mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 15:24:17 +08:00
998ad18b00
The ->percpu_pvec_drained was originally introduced by commitd9ed0d08b6
("mm: only drain per-cpu pagevecs once per pagevec usage") to drain per-cpu pagevecs only once per pagevec usage. But after converting the swap code to be more folio-based, the commitc2bc16817a
("mm/swap: add folio_batch_move_lru()") breaks this logic, which would cause ->percpu_pvec_drained to be reset to false, that means per-cpu pagevecs will be drained multiple times per pagevec usage. In theory, there should be no functional changes when converting code to be more folio-based. We should call folio_batch_reinit() in folio_batch_move_lru() instead of folio_batch_init(). And to verify that we still need ->percpu_pvec_drained, I ran mmtests/sparsetruncate-tiny and got the following data: baseline with baseline/ patch/ Min Time 326.00 ( 0.00%) 328.00 ( -0.61%) 1st-qrtle Time 334.00 ( 0.00%) 336.00 ( -0.60%) 2nd-qrtle Time 338.00 ( 0.00%) 341.00 ( -0.89%) 3rd-qrtle Time 343.00 ( 0.00%) 347.00 ( -1.17%) Max-1 Time 326.00 ( 0.00%) 328.00 ( -0.61%) Max-5 Time 327.00 ( 0.00%) 330.00 ( -0.92%) Max-10 Time 328.00 ( 0.00%) 331.00 ( -0.91%) Max-90 Time 350.00 ( 0.00%) 357.00 ( -2.00%) Max-95 Time 395.00 ( 0.00%) 390.00 ( 1.27%) Max-99 Time 508.00 ( 0.00%) 434.00 ( 14.57%) Max Time 547.00 ( 0.00%) 476.00 ( 12.98%) Amean Time 344.61 ( 0.00%) 345.56 * -0.28%* Stddev Time 30.34 ( 0.00%) 19.51 ( 35.69%) CoeffVar Time 8.81 ( 0.00%) 5.65 ( 35.87%) BAmean-99 Time 342.38 ( 0.00%) 344.27 ( -0.55%) BAmean-95 Time 338.58 ( 0.00%) 341.87 ( -0.97%) BAmean-90 Time 336.89 ( 0.00%) 340.26 ( -1.00%) BAmean-75 Time 335.18 ( 0.00%) 338.40 ( -0.96%) BAmean-50 Time 332.54 ( 0.00%) 335.42 ( -0.87%) BAmean-25 Time 329.30 ( 0.00%) 332.00 ( -0.82%) From the above it can be seen that we get similar data to when ->percpu_pvec_drained was introduced, so we still need it. Let's call folio_batch_reinit() in folio_batch_move_lru() to restore the original logic. Link: https://lkml.kernel.org/r/20230405161854.6931-1-zhengqi.arch@bytedance.com Fixes:c2bc16817a
("mm/swap: add folio_batch_move_lru()") Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1105 lines
31 KiB
C
1105 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/swap.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file contains the default values for the operation of the
|
|
* Linux VM subsystem. Fine-tuning documentation can be found in
|
|
* Documentation/admin-guide/sysctl/vm.rst.
|
|
* Started 18.12.91
|
|
* Swap aging added 23.2.95, Stephen Tweedie.
|
|
* Buffermem limits added 12.3.98, Rik van Riel.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/local_lock.h>
|
|
#include <linux/buffer_head.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/pagemap.h>
|
|
|
|
/* How many pages do we try to swap or page in/out together? As a power of 2 */
|
|
int page_cluster;
|
|
const int page_cluster_max = 31;
|
|
|
|
/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
|
|
struct lru_rotate {
|
|
local_lock_t lock;
|
|
struct folio_batch fbatch;
|
|
};
|
|
static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
|
|
.lock = INIT_LOCAL_LOCK(lock),
|
|
};
|
|
|
|
/*
|
|
* The following folio batches are grouped together because they are protected
|
|
* by disabling preemption (and interrupts remain enabled).
|
|
*/
|
|
struct cpu_fbatches {
|
|
local_lock_t lock;
|
|
struct folio_batch lru_add;
|
|
struct folio_batch lru_deactivate_file;
|
|
struct folio_batch lru_deactivate;
|
|
struct folio_batch lru_lazyfree;
|
|
#ifdef CONFIG_SMP
|
|
struct folio_batch activate;
|
|
#endif
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
|
|
.lock = INIT_LOCAL_LOCK(lock),
|
|
};
|
|
|
|
/*
|
|
* This path almost never happens for VM activity - pages are normally freed
|
|
* via pagevecs. But it gets used by networking - and for compound pages.
|
|
*/
|
|
static void __page_cache_release(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio)) {
|
|
struct lruvec *lruvec;
|
|
unsigned long flags;
|
|
|
|
lruvec = folio_lruvec_lock_irqsave(folio, &flags);
|
|
lruvec_del_folio(lruvec, folio);
|
|
__folio_clear_lru_flags(folio);
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
}
|
|
/* See comment on folio_test_mlocked in release_pages() */
|
|
if (unlikely(folio_test_mlocked(folio))) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
__folio_clear_mlocked(folio);
|
|
zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
|
|
count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
|
|
}
|
|
}
|
|
|
|
static void __folio_put_small(struct folio *folio)
|
|
{
|
|
__page_cache_release(folio);
|
|
mem_cgroup_uncharge(folio);
|
|
free_unref_page(&folio->page, 0);
|
|
}
|
|
|
|
static void __folio_put_large(struct folio *folio)
|
|
{
|
|
/*
|
|
* __page_cache_release() is supposed to be called for thp, not for
|
|
* hugetlb. This is because hugetlb page does never have PageLRU set
|
|
* (it's never listed to any LRU lists) and no memcg routines should
|
|
* be called for hugetlb (it has a separate hugetlb_cgroup.)
|
|
*/
|
|
if (!folio_test_hugetlb(folio))
|
|
__page_cache_release(folio);
|
|
destroy_large_folio(folio);
|
|
}
|
|
|
|
void __folio_put(struct folio *folio)
|
|
{
|
|
if (unlikely(folio_is_zone_device(folio)))
|
|
free_zone_device_page(&folio->page);
|
|
else if (unlikely(folio_test_large(folio)))
|
|
__folio_put_large(folio);
|
|
else
|
|
__folio_put_small(folio);
|
|
}
|
|
EXPORT_SYMBOL(__folio_put);
|
|
|
|
/**
|
|
* put_pages_list() - release a list of pages
|
|
* @pages: list of pages threaded on page->lru
|
|
*
|
|
* Release a list of pages which are strung together on page.lru.
|
|
*/
|
|
void put_pages_list(struct list_head *pages)
|
|
{
|
|
struct folio *folio, *next;
|
|
|
|
list_for_each_entry_safe(folio, next, pages, lru) {
|
|
if (!folio_put_testzero(folio)) {
|
|
list_del(&folio->lru);
|
|
continue;
|
|
}
|
|
if (folio_test_large(folio)) {
|
|
list_del(&folio->lru);
|
|
__folio_put_large(folio);
|
|
continue;
|
|
}
|
|
/* LRU flag must be clear because it's passed using the lru */
|
|
}
|
|
|
|
free_unref_page_list(pages);
|
|
INIT_LIST_HEAD(pages);
|
|
}
|
|
EXPORT_SYMBOL(put_pages_list);
|
|
|
|
typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
|
|
|
|
static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
int was_unevictable = folio_test_clear_unevictable(folio);
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
/*
|
|
* Is an smp_mb__after_atomic() still required here, before
|
|
* folio_evictable() tests the mlocked flag, to rule out the possibility
|
|
* of stranding an evictable folio on an unevictable LRU? I think
|
|
* not, because __munlock_folio() only clears the mlocked flag
|
|
* while the LRU lock is held.
|
|
*
|
|
* (That is not true of __page_cache_release(), and not necessarily
|
|
* true of release_pages(): but those only clear the mlocked flag after
|
|
* folio_put_testzero() has excluded any other users of the folio.)
|
|
*/
|
|
if (folio_evictable(folio)) {
|
|
if (was_unevictable)
|
|
__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
|
|
} else {
|
|
folio_clear_active(folio);
|
|
folio_set_unevictable(folio);
|
|
/*
|
|
* folio->mlock_count = !!folio_test_mlocked(folio)?
|
|
* But that leaves __mlock_folio() in doubt whether another
|
|
* actor has already counted the mlock or not. Err on the
|
|
* safe side, underestimate, let page reclaim fix it, rather
|
|
* than leaving a page on the unevictable LRU indefinitely.
|
|
*/
|
|
folio->mlock_count = 0;
|
|
if (!was_unevictable)
|
|
__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
|
|
}
|
|
|
|
lruvec_add_folio(lruvec, folio);
|
|
trace_mm_lru_insertion(folio);
|
|
}
|
|
|
|
static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
|
|
{
|
|
int i;
|
|
struct lruvec *lruvec = NULL;
|
|
unsigned long flags = 0;
|
|
|
|
for (i = 0; i < folio_batch_count(fbatch); i++) {
|
|
struct folio *folio = fbatch->folios[i];
|
|
|
|
/* block memcg migration while the folio moves between lru */
|
|
if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
|
|
continue;
|
|
|
|
lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
|
|
move_fn(lruvec, folio);
|
|
|
|
folio_set_lru(folio);
|
|
}
|
|
|
|
if (lruvec)
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
folios_put(fbatch->folios, folio_batch_count(fbatch));
|
|
folio_batch_reinit(fbatch);
|
|
}
|
|
|
|
static void folio_batch_add_and_move(struct folio_batch *fbatch,
|
|
struct folio *folio, move_fn_t move_fn)
|
|
{
|
|
if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
|
|
!lru_cache_disabled())
|
|
return;
|
|
folio_batch_move_lru(fbatch, move_fn);
|
|
}
|
|
|
|
static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_unevictable(folio)) {
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
lruvec_add_folio_tail(lruvec, folio);
|
|
__count_vm_events(PGROTATED, folio_nr_pages(folio));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Writeback is about to end against a folio which has been marked for
|
|
* immediate reclaim. If it still appears to be reclaimable, move it
|
|
* to the tail of the inactive list.
|
|
*
|
|
* folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
|
|
*/
|
|
void folio_rotate_reclaimable(struct folio *folio)
|
|
{
|
|
if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
|
|
!folio_test_unevictable(folio) && folio_test_lru(folio)) {
|
|
struct folio_batch *fbatch;
|
|
unsigned long flags;
|
|
|
|
folio_get(folio);
|
|
local_lock_irqsave(&lru_rotate.lock, flags);
|
|
fbatch = this_cpu_ptr(&lru_rotate.fbatch);
|
|
folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
|
|
local_unlock_irqrestore(&lru_rotate.lock, flags);
|
|
}
|
|
}
|
|
|
|
void lru_note_cost(struct lruvec *lruvec, bool file,
|
|
unsigned int nr_io, unsigned int nr_rotated)
|
|
{
|
|
unsigned long cost;
|
|
|
|
/*
|
|
* Reflect the relative cost of incurring IO and spending CPU
|
|
* time on rotations. This doesn't attempt to make a precise
|
|
* comparison, it just says: if reloads are about comparable
|
|
* between the LRU lists, or rotations are overwhelmingly
|
|
* different between them, adjust scan balance for CPU work.
|
|
*/
|
|
cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
|
|
|
|
do {
|
|
unsigned long lrusize;
|
|
|
|
/*
|
|
* Hold lruvec->lru_lock is safe here, since
|
|
* 1) The pinned lruvec in reclaim, or
|
|
* 2) From a pre-LRU page during refault (which also holds the
|
|
* rcu lock, so would be safe even if the page was on the LRU
|
|
* and could move simultaneously to a new lruvec).
|
|
*/
|
|
spin_lock_irq(&lruvec->lru_lock);
|
|
/* Record cost event */
|
|
if (file)
|
|
lruvec->file_cost += cost;
|
|
else
|
|
lruvec->anon_cost += cost;
|
|
|
|
/*
|
|
* Decay previous events
|
|
*
|
|
* Because workloads change over time (and to avoid
|
|
* overflow) we keep these statistics as a floating
|
|
* average, which ends up weighing recent refaults
|
|
* more than old ones.
|
|
*/
|
|
lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
|
|
lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
|
|
lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
|
|
lruvec_page_state(lruvec, NR_ACTIVE_FILE);
|
|
|
|
if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
|
|
lruvec->file_cost /= 2;
|
|
lruvec->anon_cost /= 2;
|
|
}
|
|
spin_unlock_irq(&lruvec->lru_lock);
|
|
} while ((lruvec = parent_lruvec(lruvec)));
|
|
}
|
|
|
|
void lru_note_cost_refault(struct folio *folio)
|
|
{
|
|
lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
|
|
folio_nr_pages(folio), 0);
|
|
}
|
|
|
|
static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_set_active(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
trace_mm_lru_activate(folio);
|
|
|
|
__count_vm_events(PGACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void folio_activate_drain(int cpu)
|
|
{
|
|
struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
|
|
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, folio_activate_fn);
|
|
}
|
|
|
|
void folio_activate(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio) && !folio_test_active(folio) &&
|
|
!folio_test_unevictable(folio)) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.activate);
|
|
folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void folio_activate_drain(int cpu)
|
|
{
|
|
}
|
|
|
|
void folio_activate(struct folio *folio)
|
|
{
|
|
struct lruvec *lruvec;
|
|
|
|
if (folio_test_clear_lru(folio)) {
|
|
lruvec = folio_lruvec_lock_irq(folio);
|
|
folio_activate_fn(lruvec, folio);
|
|
unlock_page_lruvec_irq(lruvec);
|
|
folio_set_lru(folio);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void __lru_cache_activate_folio(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
int i;
|
|
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
|
|
|
|
/*
|
|
* Search backwards on the optimistic assumption that the folio being
|
|
* activated has just been added to this batch. Note that only
|
|
* the local batch is examined as a !LRU folio could be in the
|
|
* process of being released, reclaimed, migrated or on a remote
|
|
* batch that is currently being drained. Furthermore, marking
|
|
* a remote batch's folio active potentially hits a race where
|
|
* a folio is marked active just after it is added to the inactive
|
|
* list causing accounting errors and BUG_ON checks to trigger.
|
|
*/
|
|
for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
|
|
struct folio *batch_folio = fbatch->folios[i];
|
|
|
|
if (batch_folio == folio) {
|
|
folio_set_active(folio);
|
|
break;
|
|
}
|
|
}
|
|
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
|
|
#ifdef CONFIG_LRU_GEN
|
|
static void folio_inc_refs(struct folio *folio)
|
|
{
|
|
unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
|
|
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
if (!folio_test_referenced(folio)) {
|
|
folio_set_referenced(folio);
|
|
return;
|
|
}
|
|
|
|
if (!folio_test_workingset(folio)) {
|
|
folio_set_workingset(folio);
|
|
return;
|
|
}
|
|
|
|
/* see the comment on MAX_NR_TIERS */
|
|
do {
|
|
new_flags = old_flags & LRU_REFS_MASK;
|
|
if (new_flags == LRU_REFS_MASK)
|
|
break;
|
|
|
|
new_flags += BIT(LRU_REFS_PGOFF);
|
|
new_flags |= old_flags & ~LRU_REFS_MASK;
|
|
} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
|
|
}
|
|
#else
|
|
static void folio_inc_refs(struct folio *folio)
|
|
{
|
|
}
|
|
#endif /* CONFIG_LRU_GEN */
|
|
|
|
/*
|
|
* Mark a page as having seen activity.
|
|
*
|
|
* inactive,unreferenced -> inactive,referenced
|
|
* inactive,referenced -> active,unreferenced
|
|
* active,unreferenced -> active,referenced
|
|
*
|
|
* When a newly allocated page is not yet visible, so safe for non-atomic ops,
|
|
* __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
|
|
*/
|
|
void folio_mark_accessed(struct folio *folio)
|
|
{
|
|
if (lru_gen_enabled()) {
|
|
folio_inc_refs(folio);
|
|
return;
|
|
}
|
|
|
|
if (!folio_test_referenced(folio)) {
|
|
folio_set_referenced(folio);
|
|
} else if (folio_test_unevictable(folio)) {
|
|
/*
|
|
* Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
|
|
* this list is never rotated or maintained, so marking an
|
|
* unevictable page accessed has no effect.
|
|
*/
|
|
} else if (!folio_test_active(folio)) {
|
|
/*
|
|
* If the folio is on the LRU, queue it for activation via
|
|
* cpu_fbatches.activate. Otherwise, assume the folio is in a
|
|
* folio_batch, mark it active and it'll be moved to the active
|
|
* LRU on the next drain.
|
|
*/
|
|
if (folio_test_lru(folio))
|
|
folio_activate(folio);
|
|
else
|
|
__lru_cache_activate_folio(folio);
|
|
folio_clear_referenced(folio);
|
|
workingset_activation(folio);
|
|
}
|
|
if (folio_test_idle(folio))
|
|
folio_clear_idle(folio);
|
|
}
|
|
EXPORT_SYMBOL(folio_mark_accessed);
|
|
|
|
/**
|
|
* folio_add_lru - Add a folio to an LRU list.
|
|
* @folio: The folio to be added to the LRU.
|
|
*
|
|
* Queue the folio for addition to the LRU. The decision on whether
|
|
* to add the page to the [in]active [file|anon] list is deferred until the
|
|
* folio_batch is drained. This gives a chance for the caller of folio_add_lru()
|
|
* have the folio added to the active list using folio_mark_accessed().
|
|
*/
|
|
void folio_add_lru(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
|
|
VM_BUG_ON_FOLIO(folio_test_active(folio) &&
|
|
folio_test_unevictable(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
/* see the comment in lru_gen_add_folio() */
|
|
if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
|
|
lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
|
|
folio_set_active(folio);
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
|
|
folio_batch_add_and_move(fbatch, folio, lru_add_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
EXPORT_SYMBOL(folio_add_lru);
|
|
|
|
/**
|
|
* folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
|
|
* @folio: The folio to be added to the LRU.
|
|
* @vma: VMA in which the folio is mapped.
|
|
*
|
|
* If the VMA is mlocked, @folio is added to the unevictable list.
|
|
* Otherwise, it is treated the same way as folio_add_lru().
|
|
*/
|
|
void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
|
|
|
|
if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
|
|
mlock_new_folio(folio);
|
|
else
|
|
folio_add_lru(folio);
|
|
}
|
|
|
|
/*
|
|
* If the folio cannot be invalidated, it is moved to the
|
|
* inactive list to speed up its reclaim. It is moved to the
|
|
* head of the list, rather than the tail, to give the flusher
|
|
* threads some time to write it out, as this is much more
|
|
* effective than the single-page writeout from reclaim.
|
|
*
|
|
* If the folio isn't mapped and dirty/writeback, the folio
|
|
* could be reclaimed asap using the reclaim flag.
|
|
*
|
|
* 1. active, mapped folio -> none
|
|
* 2. active, dirty/writeback folio -> inactive, head, reclaim
|
|
* 3. inactive, mapped folio -> none
|
|
* 4. inactive, dirty/writeback folio -> inactive, head, reclaim
|
|
* 5. inactive, clean -> inactive, tail
|
|
* 6. Others -> none
|
|
*
|
|
* In 4, it moves to the head of the inactive list so the folio is
|
|
* written out by flusher threads as this is much more efficient
|
|
* than the single-page writeout from reclaim.
|
|
*/
|
|
static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
bool active = folio_test_active(folio);
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
/* Some processes are using the folio */
|
|
if (folio_mapped(folio))
|
|
return;
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
|
|
if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
|
|
/*
|
|
* Setting the reclaim flag could race with
|
|
* folio_end_writeback() and confuse readahead. But the
|
|
* race window is _really_ small and it's not a critical
|
|
* problem.
|
|
*/
|
|
lruvec_add_folio(lruvec, folio);
|
|
folio_set_reclaim(folio);
|
|
} else {
|
|
/*
|
|
* The folio's writeback ended while it was in the batch.
|
|
* We move that folio to the tail of the inactive list.
|
|
*/
|
|
lruvec_add_folio_tail(lruvec, folio);
|
|
__count_vm_events(PGROTATED, nr_pages);
|
|
}
|
|
|
|
if (active) {
|
|
__count_vm_events(PGDEACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
|
|
__count_vm_events(PGDEACTIVATE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
|
|
{
|
|
if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
|
|
!folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
|
|
long nr_pages = folio_nr_pages(folio);
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
folio_clear_active(folio);
|
|
folio_clear_referenced(folio);
|
|
/*
|
|
* Lazyfree folios are clean anonymous folios. They have
|
|
* the swapbacked flag cleared, to distinguish them from normal
|
|
* anonymous folios
|
|
*/
|
|
folio_clear_swapbacked(folio);
|
|
lruvec_add_folio(lruvec, folio);
|
|
|
|
__count_vm_events(PGLAZYFREE, nr_pages);
|
|
__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
|
|
nr_pages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drain pages out of the cpu's folio_batch.
|
|
* Either "cpu" is the current CPU, and preemption has already been
|
|
* disabled; or "cpu" is being hot-unplugged, and is already dead.
|
|
*/
|
|
void lru_add_drain_cpu(int cpu)
|
|
{
|
|
struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
|
|
struct folio_batch *fbatch = &fbatches->lru_add;
|
|
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_add_fn);
|
|
|
|
fbatch = &per_cpu(lru_rotate.fbatch, cpu);
|
|
/* Disabling interrupts below acts as a compiler barrier. */
|
|
if (data_race(folio_batch_count(fbatch))) {
|
|
unsigned long flags;
|
|
|
|
/* No harm done if a racing interrupt already did this */
|
|
local_lock_irqsave(&lru_rotate.lock, flags);
|
|
folio_batch_move_lru(fbatch, lru_move_tail_fn);
|
|
local_unlock_irqrestore(&lru_rotate.lock, flags);
|
|
}
|
|
|
|
fbatch = &fbatches->lru_deactivate_file;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
|
|
|
|
fbatch = &fbatches->lru_deactivate;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_deactivate_fn);
|
|
|
|
fbatch = &fbatches->lru_lazyfree;
|
|
if (folio_batch_count(fbatch))
|
|
folio_batch_move_lru(fbatch, lru_lazyfree_fn);
|
|
|
|
folio_activate_drain(cpu);
|
|
}
|
|
|
|
/**
|
|
* deactivate_file_folio() - Deactivate a file folio.
|
|
* @folio: Folio to deactivate.
|
|
*
|
|
* This function hints to the VM that @folio is a good reclaim candidate,
|
|
* for example if its invalidation fails due to the folio being dirty
|
|
* or under writeback.
|
|
*
|
|
* Context: Caller holds a reference on the folio.
|
|
*/
|
|
void deactivate_file_folio(struct folio *folio)
|
|
{
|
|
struct folio_batch *fbatch;
|
|
|
|
/* Deactivating an unevictable folio will not accelerate reclaim */
|
|
if (folio_test_unevictable(folio))
|
|
return;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
|
|
folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
|
|
/*
|
|
* folio_deactivate - deactivate a folio
|
|
* @folio: folio to deactivate
|
|
*
|
|
* folio_deactivate() moves @folio to the inactive list if @folio was on the
|
|
* active list and was not unevictable. This is done to accelerate the
|
|
* reclaim of @folio.
|
|
*/
|
|
void folio_deactivate(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
|
|
(folio_test_active(folio) || lru_gen_enabled())) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
|
|
folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* folio_mark_lazyfree - make an anon folio lazyfree
|
|
* @folio: folio to deactivate
|
|
*
|
|
* folio_mark_lazyfree() moves @folio to the inactive file list.
|
|
* This is done to accelerate the reclaim of @folio.
|
|
*/
|
|
void folio_mark_lazyfree(struct folio *folio)
|
|
{
|
|
if (folio_test_lru(folio) && folio_test_anon(folio) &&
|
|
folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
|
|
!folio_test_unevictable(folio)) {
|
|
struct folio_batch *fbatch;
|
|
|
|
folio_get(folio);
|
|
local_lock(&cpu_fbatches.lock);
|
|
fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
|
|
folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
}
|
|
}
|
|
|
|
void lru_add_drain(void)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
local_unlock(&cpu_fbatches.lock);
|
|
mlock_drain_local();
|
|
}
|
|
|
|
/*
|
|
* It's called from per-cpu workqueue context in SMP case so
|
|
* lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
|
|
* the same cpu. It shouldn't be a problem in !SMP case since
|
|
* the core is only one and the locks will disable preemption.
|
|
*/
|
|
static void lru_add_and_bh_lrus_drain(void)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
local_unlock(&cpu_fbatches.lock);
|
|
invalidate_bh_lrus_cpu();
|
|
mlock_drain_local();
|
|
}
|
|
|
|
void lru_add_drain_cpu_zone(struct zone *zone)
|
|
{
|
|
local_lock(&cpu_fbatches.lock);
|
|
lru_add_drain_cpu(smp_processor_id());
|
|
drain_local_pages(zone);
|
|
local_unlock(&cpu_fbatches.lock);
|
|
mlock_drain_local();
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
|
|
|
|
static void lru_add_drain_per_cpu(struct work_struct *dummy)
|
|
{
|
|
lru_add_and_bh_lrus_drain();
|
|
}
|
|
|
|
static bool cpu_needs_drain(unsigned int cpu)
|
|
{
|
|
struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
|
|
|
|
/* Check these in order of likelihood that they're not zero */
|
|
return folio_batch_count(&fbatches->lru_add) ||
|
|
data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
|
|
folio_batch_count(&fbatches->lru_deactivate_file) ||
|
|
folio_batch_count(&fbatches->lru_deactivate) ||
|
|
folio_batch_count(&fbatches->lru_lazyfree) ||
|
|
folio_batch_count(&fbatches->activate) ||
|
|
need_mlock_drain(cpu) ||
|
|
has_bh_in_lru(cpu, NULL);
|
|
}
|
|
|
|
/*
|
|
* Doesn't need any cpu hotplug locking because we do rely on per-cpu
|
|
* kworkers being shut down before our page_alloc_cpu_dead callback is
|
|
* executed on the offlined cpu.
|
|
* Calling this function with cpu hotplug locks held can actually lead
|
|
* to obscure indirect dependencies via WQ context.
|
|
*/
|
|
static inline void __lru_add_drain_all(bool force_all_cpus)
|
|
{
|
|
/*
|
|
* lru_drain_gen - Global pages generation number
|
|
*
|
|
* (A) Definition: global lru_drain_gen = x implies that all generations
|
|
* 0 < n <= x are already *scheduled* for draining.
|
|
*
|
|
* This is an optimization for the highly-contended use case where a
|
|
* user space workload keeps constantly generating a flow of pages for
|
|
* each CPU.
|
|
*/
|
|
static unsigned int lru_drain_gen;
|
|
static struct cpumask has_work;
|
|
static DEFINE_MUTEX(lock);
|
|
unsigned cpu, this_gen;
|
|
|
|
/*
|
|
* Make sure nobody triggers this path before mm_percpu_wq is fully
|
|
* initialized.
|
|
*/
|
|
if (WARN_ON(!mm_percpu_wq))
|
|
return;
|
|
|
|
/*
|
|
* Guarantee folio_batch counter stores visible by this CPU
|
|
* are visible to other CPUs before loading the current drain
|
|
* generation.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* (B) Locally cache global LRU draining generation number
|
|
*
|
|
* The read barrier ensures that the counter is loaded before the mutex
|
|
* is taken. It pairs with smp_mb() inside the mutex critical section
|
|
* at (D).
|
|
*/
|
|
this_gen = smp_load_acquire(&lru_drain_gen);
|
|
|
|
mutex_lock(&lock);
|
|
|
|
/*
|
|
* (C) Exit the draining operation if a newer generation, from another
|
|
* lru_add_drain_all(), was already scheduled for draining. Check (A).
|
|
*/
|
|
if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
|
|
goto done;
|
|
|
|
/*
|
|
* (D) Increment global generation number
|
|
*
|
|
* Pairs with smp_load_acquire() at (B), outside of the critical
|
|
* section. Use a full memory barrier to guarantee that the
|
|
* new global drain generation number is stored before loading
|
|
* folio_batch counters.
|
|
*
|
|
* This pairing must be done here, before the for_each_online_cpu loop
|
|
* below which drains the page vectors.
|
|
*
|
|
* Let x, y, and z represent some system CPU numbers, where x < y < z.
|
|
* Assume CPU #z is in the middle of the for_each_online_cpu loop
|
|
* below and has already reached CPU #y's per-cpu data. CPU #x comes
|
|
* along, adds some pages to its per-cpu vectors, then calls
|
|
* lru_add_drain_all().
|
|
*
|
|
* If the paired barrier is done at any later step, e.g. after the
|
|
* loop, CPU #x will just exit at (C) and miss flushing out all of its
|
|
* added pages.
|
|
*/
|
|
WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
|
|
smp_mb();
|
|
|
|
cpumask_clear(&has_work);
|
|
for_each_online_cpu(cpu) {
|
|
struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
|
|
|
|
if (cpu_needs_drain(cpu)) {
|
|
INIT_WORK(work, lru_add_drain_per_cpu);
|
|
queue_work_on(cpu, mm_percpu_wq, work);
|
|
__cpumask_set_cpu(cpu, &has_work);
|
|
}
|
|
}
|
|
|
|
for_each_cpu(cpu, &has_work)
|
|
flush_work(&per_cpu(lru_add_drain_work, cpu));
|
|
|
|
done:
|
|
mutex_unlock(&lock);
|
|
}
|
|
|
|
void lru_add_drain_all(void)
|
|
{
|
|
__lru_add_drain_all(false);
|
|
}
|
|
#else
|
|
void lru_add_drain_all(void)
|
|
{
|
|
lru_add_drain();
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
atomic_t lru_disable_count = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* lru_cache_disable() needs to be called before we start compiling
|
|
* a list of pages to be migrated using isolate_lru_page().
|
|
* It drains pages on LRU cache and then disable on all cpus until
|
|
* lru_cache_enable is called.
|
|
*
|
|
* Must be paired with a call to lru_cache_enable().
|
|
*/
|
|
void lru_cache_disable(void)
|
|
{
|
|
atomic_inc(&lru_disable_count);
|
|
/*
|
|
* Readers of lru_disable_count are protected by either disabling
|
|
* preemption or rcu_read_lock:
|
|
*
|
|
* preempt_disable, local_irq_disable [bh_lru_lock()]
|
|
* rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
|
|
* preempt_disable [local_lock !CONFIG_PREEMPT_RT]
|
|
*
|
|
* Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
|
|
* preempt_disable() regions of code. So any CPU which sees
|
|
* lru_disable_count = 0 will have exited the critical
|
|
* section when synchronize_rcu() returns.
|
|
*/
|
|
synchronize_rcu_expedited();
|
|
#ifdef CONFIG_SMP
|
|
__lru_add_drain_all(true);
|
|
#else
|
|
lru_add_and_bh_lrus_drain();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* release_pages - batched put_page()
|
|
* @arg: array of pages to release
|
|
* @nr: number of pages
|
|
*
|
|
* Decrement the reference count on all the pages in @arg. If it
|
|
* fell to zero, remove the page from the LRU and free it.
|
|
*
|
|
* Note that the argument can be an array of pages, encoded pages,
|
|
* or folio pointers. We ignore any encoded bits, and turn any of
|
|
* them into just a folio that gets free'd.
|
|
*/
|
|
void release_pages(release_pages_arg arg, int nr)
|
|
{
|
|
int i;
|
|
struct encoded_page **encoded = arg.encoded_pages;
|
|
LIST_HEAD(pages_to_free);
|
|
struct lruvec *lruvec = NULL;
|
|
unsigned long flags = 0;
|
|
unsigned int lock_batch;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct folio *folio;
|
|
|
|
/* Turn any of the argument types into a folio */
|
|
folio = page_folio(encoded_page_ptr(encoded[i]));
|
|
|
|
/*
|
|
* Make sure the IRQ-safe lock-holding time does not get
|
|
* excessive with a continuous string of pages from the
|
|
* same lruvec. The lock is held only if lruvec != NULL.
|
|
*/
|
|
if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
|
|
if (is_huge_zero_page(&folio->page))
|
|
continue;
|
|
|
|
if (folio_is_zone_device(folio)) {
|
|
if (lruvec) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
if (put_devmap_managed_page(&folio->page))
|
|
continue;
|
|
if (folio_put_testzero(folio))
|
|
free_zone_device_page(&folio->page);
|
|
continue;
|
|
}
|
|
|
|
if (!folio_put_testzero(folio))
|
|
continue;
|
|
|
|
if (folio_test_large(folio)) {
|
|
if (lruvec) {
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
lruvec = NULL;
|
|
}
|
|
__folio_put_large(folio);
|
|
continue;
|
|
}
|
|
|
|
if (folio_test_lru(folio)) {
|
|
struct lruvec *prev_lruvec = lruvec;
|
|
|
|
lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
|
|
&flags);
|
|
if (prev_lruvec != lruvec)
|
|
lock_batch = 0;
|
|
|
|
lruvec_del_folio(lruvec, folio);
|
|
__folio_clear_lru_flags(folio);
|
|
}
|
|
|
|
/*
|
|
* In rare cases, when truncation or holepunching raced with
|
|
* munlock after VM_LOCKED was cleared, Mlocked may still be
|
|
* found set here. This does not indicate a problem, unless
|
|
* "unevictable_pgs_cleared" appears worryingly large.
|
|
*/
|
|
if (unlikely(folio_test_mlocked(folio))) {
|
|
__folio_clear_mlocked(folio);
|
|
zone_stat_sub_folio(folio, NR_MLOCK);
|
|
count_vm_event(UNEVICTABLE_PGCLEARED);
|
|
}
|
|
|
|
list_add(&folio->lru, &pages_to_free);
|
|
}
|
|
if (lruvec)
|
|
unlock_page_lruvec_irqrestore(lruvec, flags);
|
|
|
|
mem_cgroup_uncharge_list(&pages_to_free);
|
|
free_unref_page_list(&pages_to_free);
|
|
}
|
|
EXPORT_SYMBOL(release_pages);
|
|
|
|
/*
|
|
* The pages which we're about to release may be in the deferred lru-addition
|
|
* queues. That would prevent them from really being freed right now. That's
|
|
* OK from a correctness point of view but is inefficient - those pages may be
|
|
* cache-warm and we want to give them back to the page allocator ASAP.
|
|
*
|
|
* So __pagevec_release() will drain those queues here.
|
|
* folio_batch_move_lru() calls folios_put() directly to avoid
|
|
* mutual recursion.
|
|
*/
|
|
void __pagevec_release(struct pagevec *pvec)
|
|
{
|
|
if (!pvec->percpu_pvec_drained) {
|
|
lru_add_drain();
|
|
pvec->percpu_pvec_drained = true;
|
|
}
|
|
release_pages(pvec->pages, pagevec_count(pvec));
|
|
pagevec_reinit(pvec);
|
|
}
|
|
EXPORT_SYMBOL(__pagevec_release);
|
|
|
|
/**
|
|
* folio_batch_remove_exceptionals() - Prune non-folios from a batch.
|
|
* @fbatch: The batch to prune
|
|
*
|
|
* find_get_entries() fills a batch with both folios and shadow/swap/DAX
|
|
* entries. This function prunes all the non-folio entries from @fbatch
|
|
* without leaving holes, so that it can be passed on to folio-only batch
|
|
* operations.
|
|
*/
|
|
void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
|
|
struct folio *folio = fbatch->folios[i];
|
|
if (!xa_is_value(folio))
|
|
fbatch->folios[j++] = folio;
|
|
}
|
|
fbatch->nr = j;
|
|
}
|
|
|
|
/*
|
|
* Perform any setup for the swap system
|
|
*/
|
|
void __init swap_setup(void)
|
|
{
|
|
unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
|
|
|
|
/* Use a smaller cluster for small-memory machines */
|
|
if (megs < 16)
|
|
page_cluster = 2;
|
|
else
|
|
page_cluster = 3;
|
|
/*
|
|
* Right now other parts of the system means that we
|
|
* _really_ don't want to cluster much more
|
|
*/
|
|
}
|