexit emulation is required before the vcpu can be executed
|
|
* again.
|
|
*/
|
|
if (unlikely(svm->nested.exit_required))
|
|
return;
|
|
|
|
/*
|
|
* Disable singlestep if we're injecting an interrupt/exception.
|
|
* We don't want our modified rflags to be pushed on the stack where
|
|
* we might not be able to easily reset them if we disabled NMI
|
|
* singlestep later.
|
|
*/
|
|
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
|
|
/*
|
|
* Event injection happens before external interrupts cause a
|
|
* vmexit and interrupts are disabled here, so smp_send_reschedule
|
|
* is enough to force an immediate vmexit.
|
|
*/
|
|
disable_nmi_singlestep(svm);
|
|
smp_send_reschedule(vcpu->cpu);
|
|
}
|
|
|
|
pre_svm_run(svm);
|
|
|
|
sync_lapic_to_cr8(vcpu);
|
|
|
|
svm->vmcb->save.cr2 = vcpu->arch.cr2;
|
|
|
|
clgi();
|
|
|
|
/*
|
|
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
|
|
* it's non-zero. Since vmentry is serialising on affected CPUs, there
|
|
* is no need to worry about the conditional branch over the wrmsr
|
|
* being speculatively taken.
|
|
*/
|
|
x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
|
|
|
|
local_irq_enable();
|
|
|
|
asm volatile (
|
|
"push %%" _ASM_BP "; \n\t"
|
|
"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
|
|
"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
|
|
"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
|
|
"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
|
|
"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
|
|
"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %c[r8](%[svm]), %%r8 \n\t"
|
|
"mov %c[r9](%[svm]), %%r9 \n\t"
|
|
"mov %c[r10](%[svm]), %%r10 \n\t"
|
|
"mov %c[r11](%[svm]), %%r11 \n\t"
|
|
"mov %c[r12](%[svm]), %%r12 \n\t"
|
|
"mov %c[r13](%[svm]), %%r13 \n\t"
|
|
"mov %c[r14](%[svm]), %%r14 \n\t"
|
|
"mov %c[r15](%[svm]), %%r15 \n\t"
|
|
#endif
|
|
|
|
/* Enter guest mode */
|
|
"push %%" _ASM_AX " \n\t"
|
|
"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
|
|
__ex("vmload %%" _ASM_AX) "\n\t"
|
|
__ex("vmrun %%" _ASM_AX) "\n\t"
|
|
__ex("vmsave %%" _ASM_AX) "\n\t"
|
|
"pop %%" _ASM_AX " \n\t"
|
|
|
|
/* Save guest registers, load host registers */
|
|
"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
|
|
"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
|
|
"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
|
|
"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
|
|
"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
|
|
"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %%r8, %c[r8](%[svm]) \n\t"
|
|
"mov %%r9, %c[r9](%[svm]) \n\t"
|
|
"mov %%r10, %c[r10](%[svm]) \n\t"
|
|
"mov %%r11, %c[r11](%[svm]) \n\t"
|
|
"mov %%r12, %c[r12](%[svm]) \n\t"
|
|
"mov %%r13, %c[r13](%[svm]) \n\t"
|
|
"mov %%r14, %c[r14](%[svm]) \n\t"
|
|
"mov %%r15, %c[r15](%[svm]) \n\t"
|
|
/*
|
|
* Clear host registers marked as clobbered to prevent
|
|
* speculative use.
|
|
*/
|
|
"xor %%r8d, %%r8d \n\t"
|
|
"xor %%r9d, %%r9d \n\t"
|
|
"xor %%r10d, %%r10d \n\t"
|
|
"xor %%r11d, %%r11d \n\t"
|
|
"xor %%r12d, %%r12d \n\t"
|
|
"xor %%r13d, %%r13d \n\t"
|
|
"xor %%r14d, %%r14d \n\t"
|
|
"xor %%r15d, %%r15d \n\t"
|
|
#endif
|
|
"xor %%ebx, %%ebx \n\t"
|
|
"xor %%ecx, %%ecx \n\t"
|
|
"xor %%edx, %%edx \n\t"
|
|
"xor %%esi, %%esi \n\t"
|
|
"xor %%edi, %%edi \n\t"
|
|
"pop %%" _ASM_BP
|
|
:
|
|
: [svm]"a"(svm),
|
|
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
|
|
[rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
|
|
[rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
|
|
[rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
|
|
[rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
|
|
[rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
|
|
[rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
|
|
#ifdef CONFIG_X86_64
|
|
, [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
|
|
[r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
|
|
[r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
|
|
[r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
|
|
[r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
|
|
[r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
|
|
[r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
|
|
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
|
|
#endif
|
|
: "cc", "memory"
|
|
#ifdef CONFIG_X86_64
|
|
, "rbx", "rcx", "rdx", "rsi", "rdi"
|
|
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
|
|
#else
|
|
, "ebx", "ecx", "edx", "esi", "edi"
|
|
#endif
|
|
);
|
|
|
|
/* Eliminate branch target predictions from guest mode */
|
|
vmexit_fill_RSB();
|
|
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_GS_BASE, svm->host.gs_base);
|
|
#else
|
|
loadsegment(fs, svm->host.fs);
|
|
#ifndef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* We do not use IBRS in the kernel. If this vCPU has used the
|
|
* SPEC_CTRL MSR it may have left it on; save the value and
|
|
* turn it off. This is much more efficient than blindly adding
|
|
* it to the atomic save/restore list. Especially as the former
|
|
* (Saving guest MSRs on vmexit) doesn't even exist in KVM.
|
|
*
|
|
* For non-nested case:
|
|
* If the L01 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*
|
|
* For nested case:
|
|
* If the L02 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*/
|
|
if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
|
|
svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
|
|
|
|
reload_tss(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
|
|
|
|
vcpu->arch.cr2 = svm->vmcb->save.cr2;
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_before_interrupt(&svm->vcpu);
|
|
|
|
stgi();
|
|
|
|
/* Any pending NMI will happen here */
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_after_interrupt(&svm->vcpu);
|
|
|
|
sync_cr8_to_lapic(vcpu);
|
|
|
|
svm->next_rip = 0;
|
|
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
|
|
|
|
/* if exit due to PF check for async PF */
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
|
|
svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
|
|
|
|
if (npt_enabled) {
|
|
vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
|
|
vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
|
|
}
|
|
|
|
/*
|
|
* We need to handle MC intercepts here before the vcpu has a chance to
|
|
* change the physical cpu
|
|
*/
|
|
if (unlikely(svm->vmcb->control.exit_code ==
|
|
SVM_EXIT_EXCP_BASE + MC_VECTOR))
|
|
svm_handle_mce(svm);
|
|
|
|
mark_all_clean(svm->vmcb);
|
|
}
|
|
STACK_FRAME_NON_STANDARD(svm_vcpu_run);
|
|
|
|
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.cr3 = __sme_set(root);
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.nested_cr3 = __sme_set(root);
|
|
mark_dirty(svm->vmcb, VMCB_NPT);
|
|
|
|
/* Also sync guest cr3 here in case we live migrate */
|
|
svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static int is_disabled(void)
|
|
{
|
|
u64 vm_cr;
|
|
|
|
rdmsrl(MSR_VM_CR, vm_cr);
|
|
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xd9;
|
|
}
|
|
|
|
static void svm_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
static bool svm_cpu_has_accelerated_tpr(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_has_emulated_msr(int index)
|
|
{
|
|
switch (index) {
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* Update nrips enabled cache */
|
|
svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
|
|
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
|
|
}
|
|
|
|
static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
switch (func) {
|
|
case 0x1:
|
|
if (avic)
|
|
entry->ecx &= ~bit(X86_FEATURE_X2APIC);
|
|
break;
|
|
case 0x80000001:
|
|
if (nested)
|
|
entry->ecx |= (1 << 2); /* Set SVM bit */
|
|
break;
|
|
case 0x8000000A:
|
|
entry->eax = 1; /* SVM revision 1 */
|
|
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
|
|
ASID emulation to nested SVM */
|
|
entry->ecx = 0; /* Reserved */
|
|
entry->edx = 0; /* Per default do not support any
|
|
additional features */
|
|
|
|
/* Support next_rip if host supports it */
|
|
if (boot_cpu_has(X86_FEATURE_NRIPS))
|
|
entry->edx |= SVM_FEATURE_NRIP;
|
|
|
|
/* Support NPT for the guest if enabled */
|
|
if (npt_enabled)
|
|
entry->edx |= SVM_FEATURE_NPT;
|
|
|
|
break;
|
|
case 0x8000001F:
|
|
/* Support memory encryption cpuid if host supports it */
|
|
if (boot_cpu_has(X86_FEATURE_SEV))
|
|
cpuid(0x8000001f, &entry->eax, &entry->ebx,
|
|
&entry->ecx, &entry->edx);
|
|
|
|
}
|
|
}
|
|
|
|
static int svm_get_lpage_level(void)
|
|
{
|
|
return PT_PDPE_LEVEL;
|
|
}
|
|
|
|
static bool svm_rdtscp_supported(void)
|
|
{
|
|
return boot_cpu_has(X86_FEATURE_RDTSCP);
|
|
}
|
|
|
|
static bool svm_invpcid_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_mpx_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_xsaves_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_umip_emulated(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_pt_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_has_wbinvd_exit(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#define PRE_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_PRE_EXCEPT, }
|
|
#define POST_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_EXCEPT, }
|
|
#define POST_MEM(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_MEMACCESS, }
|
|
|
|
static const struct __x86_intercept {
|
|
u32 exit_code;
|
|
enum x86_intercept_stage stage;
|
|
} x86_intercept_map[] = {
|
|
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
|
|
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
|
|
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
|
|
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
|
|
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
|
|
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
|
|
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
|
|
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
|
|
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
|
|
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
|
|
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
|
|
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
|
|
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
|
|
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
|
|
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
|
|
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
|
|
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
|
|
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
|
|
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
|
|
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
|
|
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
|
|
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
|
|
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
|
|
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
|
|
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
|
|
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
|
|
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
|
|
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
|
|
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
|
|
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
|
|
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
|
|
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
|
|
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
|
|
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
|
|
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
|
|
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
|
|
};
|
|
|
|
#undef PRE_EX
|
|
#undef POST_EX
|
|
#undef POST_MEM
|
|
|
|
static int svm_check_intercept(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int vmexit, ret = X86EMUL_CONTINUE;
|
|
struct __x86_intercept icpt_info;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
|
|
goto out;
|
|
|
|
icpt_info = x86_intercept_map[info->intercept];
|
|
|
|
if (stage != icpt_info.stage)
|
|
goto out;
|
|
|
|
switch (icpt_info.exit_code) {
|
|
case SVM_EXIT_READ_CR0:
|
|
if (info->intercept == x86_intercept_cr_read)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_WRITE_CR0: {
|
|
unsigned long cr0, val;
|
|
u64 intercept;
|
|
|
|
if (info->intercept == x86_intercept_cr_write)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
|
|
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
|
|
info->intercept == x86_intercept_clts)
|
|
break;
|
|
|
|
intercept = svm->nested.intercept;
|
|
|
|
if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
|
|
break;
|
|
|
|
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
|
|
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (info->intercept == x86_intercept_lmsw) {
|
|
cr0 &= 0xfUL;
|
|
val &= 0xfUL;
|
|
/* lmsw can't clear PE - catch this here */
|
|
if (cr0 & X86_CR0_PE)
|
|
val |= X86_CR0_PE;
|
|
}
|
|
|
|
if (cr0 ^ val)
|
|
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0:
|
|
case SVM_EXIT_WRITE_DR0:
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
if (info->intercept == x86_intercept_wrmsr)
|
|
vmcb->control.exit_info_1 = 1;
|
|
else
|
|
vmcb->control.exit_info_1 = 0;
|
|
break;
|
|
case SVM_EXIT_PAUSE:
|
|
/*
|
|
* We get this for NOP only, but pause
|
|
* is rep not, check this here
|
|
*/
|
|
if (info->rep_prefix != REPE_PREFIX)
|
|
goto out;
|
|
break;
|
|
case SVM_EXIT_IOIO: {
|
|
u64 exit_info;
|
|
u32 bytes;
|
|
|
|
if (info->intercept == x86_intercept_in ||
|
|
info->intercept == x86_intercept_ins) {
|
|
exit_info = ((info->src_val & 0xffff) << 16) |
|
|
SVM_IOIO_TYPE_MASK;
|
|
bytes = info->dst_bytes;
|
|
} else {
|
|
exit_info = (info->dst_val & 0xffff) << 16;
|
|
bytes = info->src_bytes;
|
|
}
|
|
|
|
if (info->intercept == x86_intercept_outs ||
|
|
info->intercept == x86_intercept_ins)
|
|
exit_info |= SVM_IOIO_STR_MASK;
|
|
|
|
if (info->rep_prefix)
|
|
exit_info |= SVM_IOIO_REP_MASK;
|
|
|
|
bytes = min(bytes, 4u);
|
|
|
|
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
|
|
|
|
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
|
|
|
|
vmcb->control.exit_info_1 = exit_info;
|
|
vmcb->control.exit_info_2 = info->next_rip;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
|
|
if (static_cpu_has(X86_FEATURE_NRIPS))
|
|
vmcb->control.next_rip = info->next_rip;
|
|
vmcb->control.exit_code = icpt_info.exit_code;
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
|
|
: X86EMUL_CONTINUE;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
|
|
{
|
|
local_irq_enable();
|
|
/*
|
|
* We must have an instruction with interrupts enabled, so
|
|
* the timer interrupt isn't delayed by the interrupt shadow.
|
|
*/
|
|
asm("nop");
|
|
local_irq_disable();
|
|
}
|
|
|
|
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
if (pause_filter_thresh)
|
|
shrink_ple_window(vcpu);
|
|
}
|
|
|
|
static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (avic_handle_apic_id_update(vcpu) != 0)
|
|
return;
|
|
if (avic_handle_dfr_update(vcpu) != 0)
|
|
return;
|
|
avic_handle_ldr_update(vcpu);
|
|
}
|
|
|
|
static void svm_setup_mce(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* [63:9] are reserved. */
|
|
vcpu->arch.mcg_cap &= 0x1ff;
|
|
}
|
|
|
|
static int svm_smi_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* Per APM Vol.2 15.22.2 "Response to SMI" */
|
|
if (!gif_set(svm))
|
|
return 0;
|
|
|
|
if (is_guest_mode(&svm->vcpu) &&
|
|
svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
|
|
/* TODO: Might need to set exit_info_1 and exit_info_2 here */
|
|
svm->vmcb->control.exit_code = SVM_EXIT_SMI;
|
|
svm->nested.exit_required = true;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int ret;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* FED8h - SVM Guest */
|
|
put_smstate(u64, smstate, 0x7ed8, 1);
|
|
/* FEE0h - SVM Guest VMCB Physical Address */
|
|
put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
ret = nested_svm_vmexit(svm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *nested_vmcb;
|
|
struct page *page;
|
|
struct {
|
|
u64 guest;
|
|
u64 vmcb;
|
|
} svm_state_save;
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
|
|
sizeof(svm_state_save));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (svm_state_save.guest) {
|
|
vcpu->arch.hflags &= ~HF_SMM_MASK;
|
|
nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
|
|
if (nested_vmcb)
|
|
enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
|
|
else
|
|
ret = 1;
|
|
vcpu->arch.hflags |= HF_SMM_MASK;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int enable_smi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif_enabled(svm))
|
|
set_intercept(svm, INTERCEPT_STGI);
|
|
/* STGI will cause a vm exit */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int sev_asid_new(void)
|
|
{
|
|
int pos;
|
|
|
|
/*
|
|
* SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
|
|
*/
|
|
pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
|
|
if (pos >= max_sev_asid)
|
|
return -EBUSY;
|
|
|
|
set_bit(pos, sev_asid_bitmap);
|
|
return pos + 1;
|
|
}
|
|
|
|
static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
int asid, ret;
|
|
|
|
ret = -EBUSY;
|
|
if (unlikely(sev->active))
|
|
return ret;
|
|
|
|
asid = sev_asid_new();
|
|
if (asid < 0)
|
|
return ret;
|
|
|
|
ret = sev_platform_init(&argp->error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
sev->active = true;
|
|
sev->asid = asid;
|
|
INIT_LIST_HEAD(&sev->regions_list);
|
|
|
|
return 0;
|
|
|
|
e_free:
|
|
__sev_asid_free(asid);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
|
|
{
|
|
struct sev_data_activate *data;
|
|
int asid = sev_get_asid(kvm);
|
|
int ret;
|
|
|
|
wbinvd_on_all_cpus();
|
|
|
|
ret = sev_guest_df_flush(error);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/* activate ASID on the given handle */
|
|
data->handle = handle;
|
|
data->asid = asid;
|
|
ret = sev_guest_activate(data, error);
|
|
kfree(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_issue_cmd(int fd, int id, void *data, int *error)
|
|
{
|
|
struct fd f;
|
|
int ret;
|
|
|
|
f = fdget(fd);
|
|
if (!f.file)
|
|
return -EBADF;
|
|
|
|
ret = sev_issue_cmd_external_user(f.file, id, data, error);
|
|
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
|
|
return __sev_issue_cmd(sev->fd, id, data, error);
|
|
}
|
|
|
|
static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_start *start;
|
|
struct kvm_sev_launch_start params;
|
|
void *dh_blob, *session_blob;
|
|
int *error = &argp->error;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
start = kzalloc(sizeof(*start), GFP_KERNEL);
|
|
if (!start)
|
|
return -ENOMEM;
|
|
|
|
dh_blob = NULL;
|
|
if (params.dh_uaddr) {
|
|
dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
|
|
if (IS_ERR(dh_blob)) {
|
|
ret = PTR_ERR(dh_blob);
|
|
goto e_free;
|
|
}
|
|
|
|
start->dh_cert_address = __sme_set(__pa(dh_blob));
|
|
start->dh_cert_len = params.dh_len;
|
|
}
|
|
|
|
session_blob = NULL;
|
|
if (params.session_uaddr) {
|
|
session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
|
|
if (IS_ERR(session_blob)) {
|
|
ret = PTR_ERR(session_blob);
|
|
goto e_free_dh;
|
|
}
|
|
|
|
start->session_address = __sme_set(__pa(session_blob));
|
|
start->session_len = params.session_len;
|
|
}
|
|
|
|
start->handle = params.handle;
|
|
start->policy = params.policy;
|
|
|
|
/* create memory encryption context */
|
|
ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
|
|
if (ret)
|
|
goto e_free_session;
|
|
|
|
/* Bind ASID to this guest */
|
|
ret = sev_bind_asid(kvm, start->handle, error);
|
|
if (ret)
|
|
goto e_free_session;
|
|
|
|
/* return handle to userspace */
|
|
params.handle = start->handle;
|
|
if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
|
|
sev_unbind_asid(kvm, start->handle);
|
|
ret = -EFAULT;
|
|
goto e_free_session;
|
|
}
|
|
|
|
sev->handle = start->handle;
|
|
sev->fd = argp->sev_fd;
|
|
|
|
e_free_session:
|
|
kfree(session_blob);
|
|
e_free_dh:
|
|
kfree(dh_blob);
|
|
e_free:
|
|
kfree(start);
|
|
return ret;
|
|
}
|
|
|
|
static int get_num_contig_pages(int idx, struct page **inpages,
|
|
unsigned long npages)
|
|
{
|
|
unsigned long paddr, next_paddr;
|
|
int i = idx + 1, pages = 1;
|
|
|
|
/* find the number of contiguous pages starting from idx */
|
|
paddr = __sme_page_pa(inpages[idx]);
|
|
while (i < npages) {
|
|
next_paddr = __sme_page_pa(inpages[i++]);
|
|
if ((paddr + PAGE_SIZE) == next_paddr) {
|
|
pages++;
|
|
paddr = next_paddr;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct kvm_sev_launch_update_data params;
|
|
struct sev_data_launch_update_data *data;
|
|
struct page **inpages;
|
|
int i, ret, pages;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
vaddr = params.uaddr;
|
|
size = params.len;
|
|
vaddr_end = vaddr + size;
|
|
|
|
/* Lock the user memory. */
|
|
inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
|
|
if (!inpages) {
|
|
ret = -ENOMEM;
|
|
goto e_free;
|
|
}
|
|
|
|
/*
|
|
* The LAUNCH_UPDATE command will perform in-place encryption of the
|
|
* memory content (i.e it will write the same memory region with C=1).
|
|
* It's possible that the cache may contain the data with C=0, i.e.,
|
|
* unencrypted so invalidate it first.
|
|
*/
|
|
sev_clflush_pages(inpages, npages);
|
|
|
|
for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
|
|
int offset, len;
|
|
|
|
/*
|
|
* If the user buffer is not page-aligned, calculate the offset
|
|
* within the page.
|
|
*/
|
|
offset = vaddr & (PAGE_SIZE - 1);
|
|
|
|
/* Calculate the number of pages that can be encrypted in one go. */
|
|
pages = get_num_contig_pages(i, inpages, npages);
|
|
|
|
len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
|
|
|
|
data->handle = sev->handle;
|
|
data->len = len;
|
|
data->address = __sme_page_pa(inpages[i]) + offset;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
|
|
if (ret)
|
|
goto e_unpin;
|
|
|
|
size -= len;
|
|
next_vaddr = vaddr + len;
|
|
}
|
|
|
|
e_unpin:
|
|
/* content of memory is updated, mark pages dirty */
|
|
for (i = 0; i < npages; i++) {
|
|
set_page_dirty_lock(inpages[i]);
|
|
mark_page_accessed(inpages[i]);
|
|
}
|
|
/* unlock the user pages */
|
|
sev_unpin_memory(kvm, inpages, npages);
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
void __user *measure = (void __user *)(uintptr_t)argp->data;
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_measure *data;
|
|
struct kvm_sev_launch_measure params;
|
|
void __user *p = NULL;
|
|
void *blob = NULL;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, measure, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/* User wants to query the blob length */
|
|
if (!params.len)
|
|
goto cmd;
|
|
|
|
p = (void __user *)(uintptr_t)params.uaddr;
|
|
if (p) {
|
|
if (params.len > SEV_FW_BLOB_MAX_SIZE) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
blob = kmalloc(params.len, GFP_KERNEL);
|
|
if (!blob)
|
|
goto e_free;
|
|
|
|
data->address = __psp_pa(blob);
|
|
data->len = params.len;
|
|
}
|
|
|
|
cmd:
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
|
|
|
|
/*
|
|
* If we query the session length, FW responded with expected data.
|
|
*/
|
|
if (!params.len)
|
|
goto done;
|
|
|
|
if (ret)
|
|
goto e_free_blob;
|
|
|
|
if (blob) {
|
|
if (copy_to_user(p, blob, params.len))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
done:
|
|
params.len = data->len;
|
|
if (copy_to_user(measure, ¶ms, sizeof(params)))
|
|
ret = -EFAULT;
|
|
e_free_blob:
|
|
kfree(blob);
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_finish *data;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
|
|
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct kvm_sev_guest_status params;
|
|
struct sev_data_guest_status *data;
|
|
int ret;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
params.policy = data->policy;
|
|
params.state = data->state;
|
|
params.handle = data->handle;
|
|
|
|
if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
|
|
ret = -EFAULT;
|
|
e_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
|
|
unsigned long dst, int size,
|
|
int *error, bool enc)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_dbg *data;
|
|
int ret;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->handle = sev->handle;
|
|
data->dst_addr = dst;
|
|
data->src_addr = src;
|
|
data->len = size;
|
|
|
|
ret = sev_issue_cmd(kvm,
|
|
enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
|
|
data, error);
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
|
|
unsigned long dst_paddr, int sz, int *err)
|
|
{
|
|
int offset;
|
|
|
|
/*
|
|
* Its safe to read more than we are asked, caller should ensure that
|
|
* destination has enough space.
|
|
*/
|
|
src_paddr = round_down(src_paddr, 16);
|
|
offset = src_paddr & 15;
|
|
sz = round_up(sz + offset, 16);
|
|
|
|
return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
|
|
}
|
|
|
|
static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
|
|
unsigned long __user dst_uaddr,
|
|
unsigned long dst_paddr,
|
|
int size, int *err)
|
|
{
|
|
struct page *tpage = NULL;
|
|
int ret, offset;
|
|
|
|
/* if inputs are not 16-byte then use intermediate buffer */
|
|
if (!IS_ALIGNED(dst_paddr, 16) ||
|
|
!IS_ALIGNED(paddr, 16) ||
|
|
!IS_ALIGNED(size, 16)) {
|
|
tpage = (void *)alloc_page(GFP_KERNEL);
|
|
if (!tpage)
|
|
return -ENOMEM;
|
|
|
|
dst_paddr = __sme_page_pa(tpage);
|
|
}
|
|
|
|
ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
if (tpage) {
|
|
offset = paddr & 15;
|
|
if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
|
|
page_address(tpage) + offset, size))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
e_free:
|
|
if (tpage)
|
|
__free_page(tpage);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
|
|
unsigned long __user vaddr,
|
|
unsigned long dst_paddr,
|
|
unsigned long __user dst_vaddr,
|
|
int size, int *error)
|
|
{
|
|
struct page *src_tpage = NULL;
|
|
struct page *dst_tpage = NULL;
|
|
int ret, len = size;
|
|
|
|
/* If source buffer is not aligned then use an intermediate buffer */
|
|
if (!IS_ALIGNED(vaddr, 16)) {
|
|
src_tpage = alloc_page(GFP_KERNEL);
|
|
if (!src_tpage)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(page_address(src_tpage),
|
|
(void __user *)(uintptr_t)vaddr, size)) {
|
|
__free_page(src_tpage);
|
|
return -EFAULT;
|
|
}
|
|
|
|
paddr = __sme_page_pa(src_tpage);
|
|
}
|
|
|
|
/*
|
|
* If destination buffer or length is not aligned then do read-modify-write:
|
|
* - decrypt destination in an intermediate buffer
|
|
* - copy the source buffer in an intermediate buffer
|
|
* - use the intermediate buffer as source buffer
|
|
*/
|
|
if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
|
|
int dst_offset;
|
|
|
|
dst_tpage = alloc_page(GFP_KERNEL);
|
|
if (!dst_tpage) {
|
|
ret = -ENOMEM;
|
|
goto e_free;
|
|
}
|
|
|
|
ret = __sev_dbg_decrypt(kvm, dst_paddr,
|
|
__sme_page_pa(dst_tpage), size, error);
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
/*
|
|
* If source is kernel buffer then use memcpy() otherwise
|
|
* copy_from_user().
|
|
*/
|
|
dst_offset = dst_paddr & 15;
|
|
|
|
if (src_tpage)
|
|
memcpy(page_address(dst_tpage) + dst_offset,
|
|
page_address(src_tpage), size);
|
|
else {
|
|
if (copy_from_user(page_address(dst_tpage) + dst_offset,
|
|
(void __user *)(uintptr_t)vaddr, size)) {
|
|
ret = -EFAULT;
|
|
goto e_free;
|
|
}
|
|
}
|
|
|
|
paddr = __sme_page_pa(dst_tpage);
|
|
dst_paddr = round_down(dst_paddr, 16);
|
|
len = round_up(size, 16);
|
|
}
|
|
|
|
ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
|
|
|
|
e_free:
|
|
if (src_tpage)
|
|
__free_page(src_tpage);
|
|
if (dst_tpage)
|
|
__free_page(dst_tpage);
|
|
return ret;
|
|
}
|
|
|
|
static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
|
|
{
|
|
unsigned long vaddr, vaddr_end, next_vaddr;
|
|
unsigned long dst_vaddr;
|
|
struct page **src_p, **dst_p;
|
|
struct kvm_sev_dbg debug;
|
|
unsigned long n;
|
|
int ret, size;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
|
|
return -EFAULT;
|
|
|
|
vaddr = debug.src_uaddr;
|
|
size = debug.len;
|
|
vaddr_end = vaddr + size;
|
|
dst_vaddr = debug.dst_uaddr;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = next_vaddr) {
|
|
int len, s_off, d_off;
|
|
|
|
/* lock userspace source and destination page */
|
|
src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
|
|
if (!src_p)
|
|
return -EFAULT;
|
|
|
|
dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
|
|
if (!dst_p) {
|
|
sev_unpin_memory(kvm, src_p, n);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
|
|
* memory content (i.e it will write the same memory region with C=1).
|
|
* It's possible that the cache may contain the data with C=0, i.e.,
|
|
* unencrypted so invalidate it first.
|
|
*/
|
|
sev_clflush_pages(src_p, 1);
|
|
sev_clflush_pages(dst_p, 1);
|
|
|
|
/*
|
|
* Since user buffer may not be page aligned, calculate the
|
|
* offset within the page.
|
|
*/
|
|
s_off = vaddr & ~PAGE_MASK;
|
|
d_off = dst_vaddr & ~PAGE_MASK;
|
|
len = min_t(size_t, (PAGE_SIZE - s_off), size);
|
|
|
|
if (dec)
|
|
ret = __sev_dbg_decrypt_user(kvm,
|
|
__sme_page_pa(src_p[0]) + s_off,
|
|
dst_vaddr,
|
|
__sme_page_pa(dst_p[0]) + d_off,
|
|
len, &argp->error);
|
|
else
|
|
ret = __sev_dbg_encrypt_user(kvm,
|
|
__sme_page_pa(src_p[0]) + s_off,
|
|
vaddr,
|
|
__sme_page_pa(dst_p[0]) + d_off,
|
|
dst_vaddr,
|
|
len, &argp->error);
|
|
|
|
sev_unpin_memory(kvm, src_p, 1);
|
|
sev_unpin_memory(kvm, dst_p, 1);
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
next_vaddr = vaddr + len;
|
|
dst_vaddr = dst_vaddr + len;
|
|
size -= len;
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct sev_data_launch_secret *data;
|
|
struct kvm_sev_launch_secret params;
|
|
struct page **pages;
|
|
void *blob, *hdr;
|
|
unsigned long n;
|
|
int ret, offset;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
|
|
return -EFAULT;
|
|
|
|
pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* The secret must be copied into contiguous memory region, lets verify
|
|
* that userspace memory pages are contiguous before we issue command.
|
|
*/
|
|
if (get_num_contig_pages(0, pages, n) != n) {
|
|
ret = -EINVAL;
|
|
goto e_unpin_memory;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
goto e_unpin_memory;
|
|
|
|
offset = params.guest_uaddr & (PAGE_SIZE - 1);
|
|
data->guest_address = __sme_page_pa(pages[0]) + offset;
|
|
data->guest_len = params.guest_len;
|
|
|
|
blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
|
|
if (IS_ERR(blob)) {
|
|
ret = PTR_ERR(blob);
|
|
goto e_free;
|
|
}
|
|
|
|
data->trans_address = __psp_pa(blob);
|
|
data->trans_len = params.trans_len;
|
|
|
|
hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
|
|
if (IS_ERR(hdr)) {
|
|
ret = PTR_ERR(hdr);
|
|
goto e_free_blob;
|
|
}
|
|
data->hdr_address = __psp_pa(hdr);
|
|
data->hdr_len = params.hdr_len;
|
|
|
|
data->handle = sev->handle;
|
|
ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
|
|
|
|
kfree(hdr);
|
|
|
|
e_free_blob:
|
|
kfree(blob);
|
|
e_free:
|
|
kfree(data);
|
|
e_unpin_memory:
|
|
sev_unpin_memory(kvm, pages, n);
|
|
return ret;
|
|
}
|
|
|
|
static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
|
|
{
|
|
struct kvm_sev_cmd sev_cmd;
|
|
int r;
|
|
|
|
if (!svm_sev_enabled())
|
|
return -ENOTTY;
|
|
|
|
if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
switch (sev_cmd.id) {
|
|
case KVM_SEV_INIT:
|
|
r = sev_guest_init(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_START:
|
|
r = sev_launch_start(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_UPDATE_DATA:
|
|
r = sev_launch_update_data(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_MEASURE:
|
|
r = sev_launch_measure(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_LAUNCH_FINISH:
|
|
r = sev_launch_finish(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_GUEST_STATUS:
|
|
r = sev_guest_status(kvm, &sev_cmd);
|
|
break;
|
|
case KVM_SEV_DBG_DECRYPT:
|
|
r = sev_dbg_crypt(kvm, &sev_cmd, true);
|
|
break;
|
|
case KVM_SEV_DBG_ENCRYPT:
|
|
r = sev_dbg_crypt(kvm, &sev_cmd, false);
|
|
break;
|
|
case KVM_SEV_LAUNCH_SECRET:
|
|
r = sev_launch_secret(kvm, &sev_cmd);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
|
|
r = -EFAULT;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
static int svm_register_enc_region(struct kvm *kvm,
|
|
struct kvm_enc_region *range)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct enc_region *region;
|
|
int ret = 0;
|
|
|
|
if (!sev_guest(kvm))
|
|
return -ENOTTY;
|
|
|
|
if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
|
|
return -EINVAL;
|
|
|
|
region = kzalloc(sizeof(*region), GFP_KERNEL);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
|
|
region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
|
|
if (!region->pages) {
|
|
ret = -ENOMEM;
|
|
goto e_free;
|
|
}
|
|
|
|
/*
|
|
* The guest may change the memory encryption attribute from C=0 -> C=1
|
|
* or vice versa for this memory range. Lets make sure caches are
|
|
* flushed to ensure that guest data gets written into memory with
|
|
* correct C-bit.
|
|
*/
|
|
sev_clflush_pages(region->pages, region->npages);
|
|
|
|
region->uaddr = range->addr;
|
|
region->size = range->size;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
list_add_tail(®ion->list, &sev->regions_list);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return ret;
|
|
|
|
e_free:
|
|
kfree(region);
|
|
return ret;
|
|
}
|
|
|
|
static struct enc_region *
|
|
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
|
|
{
|
|
struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
|
|
struct list_head *head = &sev->regions_list;
|
|
struct enc_region *i;
|
|
|
|
list_for_each_entry(i, head, list) {
|
|
if (i->uaddr == range->addr &&
|
|
i->size == range->size)
|
|
return i;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int svm_unregister_enc_region(struct kvm *kvm,
|
|
struct kvm_enc_region *range)
|
|
{
|
|
struct enc_region *region;
|
|
int ret;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (!sev_guest(kvm)) {
|
|
ret = -ENOTTY;
|
|
goto failed;
|
|
}
|
|
|
|
region = find_enc_region(kvm, range);
|
|
if (!region) {
|
|
ret = -EINVAL;
|
|
goto failed;
|
|
}
|
|
|
|
__unregister_enc_region_locked(kvm, region);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return 0;
|
|
|
|
failed:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Not supported */
|
|
return 0;
|
|
}
|
|
|
|
static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
|
|
uint16_t *vmcs_version)
|
|
{
|
|
/* Intel-only feature */
|
|
return -ENODEV;
|
|
}
|
|
|
|
static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
|
|
.cpu_has_kvm_support = has_svm,
|
|
.disabled_by_bios = is_disabled,
|
|
.hardware_setup = svm_hardware_setup,
|
|
.hardware_unsetup = svm_hardware_unsetup,
|
|
.check_processor_compatibility = svm_check_processor_compat,
|
|
.hardware_enable = svm_hardware_enable,
|
|
.hardware_disable = svm_hardware_disable,
|
|
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
|
|
.has_emulated_msr = svm_has_emulated_msr,
|
|
|
|
.vcpu_create = svm_create_vcpu,
|
|
.vcpu_free = svm_free_vcpu,
|
|
.vcpu_reset = svm_vcpu_reset,
|
|
|
|
.vm_alloc = svm_vm_alloc,
|
|
.vm_free = svm_vm_free,
|
|
.vm_init = avic_vm_init,
|
|
.vm_destroy = svm_vm_destroy,
|
|
|
|
.prepare_guest_switch = svm_prepare_guest_switch,
|
|
.vcpu_load = svm_vcpu_load,
|
|
.vcpu_put = svm_vcpu_put,
|
|
.vcpu_blocking = svm_vcpu_blocking,
|
|
.vcpu_unblocking = svm_vcpu_unblocking,
|
|
|
|
.update_bp_intercept = update_bp_intercept,
|
|
.get_msr_feature = svm_get_msr_feature,
|
|
.get_msr = svm_get_msr,
|
|
.set_msr = svm_set_msr,
|
|
.get_segment_base = svm_get_segment_base,
|
|
.get_segment = svm_get_segment,
|
|
.set_segment = svm_set_segment,
|
|
.get_cpl = svm_get_cpl,
|
|
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
|
|
.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
|
|
.decache_cr3 = svm_decache_cr3,
|
|
.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
|
|
.set_cr0 = svm_set_cr0,
|
|
.set_cr3 = svm_set_cr3,
|
|
.set_cr4 = svm_set_cr4,
|
|
.set_efer = svm_set_efer,
|
|
.get_idt = svm_get_idt,
|
|
.set_idt = svm_set_idt,
|
|
.get_gdt = svm_get_gdt,
|
|
.set_gdt = svm_set_gdt,
|
|
.get_dr6 = svm_get_dr6,
|
|
.set_dr6 = svm_set_dr6,
|
|
.set_dr7 = svm_set_dr7,
|
|
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
|
|
.cache_reg = svm_cache_reg,
|
|
.get_rflags = svm_get_rflags,
|
|
.set_rflags = svm_set_rflags,
|
|
|
|
.tlb_flush = svm_flush_tlb,
|
|
.tlb_flush_gva = svm_flush_tlb_gva,
|
|
|
|
.run = svm_vcpu_run,
|
|
.handle_exit = handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.set_interrupt_shadow = svm_set_interrupt_shadow,
|
|
.get_interrupt_shadow = svm_get_interrupt_shadow,
|
|
.patch_hypercall = svm_patch_hypercall,
|
|
.set_irq = svm_set_irq,
|
|
.set_nmi = svm_inject_nmi,
|
|
.queue_exception = svm_queue_exception,
|
|
.cancel_injection = svm_cancel_injection,
|
|
.interrupt_allowed = svm_interrupt_allowed,
|
|
.nmi_allowed = svm_nmi_allowed,
|
|
.get_nmi_mask = svm_get_nmi_mask,
|
|
.set_nmi_mask = svm_set_nmi_mask,
|
|
.enable_nmi_window = enable_nmi_window,
|
|
.enable_irq_window = enable_irq_window,
|
|
.update_cr8_intercept = update_cr8_intercept,
|
|
.set_virtual_apic_mode = svm_set_virtual_apic_mode,
|
|
.get_enable_apicv = svm_get_enable_apicv,
|
|
.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
|
|
.load_eoi_exitmap = svm_load_eoi_exitmap,
|
|
.hwapic_irr_update = svm_hwapic_irr_update,
|
|
.hwapic_isr_update = svm_hwapic_isr_update,
|
|
.sync_pir_to_irr = kvm_lapic_find_highest_irr,
|
|
.apicv_post_state_restore = avic_post_state_restore,
|
|
|
|
.set_tss_addr = svm_set_tss_addr,
|
|
.set_identity_map_addr = svm_set_identity_map_addr,
|
|
.get_tdp_level = get_npt_level,
|
|
.get_mt_mask = svm_get_mt_mask,
|
|
|
|
.get_exit_info = svm_get_exit_info,
|
|
|
|
.get_lpage_level = svm_get_lpage_level,
|
|
|
|
.cpuid_update = svm_cpuid_update,
|
|
|
|
.rdtscp_supported = svm_rdtscp_supported,
|
|
.invpcid_supported = svm_invpcid_supported,
|
|
.mpx_supported = svm_mpx_supported,
|
|
.xsaves_supported = svm_xsaves_supported,
|
|
.umip_emulated = svm_umip_emulated,
|
|
.pt_supported = svm_pt_supported,
|
|
|
|
.set_supported_cpuid = svm_set_supported_cpuid,
|
|
|
|
.has_wbinvd_exit = svm_has_wbinvd_exit,
|
|
|
|
.read_l1_tsc_offset = svm_read_l1_tsc_offset,
|
|
.write_l1_tsc_offset = svm_write_l1_tsc_offset,
|
|
|
|
.set_tdp_cr3 = set_tdp_cr3,
|
|
|
|
.check_intercept = svm_check_intercept,
|
|
.handle_external_intr = svm_handle_external_intr,
|
|
|
|
.request_immediate_exit = __kvm_request_immediate_exit,
|
|
|
|
.sched_in = svm_sched_in,
|
|
|
|
.pmu_ops = &amd_pmu_ops,
|
|
.deliver_posted_interrupt = svm_deliver_avic_intr,
|
|
.update_pi_irte = svm_update_pi_irte,
|
|
.setup_mce = svm_setup_mce,
|
|
|
|
.smi_allowed = svm_smi_allowed,
|
|
.pre_enter_smm = svm_pre_enter_smm,
|
|
.pre_leave_smm = svm_pre_leave_smm,
|
|
.enable_smi_window = enable_smi_window,
|
|
|
|
.mem_enc_op = svm_mem_enc_op,
|
|
.mem_enc_reg_region = svm_register_enc_region,
|
|
.mem_enc_unreg_region = svm_unregister_enc_region,
|
|
|
|
.nested_enable_evmcs = nested_enable_evmcs,
|
|
.nested_get_evmcs_version = nested_get_evmcs_version,
|
|
};
|
|
|
|
static int __init svm_init(void)
|
|
{
|
|
return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
|
|
__alignof__(struct vcpu_svm), THIS_MODULE);
|
|
}
|
|
|
|
static void __exit svm_exit(void)
|
|
{
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(svm_init)
|
|
module_exit(svm_exit)
|