mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-13 09:15:02 +08:00
5615f69bc2
This patch initializes KASan shadow region's page table and memory. There are two stage for KASan initializing: 1. At early boot stage the whole shadow region is mapped to just one physical page (kasan_zero_page). It is finished by the function kasan_early_init which is called by __mmap_switched(arch/arm/kernel/ head-common.S) 2. After the calling of paging_init, we use kasan_zero_page as zero shadow for some memory that KASan does not need to track, and we allocate a new shadow space for the other memory that KASan need to track. These issues are finished by the function kasan_init which is call by setup_arch. When using KASan we also need to increase the THREAD_SIZE_ORDER from 1 to 2 as the extra calls for shadow memory uses quite a bit of stack. As we need to make a temporary copy of the PGD when setting up shadow memory we create a helpful PGD_SIZE definition for both LPAE and non-LPAE setups. The KASan core code unconditionally calls pud_populate() so this needs to be changed from BUG() to do {} while (0) when building with KASan enabled. After the initial development by Andre Ryabinin several modifications have been made to this code: Abbott Liu <liuwenliang@huawei.com> - Add support ARM LPAE: If LPAE is enabled, KASan shadow region's mapping table need be copied in the pgd_alloc() function. - Change kasan_pte_populate,kasan_pmd_populate,kasan_pud_populate, kasan_pgd_populate from .meminit.text section to .init.text section. Reported by Florian Fainelli <f.fainelli@gmail.com> Linus Walleij <linus.walleij@linaro.org>: - Drop the custom mainpulation of TTBR0 and just use cpu_switch_mm() to switch the pgd table. - Adopt to handle 4th level page tabel folding. - Rewrite the entire page directory and page entry initialization sequence to be recursive based on ARM64:s kasan_init.c. Ard Biesheuvel <ardb@kernel.org>: - Necessary underlying fixes. - Crucial bug fixes to the memory set-up code. Co-developed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Co-developed-by: Abbott Liu <liuwenliang@huawei.com> Co-developed-by: Ard Biesheuvel <ardb@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> # QEMU/KVM/mach-virt/LPAE/8G Tested-by: Florian Fainelli <f.fainelli@gmail.com> # Brahma SoCs Tested-by: Ahmad Fatoum <a.fatoum@pengutronix.de> # i.MX6Q Reported-by: Russell King - ARM Linux <rmk+kernel@armlinux.org.uk> Reported-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Abbott Liu <liuwenliang@huawei.com> Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
292 lines
8.0 KiB
C
292 lines
8.0 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* This file contains kasan initialization code for ARM.
|
|
*
|
|
* Copyright (c) 2018 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
* Author: Linus Walleij <linus.walleij@linaro.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kasan: " fmt
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/pgtable.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/highmem.h>
|
|
#include <asm/mach/map.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/procinfo.h>
|
|
#include <asm/proc-fns.h>
|
|
|
|
#include "mm.h"
|
|
|
|
static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
|
|
|
|
pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
|
|
|
|
static __init void *kasan_alloc_block(size_t size)
|
|
{
|
|
return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
|
|
MEMBLOCK_ALLOC_KASAN, NUMA_NO_NODE);
|
|
}
|
|
|
|
static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
|
|
unsigned long end, bool early)
|
|
{
|
|
unsigned long next;
|
|
pte_t *ptep = pte_offset_kernel(pmdp, addr);
|
|
|
|
do {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
next = addr + PAGE_SIZE;
|
|
|
|
if (!early) {
|
|
if (!pte_none(READ_ONCE(*ptep)))
|
|
continue;
|
|
|
|
p = kasan_alloc_block(PAGE_SIZE);
|
|
if (!p) {
|
|
panic("%s failed to allocate shadow page for address 0x%lx\n",
|
|
__func__, addr);
|
|
return;
|
|
}
|
|
memset(p, KASAN_SHADOW_INIT, PAGE_SIZE);
|
|
entry = pfn_pte(virt_to_pfn(p),
|
|
__pgprot(pgprot_val(PAGE_KERNEL)));
|
|
} else if (pte_none(READ_ONCE(*ptep))) {
|
|
/*
|
|
* The early shadow memory is mapping all KASan
|
|
* operations to one and the same page in memory,
|
|
* "kasan_early_shadow_page" so that the instrumentation
|
|
* will work on a scratch area until we can set up the
|
|
* proper KASan shadow memory.
|
|
*/
|
|
entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page),
|
|
__pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN));
|
|
} else {
|
|
/*
|
|
* Early shadow mappings are PMD_SIZE aligned, so if the
|
|
* first entry is already set, they must all be set.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
set_pte_at(&init_mm, addr, ptep, entry);
|
|
} while (ptep++, addr = next, addr != end);
|
|
}
|
|
|
|
/*
|
|
* The pmd (page middle directory) is only used on LPAE
|
|
*/
|
|
static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
|
|
unsigned long end, bool early)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp = pmd_offset(pudp, addr);
|
|
|
|
do {
|
|
if (pmd_none(*pmdp)) {
|
|
/*
|
|
* We attempt to allocate a shadow block for the PMDs
|
|
* used by the PTEs for this address if it isn't already
|
|
* allocated.
|
|
*/
|
|
void *p = early ? kasan_early_shadow_pte :
|
|
kasan_alloc_block(PAGE_SIZE);
|
|
|
|
if (!p) {
|
|
panic("%s failed to allocate shadow block for address 0x%lx\n",
|
|
__func__, addr);
|
|
return;
|
|
}
|
|
pmd_populate_kernel(&init_mm, pmdp, p);
|
|
flush_pmd_entry(pmdp);
|
|
}
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
kasan_pte_populate(pmdp, addr, next, early);
|
|
} while (pmdp++, addr = next, addr != end);
|
|
}
|
|
|
|
static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
|
|
bool early)
|
|
{
|
|
unsigned long next;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
|
|
pgdp = pgd_offset_k(addr);
|
|
|
|
do {
|
|
/*
|
|
* Allocate and populate the shadow block of p4d folded into
|
|
* pud folded into pmd if it doesn't already exist
|
|
*/
|
|
if (!early && pgd_none(*pgdp)) {
|
|
void *p = kasan_alloc_block(PAGE_SIZE);
|
|
|
|
if (!p) {
|
|
panic("%s failed to allocate shadow block for address 0x%lx\n",
|
|
__func__, addr);
|
|
return;
|
|
}
|
|
pgd_populate(&init_mm, pgdp, p);
|
|
}
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
/*
|
|
* We just immediately jump over the p4d and pud page
|
|
* directories since we believe ARM32 will never gain four
|
|
* nor five level page tables.
|
|
*/
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
pudp = pud_offset(p4dp, addr);
|
|
|
|
kasan_pmd_populate(pudp, addr, next, early);
|
|
} while (pgdp++, addr = next, addr != end);
|
|
}
|
|
|
|
extern struct proc_info_list *lookup_processor_type(unsigned int);
|
|
|
|
void __init kasan_early_init(void)
|
|
{
|
|
struct proc_info_list *list;
|
|
|
|
/*
|
|
* locate processor in the list of supported processor
|
|
* types. The linker builds this table for us from the
|
|
* entries in arch/arm/mm/proc-*.S
|
|
*/
|
|
list = lookup_processor_type(read_cpuid_id());
|
|
if (list) {
|
|
#ifdef MULTI_CPU
|
|
processor = *list->proc;
|
|
#endif
|
|
}
|
|
|
|
BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET);
|
|
/*
|
|
* We walk the page table and set all of the shadow memory to point
|
|
* to the scratch page.
|
|
*/
|
|
kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true);
|
|
}
|
|
|
|
static void __init clear_pgds(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
for (; start && start < end; start += PMD_SIZE)
|
|
pmd_clear(pmd_off_k(start));
|
|
}
|
|
|
|
static int __init create_mapping(void *start, void *end)
|
|
{
|
|
void *shadow_start, *shadow_end;
|
|
|
|
shadow_start = kasan_mem_to_shadow(start);
|
|
shadow_end = kasan_mem_to_shadow(end);
|
|
|
|
pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n",
|
|
start, end, shadow_start, shadow_end);
|
|
|
|
kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK,
|
|
PAGE_ALIGN((unsigned long)shadow_end), false);
|
|
return 0;
|
|
}
|
|
|
|
void __init kasan_init(void)
|
|
{
|
|
phys_addr_t pa_start, pa_end;
|
|
u64 i;
|
|
|
|
/*
|
|
* We are going to perform proper setup of shadow memory.
|
|
*
|
|
* At first we should unmap early shadow (clear_pgds() call bellow).
|
|
* However, instrumented code can't execute without shadow memory.
|
|
*
|
|
* To keep the early shadow memory MMU tables around while setting up
|
|
* the proper shadow memory, we copy swapper_pg_dir (the initial page
|
|
* table) to tmp_pgd_table and use that to keep the early shadow memory
|
|
* mapped until the full shadow setup is finished. Then we swap back
|
|
* to the proper swapper_pg_dir.
|
|
*/
|
|
|
|
memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table));
|
|
#ifdef CONFIG_ARM_LPAE
|
|
/* We need to be in the same PGD or this won't work */
|
|
BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) !=
|
|
pgd_index(KASAN_SHADOW_END));
|
|
memcpy(tmp_pmd_table,
|
|
pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)),
|
|
sizeof(tmp_pmd_table));
|
|
set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)],
|
|
__pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
|
|
#endif
|
|
cpu_switch_mm(tmp_pgd_table, &init_mm);
|
|
local_flush_tlb_all();
|
|
|
|
clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
|
|
|
|
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START),
|
|
kasan_mem_to_shadow((void *)-1UL) + 1);
|
|
|
|
for_each_mem_range(i, &pa_start, &pa_end) {
|
|
void *start = __va(pa_start);
|
|
void *end = __va(pa_end);
|
|
|
|
/* Do not attempt to shadow highmem */
|
|
if (pa_start >= arm_lowmem_limit) {
|
|
pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end);
|
|
continue;
|
|
}
|
|
if (pa_end > arm_lowmem_limit) {
|
|
pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n",
|
|
&pa_start, &pa_end, &arm_lowmem_limit);
|
|
end = __va(arm_lowmem_limit);
|
|
}
|
|
if (start >= end) {
|
|
pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n",
|
|
&pa_start, &pa_end, start, end);
|
|
continue;
|
|
}
|
|
|
|
create_mapping(start, end);
|
|
}
|
|
|
|
/*
|
|
* 1. The module global variables are in MODULES_VADDR ~ MODULES_END,
|
|
* so we need to map this area.
|
|
* 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR
|
|
* ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't
|
|
* use kasan_populate_zero_shadow.
|
|
*/
|
|
create_mapping((void *)MODULES_VADDR, (void *)(PKMAP_BASE + PMD_SIZE));
|
|
|
|
/*
|
|
* KAsan may reuse the contents of kasan_early_shadow_pte directly, so
|
|
* we should make sure that it maps the zero page read-only.
|
|
*/
|
|
for (i = 0; i < PTRS_PER_PTE; i++)
|
|
set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE,
|
|
&kasan_early_shadow_pte[i],
|
|
pfn_pte(virt_to_pfn(kasan_early_shadow_page),
|
|
__pgprot(pgprot_val(PAGE_KERNEL)
|
|
| L_PTE_RDONLY)));
|
|
|
|
cpu_switch_mm(swapper_pg_dir, &init_mm);
|
|
local_flush_tlb_all();
|
|
|
|
memset(kasan_early_shadow_page, 0, PAGE_SIZE);
|
|
pr_info("Kernel address sanitizer initialized\n");
|
|
init_task.kasan_depth = 0;
|
|
}
|