mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 17:44:14 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
495 lines
14 KiB
C
495 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/mempool.c
|
|
*
|
|
* memory buffer pool support. Such pools are mostly used
|
|
* for guaranteed, deadlock-free memory allocations during
|
|
* extreme VM load.
|
|
*
|
|
* started by Ingo Molnar, Copyright (C) 2001
|
|
* debugging by David Rientjes, Copyright (C) 2015
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/export.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include "slab.h"
|
|
|
|
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
|
|
static void poison_error(mempool_t *pool, void *element, size_t size,
|
|
size_t byte)
|
|
{
|
|
const int nr = pool->curr_nr;
|
|
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
|
|
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
|
|
int i;
|
|
|
|
pr_err("BUG: mempool element poison mismatch\n");
|
|
pr_err("Mempool %p size %zu\n", pool, size);
|
|
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
|
|
for (i = start; i < end; i++)
|
|
pr_cont("%x ", *(u8 *)(element + i));
|
|
pr_cont("%s\n", end < size ? "..." : "");
|
|
dump_stack();
|
|
}
|
|
|
|
static void __check_element(mempool_t *pool, void *element, size_t size)
|
|
{
|
|
u8 *obj = element;
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
|
|
|
|
if (obj[i] != exp) {
|
|
poison_error(pool, element, size, i);
|
|
return;
|
|
}
|
|
}
|
|
memset(obj, POISON_INUSE, size);
|
|
}
|
|
|
|
static void check_element(mempool_t *pool, void *element)
|
|
{
|
|
/* Mempools backed by slab allocator */
|
|
if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
|
|
__check_element(pool, element, ksize(element));
|
|
|
|
/* Mempools backed by page allocator */
|
|
if (pool->free == mempool_free_pages) {
|
|
int order = (int)(long)pool->pool_data;
|
|
void *addr = kmap_atomic((struct page *)element);
|
|
|
|
__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
|
|
kunmap_atomic(addr);
|
|
}
|
|
}
|
|
|
|
static void __poison_element(void *element, size_t size)
|
|
{
|
|
u8 *obj = element;
|
|
|
|
memset(obj, POISON_FREE, size - 1);
|
|
obj[size - 1] = POISON_END;
|
|
}
|
|
|
|
static void poison_element(mempool_t *pool, void *element)
|
|
{
|
|
/* Mempools backed by slab allocator */
|
|
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
|
|
__poison_element(element, ksize(element));
|
|
|
|
/* Mempools backed by page allocator */
|
|
if (pool->alloc == mempool_alloc_pages) {
|
|
int order = (int)(long)pool->pool_data;
|
|
void *addr = kmap_atomic((struct page *)element);
|
|
|
|
__poison_element(addr, 1UL << (PAGE_SHIFT + order));
|
|
kunmap_atomic(addr);
|
|
}
|
|
}
|
|
#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
|
|
static inline void check_element(mempool_t *pool, void *element)
|
|
{
|
|
}
|
|
static inline void poison_element(mempool_t *pool, void *element)
|
|
{
|
|
}
|
|
#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
|
|
|
|
static void kasan_poison_element(mempool_t *pool, void *element)
|
|
{
|
|
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
|
|
kasan_poison_kfree(element);
|
|
if (pool->alloc == mempool_alloc_pages)
|
|
kasan_free_pages(element, (unsigned long)pool->pool_data);
|
|
}
|
|
|
|
static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
|
|
{
|
|
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
|
|
kasan_unpoison_slab(element);
|
|
if (pool->alloc == mempool_alloc_pages)
|
|
kasan_alloc_pages(element, (unsigned long)pool->pool_data);
|
|
}
|
|
|
|
static void add_element(mempool_t *pool, void *element)
|
|
{
|
|
BUG_ON(pool->curr_nr >= pool->min_nr);
|
|
poison_element(pool, element);
|
|
kasan_poison_element(pool, element);
|
|
pool->elements[pool->curr_nr++] = element;
|
|
}
|
|
|
|
static void *remove_element(mempool_t *pool, gfp_t flags)
|
|
{
|
|
void *element = pool->elements[--pool->curr_nr];
|
|
|
|
BUG_ON(pool->curr_nr < 0);
|
|
kasan_unpoison_element(pool, element, flags);
|
|
check_element(pool, element);
|
|
return element;
|
|
}
|
|
|
|
/**
|
|
* mempool_destroy - deallocate a memory pool
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
*
|
|
* Free all reserved elements in @pool and @pool itself. This function
|
|
* only sleeps if the free_fn() function sleeps.
|
|
*/
|
|
void mempool_destroy(mempool_t *pool)
|
|
{
|
|
if (unlikely(!pool))
|
|
return;
|
|
|
|
while (pool->curr_nr) {
|
|
void *element = remove_element(pool, GFP_KERNEL);
|
|
pool->free(element, pool->pool_data);
|
|
}
|
|
kfree(pool->elements);
|
|
kfree(pool);
|
|
}
|
|
EXPORT_SYMBOL(mempool_destroy);
|
|
|
|
/**
|
|
* mempool_create - create a memory pool
|
|
* @min_nr: the minimum number of elements guaranteed to be
|
|
* allocated for this pool.
|
|
* @alloc_fn: user-defined element-allocation function.
|
|
* @free_fn: user-defined element-freeing function.
|
|
* @pool_data: optional private data available to the user-defined functions.
|
|
*
|
|
* this function creates and allocates a guaranteed size, preallocated
|
|
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
|
|
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
|
|
* functions might sleep - as long as the mempool_alloc() function is not called
|
|
* from IRQ contexts.
|
|
*/
|
|
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
|
|
mempool_free_t *free_fn, void *pool_data)
|
|
{
|
|
return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
|
|
GFP_KERNEL, NUMA_NO_NODE);
|
|
}
|
|
EXPORT_SYMBOL(mempool_create);
|
|
|
|
mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
|
|
mempool_free_t *free_fn, void *pool_data,
|
|
gfp_t gfp_mask, int node_id)
|
|
{
|
|
mempool_t *pool;
|
|
pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
|
|
if (!pool)
|
|
return NULL;
|
|
pool->elements = kmalloc_node(min_nr * sizeof(void *),
|
|
gfp_mask, node_id);
|
|
if (!pool->elements) {
|
|
kfree(pool);
|
|
return NULL;
|
|
}
|
|
spin_lock_init(&pool->lock);
|
|
pool->min_nr = min_nr;
|
|
pool->pool_data = pool_data;
|
|
init_waitqueue_head(&pool->wait);
|
|
pool->alloc = alloc_fn;
|
|
pool->free = free_fn;
|
|
|
|
/*
|
|
* First pre-allocate the guaranteed number of buffers.
|
|
*/
|
|
while (pool->curr_nr < pool->min_nr) {
|
|
void *element;
|
|
|
|
element = pool->alloc(gfp_mask, pool->pool_data);
|
|
if (unlikely(!element)) {
|
|
mempool_destroy(pool);
|
|
return NULL;
|
|
}
|
|
add_element(pool, element);
|
|
}
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(mempool_create_node);
|
|
|
|
/**
|
|
* mempool_resize - resize an existing memory pool
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
* @new_min_nr: the new minimum number of elements guaranteed to be
|
|
* allocated for this pool.
|
|
*
|
|
* This function shrinks/grows the pool. In the case of growing,
|
|
* it cannot be guaranteed that the pool will be grown to the new
|
|
* size immediately, but new mempool_free() calls will refill it.
|
|
* This function may sleep.
|
|
*
|
|
* Note, the caller must guarantee that no mempool_destroy is called
|
|
* while this function is running. mempool_alloc() & mempool_free()
|
|
* might be called (eg. from IRQ contexts) while this function executes.
|
|
*/
|
|
int mempool_resize(mempool_t *pool, int new_min_nr)
|
|
{
|
|
void *element;
|
|
void **new_elements;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(new_min_nr <= 0);
|
|
might_sleep();
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (new_min_nr <= pool->min_nr) {
|
|
while (new_min_nr < pool->curr_nr) {
|
|
element = remove_element(pool, GFP_KERNEL);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
pool->free(element, pool->pool_data);
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
}
|
|
pool->min_nr = new_min_nr;
|
|
goto out_unlock;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
/* Grow the pool */
|
|
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
|
|
GFP_KERNEL);
|
|
if (!new_elements)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (unlikely(new_min_nr <= pool->min_nr)) {
|
|
/* Raced, other resize will do our work */
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
kfree(new_elements);
|
|
goto out;
|
|
}
|
|
memcpy(new_elements, pool->elements,
|
|
pool->curr_nr * sizeof(*new_elements));
|
|
kfree(pool->elements);
|
|
pool->elements = new_elements;
|
|
pool->min_nr = new_min_nr;
|
|
|
|
while (pool->curr_nr < pool->min_nr) {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
element = pool->alloc(GFP_KERNEL, pool->pool_data);
|
|
if (!element)
|
|
goto out;
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (pool->curr_nr < pool->min_nr) {
|
|
add_element(pool, element);
|
|
} else {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
pool->free(element, pool->pool_data); /* Raced */
|
|
goto out;
|
|
}
|
|
}
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
out:
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mempool_resize);
|
|
|
|
/**
|
|
* mempool_alloc - allocate an element from a specific memory pool
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
* @gfp_mask: the usual allocation bitmask.
|
|
*
|
|
* this function only sleeps if the alloc_fn() function sleeps or
|
|
* returns NULL. Note that due to preallocation, this function
|
|
* *never* fails when called from process contexts. (it might
|
|
* fail if called from an IRQ context.)
|
|
* Note: using __GFP_ZERO is not supported.
|
|
*/
|
|
void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
|
|
{
|
|
void *element;
|
|
unsigned long flags;
|
|
wait_queue_entry_t wait;
|
|
gfp_t gfp_temp;
|
|
|
|
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
|
|
might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
|
|
|
|
gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
|
|
gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
|
|
gfp_mask |= __GFP_NOWARN; /* failures are OK */
|
|
|
|
gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
|
|
|
|
repeat_alloc:
|
|
|
|
element = pool->alloc(gfp_temp, pool->pool_data);
|
|
if (likely(element != NULL))
|
|
return element;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (likely(pool->curr_nr)) {
|
|
element = remove_element(pool, gfp_temp);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
/* paired with rmb in mempool_free(), read comment there */
|
|
smp_wmb();
|
|
/*
|
|
* Update the allocation stack trace as this is more useful
|
|
* for debugging.
|
|
*/
|
|
kmemleak_update_trace(element);
|
|
return element;
|
|
}
|
|
|
|
/*
|
|
* We use gfp mask w/o direct reclaim or IO for the first round. If
|
|
* alloc failed with that and @pool was empty, retry immediately.
|
|
*/
|
|
if (gfp_temp != gfp_mask) {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
gfp_temp = gfp_mask;
|
|
goto repeat_alloc;
|
|
}
|
|
|
|
/* We must not sleep if !__GFP_DIRECT_RECLAIM */
|
|
if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
/* Let's wait for someone else to return an element to @pool */
|
|
init_wait(&wait);
|
|
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
/*
|
|
* FIXME: this should be io_schedule(). The timeout is there as a
|
|
* workaround for some DM problems in 2.6.18.
|
|
*/
|
|
io_schedule_timeout(5*HZ);
|
|
|
|
finish_wait(&pool->wait, &wait);
|
|
goto repeat_alloc;
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc);
|
|
|
|
/**
|
|
* mempool_free - return an element to the pool.
|
|
* @element: pool element pointer.
|
|
* @pool: pointer to the memory pool which was allocated via
|
|
* mempool_create().
|
|
*
|
|
* this function only sleeps if the free_fn() function sleeps.
|
|
*/
|
|
void mempool_free(void *element, mempool_t *pool)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (unlikely(element == NULL))
|
|
return;
|
|
|
|
/*
|
|
* Paired with the wmb in mempool_alloc(). The preceding read is
|
|
* for @element and the following @pool->curr_nr. This ensures
|
|
* that the visible value of @pool->curr_nr is from after the
|
|
* allocation of @element. This is necessary for fringe cases
|
|
* where @element was passed to this task without going through
|
|
* barriers.
|
|
*
|
|
* For example, assume @p is %NULL at the beginning and one task
|
|
* performs "p = mempool_alloc(...);" while another task is doing
|
|
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
|
|
* may end up using curr_nr value which is from before allocation
|
|
* of @p without the following rmb.
|
|
*/
|
|
smp_rmb();
|
|
|
|
/*
|
|
* For correctness, we need a test which is guaranteed to trigger
|
|
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
|
|
* without locking achieves that and refilling as soon as possible
|
|
* is desirable.
|
|
*
|
|
* Because curr_nr visible here is always a value after the
|
|
* allocation of @element, any task which decremented curr_nr below
|
|
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
|
|
* incremented to min_nr afterwards. If curr_nr gets incremented
|
|
* to min_nr after the allocation of @element, the elements
|
|
* allocated after that are subject to the same guarantee.
|
|
*
|
|
* Waiters happen iff curr_nr is 0 and the above guarantee also
|
|
* ensures that there will be frees which return elements to the
|
|
* pool waking up the waiters.
|
|
*/
|
|
if (unlikely(pool->curr_nr < pool->min_nr)) {
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
if (likely(pool->curr_nr < pool->min_nr)) {
|
|
add_element(pool, element);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
wake_up(&pool->wait);
|
|
return;
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
pool->free(element, pool->pool_data);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free);
|
|
|
|
/*
|
|
* A commonly used alloc and free fn.
|
|
*/
|
|
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
struct kmem_cache *mem = pool_data;
|
|
VM_BUG_ON(mem->ctor);
|
|
return kmem_cache_alloc(mem, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_slab);
|
|
|
|
void mempool_free_slab(void *element, void *pool_data)
|
|
{
|
|
struct kmem_cache *mem = pool_data;
|
|
kmem_cache_free(mem, element);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free_slab);
|
|
|
|
/*
|
|
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
|
|
* specified by pool_data
|
|
*/
|
|
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
size_t size = (size_t)pool_data;
|
|
return kmalloc(size, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(mempool_kmalloc);
|
|
|
|
void mempool_kfree(void *element, void *pool_data)
|
|
{
|
|
kfree(element);
|
|
}
|
|
EXPORT_SYMBOL(mempool_kfree);
|
|
|
|
/*
|
|
* A simple mempool-backed page allocator that allocates pages
|
|
* of the order specified by pool_data.
|
|
*/
|
|
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
int order = (int)(long)pool_data;
|
|
return alloc_pages(gfp_mask, order);
|
|
}
|
|
EXPORT_SYMBOL(mempool_alloc_pages);
|
|
|
|
void mempool_free_pages(void *element, void *pool_data)
|
|
{
|
|
int order = (int)(long)pool_data;
|
|
__free_pages(element, order);
|
|
}
|
|
EXPORT_SYMBOL(mempool_free_pages);
|