linux/drivers/nvme/target/core.c
Sagi Grimberg aaeadd7075 nvmet: fix false keep-alive timeout when a controller is torn down
Controller teardown flow may take some time in case it has many I/O
queues, and the host may not send us keep-alive during this period.
Hence reset the traffic based keep-alive timer so we don't trigger
a controller teardown as a result of a keep-alive expiration.

Reported-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2021-05-26 16:18:22 +02:00

1618 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Common code for the NVMe target.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/pci-p2pdma.h>
#include <linux/scatterlist.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "nvmet.h"
struct workqueue_struct *buffered_io_wq;
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
static DEFINE_IDA(cntlid_ida);
/*
* This read/write semaphore is used to synchronize access to configuration
* information on a target system that will result in discovery log page
* information change for at least one host.
* The full list of resources to protected by this semaphore is:
*
* - subsystems list
* - per-subsystem allowed hosts list
* - allow_any_host subsystem attribute
* - nvmet_genctr
* - the nvmet_transports array
*
* When updating any of those lists/structures write lock should be obtained,
* while when reading (popolating discovery log page or checking host-subsystem
* link) read lock is obtained to allow concurrent reads.
*/
DECLARE_RWSEM(nvmet_config_sem);
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
u16 status;
switch (errno) {
case 0:
status = NVME_SC_SUCCESS;
break;
case -ENOSPC:
req->error_loc = offsetof(struct nvme_rw_command, length);
status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
break;
case -EREMOTEIO:
req->error_loc = offsetof(struct nvme_rw_command, slba);
status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
break;
case -EOPNOTSUPP:
req->error_loc = offsetof(struct nvme_common_command, opcode);
switch (req->cmd->common.opcode) {
case nvme_cmd_dsm:
case nvme_cmd_write_zeroes:
status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
break;
default:
status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
break;
case -ENODATA:
req->error_loc = offsetof(struct nvme_rw_command, nsid);
status = NVME_SC_ACCESS_DENIED;
break;
case -EIO:
fallthrough;
default:
req->error_loc = offsetof(struct nvme_common_command, opcode);
status = NVME_SC_INTERNAL | NVME_SC_DNR;
}
return status;
}
u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
{
pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
req->sq->qid);
req->error_loc = offsetof(struct nvme_common_command, opcode);
return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
const char *subsysnqn);
u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
size_t len)
{
if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
unsigned long nsid = 0;
struct nvmet_ns *cur;
unsigned long idx;
xa_for_each(&subsys->namespaces, idx, cur)
nsid = cur->nsid;
return nsid;
}
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}
static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
{
u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
struct nvmet_req *req;
mutex_lock(&ctrl->lock);
while (ctrl->nr_async_event_cmds) {
req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
mutex_unlock(&ctrl->lock);
nvmet_req_complete(req, status);
mutex_lock(&ctrl->lock);
}
mutex_unlock(&ctrl->lock);
}
static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
{
struct nvmet_async_event *aen;
struct nvmet_req *req;
mutex_lock(&ctrl->lock);
while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
aen = list_first_entry(&ctrl->async_events,
struct nvmet_async_event, entry);
req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
nvmet_set_result(req, nvmet_async_event_result(aen));
list_del(&aen->entry);
kfree(aen);
mutex_unlock(&ctrl->lock);
trace_nvmet_async_event(ctrl, req->cqe->result.u32);
nvmet_req_complete(req, 0);
mutex_lock(&ctrl->lock);
}
mutex_unlock(&ctrl->lock);
}
static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
struct nvmet_async_event *aen, *tmp;
mutex_lock(&ctrl->lock);
list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
list_del(&aen->entry);
kfree(aen);
}
mutex_unlock(&ctrl->lock);
}
static void nvmet_async_event_work(struct work_struct *work)
{
struct nvmet_ctrl *ctrl =
container_of(work, struct nvmet_ctrl, async_event_work);
nvmet_async_events_process(ctrl);
}
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
u8 event_info, u8 log_page)
{
struct nvmet_async_event *aen;
aen = kmalloc(sizeof(*aen), GFP_KERNEL);
if (!aen)
return;
aen->event_type = event_type;
aen->event_info = event_info;
aen->log_page = log_page;
mutex_lock(&ctrl->lock);
list_add_tail(&aen->entry, &ctrl->async_events);
mutex_unlock(&ctrl->lock);
schedule_work(&ctrl->async_event_work);
}
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
u32 i;
mutex_lock(&ctrl->lock);
if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
goto out_unlock;
for (i = 0; i < ctrl->nr_changed_ns; i++) {
if (ctrl->changed_ns_list[i] == nsid)
goto out_unlock;
}
if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
ctrl->nr_changed_ns = U32_MAX;
goto out_unlock;
}
ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
mutex_unlock(&ctrl->lock);
}
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
{
struct nvmet_ctrl *ctrl;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
continue;
nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_NOTICE_NS_CHANGED,
NVME_LOG_CHANGED_NS);
}
}
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
struct nvmet_port *port)
{
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
if (port && ctrl->port != port)
continue;
if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
continue;
nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
}
mutex_unlock(&subsys->lock);
}
void nvmet_port_send_ana_event(struct nvmet_port *port)
{
struct nvmet_subsys_link *p;
down_read(&nvmet_config_sem);
list_for_each_entry(p, &port->subsystems, entry)
nvmet_send_ana_event(p->subsys, port);
up_read(&nvmet_config_sem);
}
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
{
int ret = 0;
down_write(&nvmet_config_sem);
if (nvmet_transports[ops->type])
ret = -EINVAL;
else
nvmet_transports[ops->type] = ops;
up_write(&nvmet_config_sem);
return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
{
down_write(&nvmet_config_sem);
nvmet_transports[ops->type] = NULL;
up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
{
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
if (ctrl->port == port)
ctrl->ops->delete_ctrl(ctrl);
}
mutex_unlock(&subsys->lock);
}
int nvmet_enable_port(struct nvmet_port *port)
{
const struct nvmet_fabrics_ops *ops;
int ret;
lockdep_assert_held(&nvmet_config_sem);
ops = nvmet_transports[port->disc_addr.trtype];
if (!ops) {
up_write(&nvmet_config_sem);
request_module("nvmet-transport-%d", port->disc_addr.trtype);
down_write(&nvmet_config_sem);
ops = nvmet_transports[port->disc_addr.trtype];
if (!ops) {
pr_err("transport type %d not supported\n",
port->disc_addr.trtype);
return -EINVAL;
}
}
if (!try_module_get(ops->owner))
return -EINVAL;
/*
* If the user requested PI support and the transport isn't pi capable,
* don't enable the port.
*/
if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
pr_err("T10-PI is not supported by transport type %d\n",
port->disc_addr.trtype);
ret = -EINVAL;
goto out_put;
}
ret = ops->add_port(port);
if (ret)
goto out_put;
/* If the transport didn't set inline_data_size, then disable it. */
if (port->inline_data_size < 0)
port->inline_data_size = 0;
port->enabled = true;
port->tr_ops = ops;
return 0;
out_put:
module_put(ops->owner);
return ret;
}
void nvmet_disable_port(struct nvmet_port *port)
{
const struct nvmet_fabrics_ops *ops;
lockdep_assert_held(&nvmet_config_sem);
port->enabled = false;
port->tr_ops = NULL;
ops = nvmet_transports[port->disc_addr.trtype];
ops->remove_port(port);
module_put(ops->owner);
}
static void nvmet_keep_alive_timer(struct work_struct *work)
{
struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvmet_ctrl, ka_work);
bool reset_tbkas = ctrl->reset_tbkas;
ctrl->reset_tbkas = false;
if (reset_tbkas) {
pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
ctrl->cntlid);
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
return;
}
pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
ctrl->cntlid, ctrl->kato);
nvmet_ctrl_fatal_error(ctrl);
}
void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
if (unlikely(ctrl->kato == 0))
return;
pr_debug("ctrl %d start keep-alive timer for %d secs\n",
ctrl->cntlid, ctrl->kato);
INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
if (unlikely(ctrl->kato == 0))
return;
pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
cancel_delayed_work_sync(&ctrl->ka_work);
}
u16 nvmet_req_find_ns(struct nvmet_req *req)
{
u32 nsid = le32_to_cpu(req->cmd->common.nsid);
req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
if (unlikely(!req->ns)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return NVME_SC_INVALID_NS | NVME_SC_DNR;
}
percpu_ref_get(&req->ns->ref);
return NVME_SC_SUCCESS;
}
static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
complete(&ns->disable_done);
}
void nvmet_put_namespace(struct nvmet_ns *ns)
{
percpu_ref_put(&ns->ref);
}
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
nvmet_bdev_ns_disable(ns);
nvmet_file_ns_disable(ns);
}
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
int ret;
struct pci_dev *p2p_dev;
if (!ns->use_p2pmem)
return 0;
if (!ns->bdev) {
pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
return -EINVAL;
}
if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
ns->device_path);
return -EINVAL;
}
if (ns->p2p_dev) {
ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
if (ret < 0)
return -EINVAL;
} else {
/*
* Right now we just check that there is p2pmem available so
* we can report an error to the user right away if there
* is not. We'll find the actual device to use once we
* setup the controller when the port's device is available.
*/
p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
if (!p2p_dev) {
pr_err("no peer-to-peer memory is available for %s\n",
ns->device_path);
return -EINVAL;
}
pci_dev_put(p2p_dev);
}
return 0;
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
struct nvmet_ns *ns)
{
struct device *clients[2];
struct pci_dev *p2p_dev;
int ret;
if (!ctrl->p2p_client || !ns->use_p2pmem)
return;
if (ns->p2p_dev) {
ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
if (ret < 0)
return;
p2p_dev = pci_dev_get(ns->p2p_dev);
} else {
clients[0] = ctrl->p2p_client;
clients[1] = nvmet_ns_dev(ns);
p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
if (!p2p_dev) {
pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
dev_name(ctrl->p2p_client), ns->device_path);
return;
}
}
ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
if (ret < 0)
pci_dev_put(p2p_dev);
pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
ns->nsid);
}
void nvmet_ns_revalidate(struct nvmet_ns *ns)
{
loff_t oldsize = ns->size;
if (ns->bdev)
nvmet_bdev_ns_revalidate(ns);
else
nvmet_file_ns_revalidate(ns);
if (oldsize != ns->size)
nvmet_ns_changed(ns->subsys, ns->nsid);
}
int nvmet_ns_enable(struct nvmet_ns *ns)
{
struct nvmet_subsys *subsys = ns->subsys;
struct nvmet_ctrl *ctrl;
int ret;
mutex_lock(&subsys->lock);
ret = 0;
if (nvmet_passthru_ctrl(subsys)) {
pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
goto out_unlock;
}
if (ns->enabled)
goto out_unlock;
ret = -EMFILE;
if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
goto out_unlock;
ret = nvmet_bdev_ns_enable(ns);
if (ret == -ENOTBLK)
ret = nvmet_file_ns_enable(ns);
if (ret)
goto out_unlock;
ret = nvmet_p2pmem_ns_enable(ns);
if (ret)
goto out_dev_disable;
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
nvmet_p2pmem_ns_add_p2p(ctrl, ns);
ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
0, GFP_KERNEL);
if (ret)
goto out_dev_put;
if (ns->nsid > subsys->max_nsid)
subsys->max_nsid = ns->nsid;
ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
if (ret)
goto out_restore_subsys_maxnsid;
subsys->nr_namespaces++;
nvmet_ns_changed(subsys, ns->nsid);
ns->enabled = true;
ret = 0;
out_unlock:
mutex_unlock(&subsys->lock);
return ret;
out_restore_subsys_maxnsid:
subsys->max_nsid = nvmet_max_nsid(subsys);
percpu_ref_exit(&ns->ref);
out_dev_put:
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
out_dev_disable:
nvmet_ns_dev_disable(ns);
goto out_unlock;
}
void nvmet_ns_disable(struct nvmet_ns *ns)
{
struct nvmet_subsys *subsys = ns->subsys;
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
if (!ns->enabled)
goto out_unlock;
ns->enabled = false;
xa_erase(&ns->subsys->namespaces, ns->nsid);
if (ns->nsid == subsys->max_nsid)
subsys->max_nsid = nvmet_max_nsid(subsys);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
mutex_unlock(&subsys->lock);
/*
* Now that we removed the namespaces from the lookup list, we
* can kill the per_cpu ref and wait for any remaining references
* to be dropped, as well as a RCU grace period for anyone only
* using the namepace under rcu_read_lock(). Note that we can't
* use call_rcu here as we need to ensure the namespaces have
* been fully destroyed before unloading the module.
*/
percpu_ref_kill(&ns->ref);
synchronize_rcu();
wait_for_completion(&ns->disable_done);
percpu_ref_exit(&ns->ref);
mutex_lock(&subsys->lock);
subsys->nr_namespaces--;
nvmet_ns_changed(subsys, ns->nsid);
nvmet_ns_dev_disable(ns);
out_unlock:
mutex_unlock(&subsys->lock);
}
void nvmet_ns_free(struct nvmet_ns *ns)
{
nvmet_ns_disable(ns);
down_write(&nvmet_ana_sem);
nvmet_ana_group_enabled[ns->anagrpid]--;
up_write(&nvmet_ana_sem);
kfree(ns->device_path);
kfree(ns);
}
struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
struct nvmet_ns *ns;
ns = kzalloc(sizeof(*ns), GFP_KERNEL);
if (!ns)
return NULL;
init_completion(&ns->disable_done);
ns->nsid = nsid;
ns->subsys = subsys;
down_write(&nvmet_ana_sem);
ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
nvmet_ana_group_enabled[ns->anagrpid]++;
up_write(&nvmet_ana_sem);
uuid_gen(&ns->uuid);
ns->buffered_io = false;
return ns;
}
static void nvmet_update_sq_head(struct nvmet_req *req)
{
if (req->sq->size) {
u32 old_sqhd, new_sqhd;
do {
old_sqhd = req->sq->sqhd;
new_sqhd = (old_sqhd + 1) % req->sq->size;
} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
old_sqhd);
}
req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
}
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
struct nvmet_ctrl *ctrl = req->sq->ctrl;
struct nvme_error_slot *new_error_slot;
unsigned long flags;
req->cqe->status = cpu_to_le16(status << 1);
if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
return;
spin_lock_irqsave(&ctrl->error_lock, flags);
ctrl->err_counter++;
new_error_slot =
&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
new_error_slot->sqid = cpu_to_le16(req->sq->qid);
new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
new_error_slot->status_field = cpu_to_le16(status << 1);
new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
new_error_slot->lba = cpu_to_le64(req->error_slba);
new_error_slot->nsid = req->cmd->common.nsid;
spin_unlock_irqrestore(&ctrl->error_lock, flags);
/* set the more bit for this request */
req->cqe->status |= cpu_to_le16(1 << 14);
}
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
if (!req->sq->sqhd_disabled)
nvmet_update_sq_head(req);
req->cqe->sq_id = cpu_to_le16(req->sq->qid);
req->cqe->command_id = req->cmd->common.command_id;
if (unlikely(status))
nvmet_set_error(req, status);
trace_nvmet_req_complete(req);
if (req->ns)
nvmet_put_namespace(req->ns);
req->ops->queue_response(req);
}
void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
__nvmet_req_complete(req, status);
percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);
void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
u16 qid, u16 size)
{
cq->qid = qid;
cq->size = size;
}
void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
u16 qid, u16 size)
{
sq->sqhd = 0;
sq->qid = qid;
sq->size = size;
ctrl->sqs[qid] = sq;
}
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
complete(&sq->confirm_done);
}
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
struct nvmet_ctrl *ctrl = sq->ctrl;
/*
* If this is the admin queue, complete all AERs so that our
* queue doesn't have outstanding requests on it.
*/
if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
nvmet_async_events_failall(ctrl);
percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
wait_for_completion(&sq->confirm_done);
wait_for_completion(&sq->free_done);
percpu_ref_exit(&sq->ref);
if (ctrl) {
/*
* The teardown flow may take some time, and the host may not
* send us keep-alive during this period, hence reset the
* traffic based keep-alive timer so we don't trigger a
* controller teardown as a result of a keep-alive expiration.
*/
ctrl->reset_tbkas = true;
nvmet_ctrl_put(ctrl);
sq->ctrl = NULL; /* allows reusing the queue later */
}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
static void nvmet_sq_free(struct percpu_ref *ref)
{
struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
complete(&sq->free_done);
}
int nvmet_sq_init(struct nvmet_sq *sq)
{
int ret;
ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
if (ret) {
pr_err("percpu_ref init failed!\n");
return ret;
}
init_completion(&sq->free_done);
init_completion(&sq->confirm_done);
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
struct nvmet_ns *ns)
{
enum nvme_ana_state state = port->ana_state[ns->anagrpid];
if (unlikely(state == NVME_ANA_INACCESSIBLE))
return NVME_SC_ANA_INACCESSIBLE;
if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
return NVME_SC_ANA_PERSISTENT_LOSS;
if (unlikely(state == NVME_ANA_CHANGE))
return NVME_SC_ANA_TRANSITION;
return 0;
}
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
if (unlikely(req->ns->readonly)) {
switch (req->cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_flush:
break;
default:
return NVME_SC_NS_WRITE_PROTECTED;
}
}
return 0;
}
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
u16 ret;
ret = nvmet_check_ctrl_status(req);
if (unlikely(ret))
return ret;
if (nvmet_req_passthru_ctrl(req))
return nvmet_parse_passthru_io_cmd(req);
ret = nvmet_req_find_ns(req);
if (unlikely(ret))
return ret;
ret = nvmet_check_ana_state(req->port, req->ns);
if (unlikely(ret)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return ret;
}
ret = nvmet_io_cmd_check_access(req);
if (unlikely(ret)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return ret;
}
if (req->ns->file)
return nvmet_file_parse_io_cmd(req);
return nvmet_bdev_parse_io_cmd(req);
}
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
{
u8 flags = req->cmd->common.flags;
u16 status;
req->cq = cq;
req->sq = sq;
req->ops = ops;
req->sg = NULL;
req->metadata_sg = NULL;
req->sg_cnt = 0;
req->metadata_sg_cnt = 0;
req->transfer_len = 0;
req->metadata_len = 0;
req->cqe->status = 0;
req->cqe->sq_head = 0;
req->ns = NULL;
req->error_loc = NVMET_NO_ERROR_LOC;
req->error_slba = 0;
/* no support for fused commands yet */
if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
req->error_loc = offsetof(struct nvme_common_command, flags);
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
/*
* For fabrics, PSDT field shall describe metadata pointer (MPTR) that
* contains an address of a single contiguous physical buffer that is
* byte aligned.
*/
if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
req->error_loc = offsetof(struct nvme_common_command, flags);
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
if (unlikely(!req->sq->ctrl))
/* will return an error for any non-connect command: */
status = nvmet_parse_connect_cmd(req);
else if (likely(req->sq->qid != 0))
status = nvmet_parse_io_cmd(req);
else
status = nvmet_parse_admin_cmd(req);
if (status)
goto fail;
trace_nvmet_req_init(req, req->cmd);
if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
if (sq->ctrl)
sq->ctrl->reset_tbkas = true;
return true;
fail:
__nvmet_req_complete(req, status);
return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);
void nvmet_req_uninit(struct nvmet_req *req)
{
percpu_ref_put(&req->sq->ref);
if (req->ns)
nvmet_put_namespace(req->ns);
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);
bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
{
if (unlikely(len != req->transfer_len)) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
{
if (unlikely(data_len > req->transfer_len)) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
return false;
}
return true;
}
static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
{
return req->transfer_len - req->metadata_len;
}
static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
{
req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
nvmet_data_transfer_len(req));
if (!req->sg)
goto out_err;
if (req->metadata_len) {
req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
&req->metadata_sg_cnt, req->metadata_len);
if (!req->metadata_sg)
goto out_free_sg;
}
return 0;
out_free_sg:
pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
out_err:
return -ENOMEM;
}
static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
{
if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
return false;
if (req->sq->ctrl && req->sq->qid && req->ns) {
req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
req->ns->nsid);
if (req->p2p_dev)
return true;
}
req->p2p_dev = NULL;
return false;
}
int nvmet_req_alloc_sgls(struct nvmet_req *req)
{
if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
return 0;
req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
&req->sg_cnt);
if (unlikely(!req->sg))
goto out;
if (req->metadata_len) {
req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
&req->metadata_sg_cnt);
if (unlikely(!req->metadata_sg))
goto out_free;
}
return 0;
out_free:
sgl_free(req->sg);
out:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
void nvmet_req_free_sgls(struct nvmet_req *req)
{
if (req->p2p_dev) {
pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
if (req->metadata_sg)
pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
} else {
sgl_free(req->sg);
if (req->metadata_sg)
sgl_free(req->metadata_sg);
}
req->sg = NULL;
req->metadata_sg = NULL;
req->sg_cnt = 0;
req->metadata_sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
static inline bool nvmet_cc_en(u32 cc)
{
return (cc >> NVME_CC_EN_SHIFT) & 0x1;
}
static inline u8 nvmet_cc_css(u32 cc)
{
return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
}
static inline u8 nvmet_cc_mps(u32 cc)
{
return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
}
static inline u8 nvmet_cc_ams(u32 cc)
{
return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
}
static inline u8 nvmet_cc_shn(u32 cc)
{
return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
}
static inline u8 nvmet_cc_iosqes(u32 cc)
{
return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
}
static inline u8 nvmet_cc_iocqes(u32 cc)
{
return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
}
static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
lockdep_assert_held(&ctrl->lock);
/*
* Only I/O controllers should verify iosqes,iocqes.
* Strictly speaking, the spec says a discovery controller
* should verify iosqes,iocqes are zeroed, however that
* would break backwards compatibility, so don't enforce it.
*/
if (ctrl->subsys->type != NVME_NQN_DISC &&
(nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
ctrl->csts = NVME_CSTS_CFS;
return;
}
if (nvmet_cc_mps(ctrl->cc) != 0 ||
nvmet_cc_ams(ctrl->cc) != 0 ||
nvmet_cc_css(ctrl->cc) != 0) {
ctrl->csts = NVME_CSTS_CFS;
return;
}
ctrl->csts = NVME_CSTS_RDY;
/*
* Controllers that are not yet enabled should not really enforce the
* keep alive timeout, but we still want to track a timeout and cleanup
* in case a host died before it enabled the controller. Hence, simply
* reset the keep alive timer when the controller is enabled.
*/
if (ctrl->kato)
mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
lockdep_assert_held(&ctrl->lock);
/* XXX: tear down queues? */
ctrl->csts &= ~NVME_CSTS_RDY;
ctrl->cc = 0;
}
void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
u32 old;
mutex_lock(&ctrl->lock);
old = ctrl->cc;
ctrl->cc = new;
if (nvmet_cc_en(new) && !nvmet_cc_en(old))
nvmet_start_ctrl(ctrl);
if (!nvmet_cc_en(new) && nvmet_cc_en(old))
nvmet_clear_ctrl(ctrl);
if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
nvmet_clear_ctrl(ctrl);
ctrl->csts |= NVME_CSTS_SHST_CMPLT;
}
if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
mutex_unlock(&ctrl->lock);
}
static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
/* command sets supported: NVMe command set: */
ctrl->cap = (1ULL << 37);
/* CC.EN timeout in 500msec units: */
ctrl->cap |= (15ULL << 24);
/* maximum queue entries supported: */
ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}
struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
const char *hostnqn, u16 cntlid,
struct nvmet_req *req)
{
struct nvmet_ctrl *ctrl = NULL;
struct nvmet_subsys *subsys;
subsys = nvmet_find_get_subsys(req->port, subsysnqn);
if (!subsys) {
pr_warn("connect request for invalid subsystem %s!\n",
subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
goto out;
}
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
if (ctrl->cntlid == cntlid) {
if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
pr_warn("hostnqn mismatch.\n");
continue;
}
if (!kref_get_unless_zero(&ctrl->ref))
continue;
/* ctrl found */
goto found;
}
}
ctrl = NULL; /* ctrl not found */
pr_warn("could not find controller %d for subsys %s / host %s\n",
cntlid, subsysnqn, hostnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
found:
mutex_unlock(&subsys->lock);
nvmet_subsys_put(subsys);
out:
return ctrl;
}
u16 nvmet_check_ctrl_status(struct nvmet_req *req)
{
if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
req->cmd->common.opcode, req->sq->qid);
return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
}
if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
req->cmd->common.opcode, req->sq->qid);
return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
}
return 0;
}
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
{
struct nvmet_host_link *p;
lockdep_assert_held(&nvmet_config_sem);
if (subsys->allow_any_host)
return true;
if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
return true;
list_for_each_entry(p, &subsys->hosts, entry) {
if (!strcmp(nvmet_host_name(p->host), hostnqn))
return true;
}
return false;
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
struct nvmet_req *req)
{
struct nvmet_ns *ns;
unsigned long idx;
if (!req->p2p_client)
return;
ctrl->p2p_client = get_device(req->p2p_client);
xa_for_each(&ctrl->subsys->namespaces, idx, ns)
nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
pci_dev_put(radix_tree_deref_slot(slot));
put_device(ctrl->p2p_client);
}
static void nvmet_fatal_error_handler(struct work_struct *work)
{
struct nvmet_ctrl *ctrl =
container_of(work, struct nvmet_ctrl, fatal_err_work);
pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
ctrl->ops->delete_ctrl(ctrl);
}
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
struct nvmet_subsys *subsys;
struct nvmet_ctrl *ctrl;
int ret;
u16 status;
status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
subsys = nvmet_find_get_subsys(req->port, subsysnqn);
if (!subsys) {
pr_warn("connect request for invalid subsystem %s!\n",
subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
req->error_loc = offsetof(struct nvme_common_command, dptr);
goto out;
}
down_read(&nvmet_config_sem);
if (!nvmet_host_allowed(subsys, hostnqn)) {
pr_info("connect by host %s for subsystem %s not allowed\n",
hostnqn, subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
up_read(&nvmet_config_sem);
status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
req->error_loc = offsetof(struct nvme_common_command, dptr);
goto out_put_subsystem;
}
up_read(&nvmet_config_sem);
status = NVME_SC_INTERNAL;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
goto out_put_subsystem;
mutex_init(&ctrl->lock);
nvmet_init_cap(ctrl);
ctrl->port = req->port;
INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
INIT_LIST_HEAD(&ctrl->async_events);
INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
kref_init(&ctrl->ref);
ctrl->subsys = subsys;
WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
sizeof(__le32), GFP_KERNEL);
if (!ctrl->changed_ns_list)
goto out_free_ctrl;
ctrl->sqs = kcalloc(subsys->max_qid + 1,
sizeof(struct nvmet_sq *),
GFP_KERNEL);
if (!ctrl->sqs)
goto out_free_changed_ns_list;
if (subsys->cntlid_min > subsys->cntlid_max)
goto out_free_sqs;
ret = ida_simple_get(&cntlid_ida,
subsys->cntlid_min, subsys->cntlid_max,
GFP_KERNEL);
if (ret < 0) {
status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
goto out_free_sqs;
}
ctrl->cntlid = ret;
ctrl->ops = req->ops;
/*
* Discovery controllers may use some arbitrary high value
* in order to cleanup stale discovery sessions
*/
if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
kato = NVMET_DISC_KATO_MS;
/* keep-alive timeout in seconds */
ctrl->kato = DIV_ROUND_UP(kato, 1000);
ctrl->err_counter = 0;
spin_lock_init(&ctrl->error_lock);
nvmet_start_keep_alive_timer(ctrl);
mutex_lock(&subsys->lock);
list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
nvmet_setup_p2p_ns_map(ctrl, req);
mutex_unlock(&subsys->lock);
*ctrlp = ctrl;
return 0;
out_free_sqs:
kfree(ctrl->sqs);
out_free_changed_ns_list:
kfree(ctrl->changed_ns_list);
out_free_ctrl:
kfree(ctrl);
out_put_subsystem:
nvmet_subsys_put(subsys);
out:
return status;
}
static void nvmet_ctrl_free(struct kref *ref)
{
struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
struct nvmet_subsys *subsys = ctrl->subsys;
mutex_lock(&subsys->lock);
nvmet_release_p2p_ns_map(ctrl);
list_del(&ctrl->subsys_entry);
mutex_unlock(&subsys->lock);
nvmet_stop_keep_alive_timer(ctrl);
flush_work(&ctrl->async_event_work);
cancel_work_sync(&ctrl->fatal_err_work);
ida_simple_remove(&cntlid_ida, ctrl->cntlid);
nvmet_async_events_free(ctrl);
kfree(ctrl->sqs);
kfree(ctrl->changed_ns_list);
kfree(ctrl);
nvmet_subsys_put(subsys);
}
void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
kref_put(&ctrl->ref, nvmet_ctrl_free);
}
void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
mutex_lock(&ctrl->lock);
if (!(ctrl->csts & NVME_CSTS_CFS)) {
ctrl->csts |= NVME_CSTS_CFS;
schedule_work(&ctrl->fatal_err_work);
}
mutex_unlock(&ctrl->lock);
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
const char *subsysnqn)
{
struct nvmet_subsys_link *p;
if (!port)
return NULL;
if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
return NULL;
return nvmet_disc_subsys;
}
down_read(&nvmet_config_sem);
list_for_each_entry(p, &port->subsystems, entry) {
if (!strncmp(p->subsys->subsysnqn, subsysnqn,
NVMF_NQN_SIZE)) {
if (!kref_get_unless_zero(&p->subsys->ref))
break;
up_read(&nvmet_config_sem);
return p->subsys;
}
}
up_read(&nvmet_config_sem);
return NULL;
}
struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
enum nvme_subsys_type type)
{
struct nvmet_subsys *subsys;
subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
if (!subsys)
return ERR_PTR(-ENOMEM);
subsys->ver = NVMET_DEFAULT_VS;
/* generate a random serial number as our controllers are ephemeral: */
get_random_bytes(&subsys->serial, sizeof(subsys->serial));
switch (type) {
case NVME_NQN_NVME:
subsys->max_qid = NVMET_NR_QUEUES;
break;
case NVME_NQN_DISC:
subsys->max_qid = 0;
break;
default:
pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
kfree(subsys);
return ERR_PTR(-EINVAL);
}
subsys->type = type;
subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
GFP_KERNEL);
if (!subsys->subsysnqn) {
kfree(subsys);
return ERR_PTR(-ENOMEM);
}
subsys->cntlid_min = NVME_CNTLID_MIN;
subsys->cntlid_max = NVME_CNTLID_MAX;
kref_init(&subsys->ref);
mutex_init(&subsys->lock);
xa_init(&subsys->namespaces);
INIT_LIST_HEAD(&subsys->ctrls);
INIT_LIST_HEAD(&subsys->hosts);
return subsys;
}
static void nvmet_subsys_free(struct kref *ref)
{
struct nvmet_subsys *subsys =
container_of(ref, struct nvmet_subsys, ref);
WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
xa_destroy(&subsys->namespaces);
nvmet_passthru_subsys_free(subsys);
kfree(subsys->subsysnqn);
kfree(subsys->model_number);
kfree(subsys);
}
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
ctrl->ops->delete_ctrl(ctrl);
mutex_unlock(&subsys->lock);
}
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
kref_put(&subsys->ref, nvmet_subsys_free);
}
static int __init nvmet_init(void)
{
int error;
nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
WQ_MEM_RECLAIM, 0);
if (!buffered_io_wq) {
error = -ENOMEM;
goto out;
}
error = nvmet_init_discovery();
if (error)
goto out_free_work_queue;
error = nvmet_init_configfs();
if (error)
goto out_exit_discovery;
return 0;
out_exit_discovery:
nvmet_exit_discovery();
out_free_work_queue:
destroy_workqueue(buffered_io_wq);
out:
return error;
}
static void __exit nvmet_exit(void)
{
nvmet_exit_configfs();
nvmet_exit_discovery();
ida_destroy(&cntlid_ida);
destroy_workqueue(buffered_io_wq);
BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}
module_init(nvmet_init);
module_exit(nvmet_exit);
MODULE_LICENSE("GPL v2");