mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-15 10:24:44 +08:00
4bd5a15d93
We've saved the double data flag in the device data, so we should use it when programming a block. Signed-off-by: Baolin Wang <baolin.wang7@gmail.com> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Link: https://lore.kernel.org/r/20200323150007.7487-4-srinivas.kandagatla@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
442 lines
11 KiB
C
442 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (C) 2019 Spreadtrum Communications Inc.
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/hwspinlock.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nvmem-provider.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#define SPRD_EFUSE_ENABLE 0x20
|
|
#define SPRD_EFUSE_ERR_FLAG 0x24
|
|
#define SPRD_EFUSE_ERR_CLR 0x28
|
|
#define SPRD_EFUSE_MAGIC_NUM 0x2c
|
|
#define SPRD_EFUSE_FW_CFG 0x50
|
|
#define SPRD_EFUSE_PW_SWT 0x54
|
|
#define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2))
|
|
|
|
#define SPRD_EFUSE_VDD_EN BIT(0)
|
|
#define SPRD_EFUSE_AUTO_CHECK_EN BIT(1)
|
|
#define SPRD_EFUSE_DOUBLE_EN BIT(2)
|
|
#define SPRD_EFUSE_MARGIN_RD_EN BIT(3)
|
|
#define SPRD_EFUSE_LOCK_WR_EN BIT(4)
|
|
|
|
#define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0)
|
|
|
|
#define SPRD_EFUSE_ENK1_ON BIT(0)
|
|
#define SPRD_EFUSE_ENK2_ON BIT(1)
|
|
#define SPRD_EFUSE_PROG_EN BIT(2)
|
|
|
|
#define SPRD_EFUSE_MAGIC_NUMBER 0x8810
|
|
|
|
/* Block width (bytes) definitions */
|
|
#define SPRD_EFUSE_BLOCK_WIDTH 4
|
|
|
|
/*
|
|
* The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse,
|
|
* and we can only access the normal efuse in kernel. So define the normal
|
|
* block offset index and normal block numbers.
|
|
*/
|
|
#define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24
|
|
#define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72
|
|
|
|
/* Timeout (ms) for the trylock of hardware spinlocks */
|
|
#define SPRD_EFUSE_HWLOCK_TIMEOUT 5000
|
|
|
|
/*
|
|
* Since different Spreadtrum SoC chip can have different normal block numbers
|
|
* and offset. And some SoC can support block double feature, which means
|
|
* when reading or writing data to efuse memory, the controller can save double
|
|
* data in case one data become incorrect after a long period.
|
|
*
|
|
* Thus we should save them in the device data structure.
|
|
*/
|
|
struct sprd_efuse_variant_data {
|
|
u32 blk_nums;
|
|
u32 blk_offset;
|
|
bool blk_double;
|
|
};
|
|
|
|
struct sprd_efuse {
|
|
struct device *dev;
|
|
struct clk *clk;
|
|
struct hwspinlock *hwlock;
|
|
struct mutex mutex;
|
|
void __iomem *base;
|
|
const struct sprd_efuse_variant_data *data;
|
|
};
|
|
|
|
static const struct sprd_efuse_variant_data ums312_data = {
|
|
.blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS,
|
|
.blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET,
|
|
.blk_double = false,
|
|
};
|
|
|
|
/*
|
|
* On Spreadtrum platform, we have multi-subsystems will access the unique
|
|
* efuse controller, so we need one hardware spinlock to synchronize between
|
|
* the multiple subsystems.
|
|
*/
|
|
static int sprd_efuse_lock(struct sprd_efuse *efuse)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&efuse->mutex);
|
|
|
|
ret = hwspin_lock_timeout_raw(efuse->hwlock,
|
|
SPRD_EFUSE_HWLOCK_TIMEOUT);
|
|
if (ret) {
|
|
dev_err(efuse->dev, "timeout get the hwspinlock\n");
|
|
mutex_unlock(&efuse->mutex);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sprd_efuse_unlock(struct sprd_efuse *efuse)
|
|
{
|
|
hwspin_unlock_raw(efuse->hwlock);
|
|
mutex_unlock(&efuse->mutex);
|
|
}
|
|
|
|
static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
|
|
|
|
if (en)
|
|
val &= ~SPRD_EFUSE_ENK2_ON;
|
|
else
|
|
val &= ~SPRD_EFUSE_ENK1_ON;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
|
|
|
|
/* Open or close efuse power need wait 1000us to make power stable. */
|
|
usleep_range(1000, 1200);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_ENK1_ON;
|
|
else
|
|
val |= SPRD_EFUSE_ENK2_ON;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
|
|
|
|
/* Open or close efuse power need wait 1000us to make power stable. */
|
|
usleep_range(1000, 1200);
|
|
}
|
|
|
|
static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_VDD_EN;
|
|
else
|
|
val &= ~SPRD_EFUSE_VDD_EN;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_ENABLE);
|
|
|
|
/* Open or close efuse power need wait 1000us to make power stable. */
|
|
usleep_range(1000, 1200);
|
|
}
|
|
|
|
static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_LOCK_WR_EN;
|
|
else
|
|
val &= ~SPRD_EFUSE_LOCK_WR_EN;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_ENABLE);
|
|
}
|
|
|
|
static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_AUTO_CHECK_EN;
|
|
else
|
|
val &= ~SPRD_EFUSE_AUTO_CHECK_EN;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_ENABLE);
|
|
}
|
|
|
|
static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_ENABLE);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_DOUBLE_EN;
|
|
else
|
|
val &= ~SPRD_EFUSE_DOUBLE_EN;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_ENABLE);
|
|
}
|
|
|
|
static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en)
|
|
{
|
|
u32 val = readl(efuse->base + SPRD_EFUSE_PW_SWT);
|
|
|
|
if (en)
|
|
val |= SPRD_EFUSE_PROG_EN;
|
|
else
|
|
val &= ~SPRD_EFUSE_PROG_EN;
|
|
|
|
writel(val, efuse->base + SPRD_EFUSE_PW_SWT);
|
|
}
|
|
|
|
static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub,
|
|
bool lock, u32 *data)
|
|
{
|
|
u32 status;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We need set the correct magic number before writing the efuse to
|
|
* allow programming, and block other programming until we clear the
|
|
* magic number.
|
|
*/
|
|
writel(SPRD_EFUSE_MAGIC_NUMBER,
|
|
efuse->base + SPRD_EFUSE_MAGIC_NUM);
|
|
|
|
/*
|
|
* Power on the efuse, enable programme and enable double data
|
|
* if asked.
|
|
*/
|
|
sprd_efuse_set_prog_power(efuse, true);
|
|
sprd_efuse_set_prog_en(efuse, true);
|
|
sprd_efuse_set_data_double(efuse, doub);
|
|
|
|
/*
|
|
* Enable the auto-check function to validate if the programming is
|
|
* successful.
|
|
*/
|
|
if (lock)
|
|
sprd_efuse_set_auto_check(efuse, true);
|
|
|
|
writel(*data, efuse->base + SPRD_EFUSE_MEM(blk));
|
|
|
|
/* Disable auto-check and data double after programming */
|
|
if (lock)
|
|
sprd_efuse_set_auto_check(efuse, false);
|
|
sprd_efuse_set_data_double(efuse, false);
|
|
|
|
/*
|
|
* Check the efuse error status, if the programming is successful,
|
|
* we should lock this efuse block to avoid programming again.
|
|
*/
|
|
status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
|
|
if (status) {
|
|
dev_err(efuse->dev,
|
|
"write error status %d of block %d\n", ret, blk);
|
|
|
|
writel(SPRD_EFUSE_ERR_CLR_MASK,
|
|
efuse->base + SPRD_EFUSE_ERR_CLR);
|
|
ret = -EBUSY;
|
|
} else if (lock) {
|
|
sprd_efuse_set_prog_lock(efuse, lock);
|
|
writel(0, efuse->base + SPRD_EFUSE_MEM(blk));
|
|
sprd_efuse_set_prog_lock(efuse, false);
|
|
}
|
|
|
|
sprd_efuse_set_prog_power(efuse, false);
|
|
writel(0, efuse->base + SPRD_EFUSE_MAGIC_NUM);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val,
|
|
bool doub)
|
|
{
|
|
u32 status;
|
|
|
|
/*
|
|
* Need power on the efuse before reading data from efuse, and will
|
|
* power off the efuse after reading process.
|
|
*/
|
|
sprd_efuse_set_read_power(efuse, true);
|
|
|
|
/* Enable double data if asked */
|
|
sprd_efuse_set_data_double(efuse, doub);
|
|
|
|
/* Start to read data from efuse block */
|
|
*val = readl(efuse->base + SPRD_EFUSE_MEM(blk));
|
|
|
|
/* Disable double data */
|
|
sprd_efuse_set_data_double(efuse, false);
|
|
|
|
/* Power off the efuse */
|
|
sprd_efuse_set_read_power(efuse, false);
|
|
|
|
/*
|
|
* Check the efuse error status and clear them if there are some
|
|
* errors occurred.
|
|
*/
|
|
status = readl(efuse->base + SPRD_EFUSE_ERR_FLAG);
|
|
if (status) {
|
|
dev_err(efuse->dev,
|
|
"read error status %d of block %d\n", status, blk);
|
|
|
|
writel(SPRD_EFUSE_ERR_CLR_MASK,
|
|
efuse->base + SPRD_EFUSE_ERR_CLR);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes)
|
|
{
|
|
struct sprd_efuse *efuse = context;
|
|
bool blk_double = efuse->data->blk_double;
|
|
u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset;
|
|
u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE;
|
|
u32 data;
|
|
int ret;
|
|
|
|
ret = sprd_efuse_lock(efuse);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = clk_prepare_enable(efuse->clk);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = sprd_efuse_raw_read(efuse, index, &data, blk_double);
|
|
if (!ret) {
|
|
data >>= blk_offset;
|
|
memcpy(val, &data, bytes);
|
|
}
|
|
|
|
clk_disable_unprepare(efuse->clk);
|
|
|
|
unlock:
|
|
sprd_efuse_unlock(efuse);
|
|
return ret;
|
|
}
|
|
|
|
static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes)
|
|
{
|
|
struct sprd_efuse *efuse = context;
|
|
bool blk_double = efuse->data->blk_double;
|
|
bool lock;
|
|
int ret;
|
|
|
|
ret = sprd_efuse_lock(efuse);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = clk_prepare_enable(efuse->clk);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/*
|
|
* If the writing bytes are equal with the block width, which means the
|
|
* whole block will be programmed. For this case, we should not allow
|
|
* this block to be programmed again by locking this block.
|
|
*
|
|
* If the block was programmed partially, we should allow this block to
|
|
* be programmed again.
|
|
*/
|
|
if (bytes < SPRD_EFUSE_BLOCK_WIDTH)
|
|
lock = false;
|
|
else
|
|
lock = true;
|
|
|
|
ret = sprd_efuse_raw_prog(efuse, offset, blk_double, lock, val);
|
|
|
|
clk_disable_unprepare(efuse->clk);
|
|
|
|
unlock:
|
|
sprd_efuse_unlock(efuse);
|
|
return ret;
|
|
}
|
|
|
|
static int sprd_efuse_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct nvmem_device *nvmem;
|
|
struct nvmem_config econfig = { };
|
|
struct sprd_efuse *efuse;
|
|
const struct sprd_efuse_variant_data *pdata;
|
|
int ret;
|
|
|
|
pdata = of_device_get_match_data(&pdev->dev);
|
|
if (!pdata) {
|
|
dev_err(&pdev->dev, "No matching driver data found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL);
|
|
if (!efuse)
|
|
return -ENOMEM;
|
|
|
|
efuse->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (!efuse->base)
|
|
return -ENOMEM;
|
|
|
|
ret = of_hwspin_lock_get_id(np, 0);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to get hwlock id\n");
|
|
return ret;
|
|
}
|
|
|
|
efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret);
|
|
if (!efuse->hwlock) {
|
|
dev_err(&pdev->dev, "failed to request hwlock\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
efuse->clk = devm_clk_get(&pdev->dev, "enable");
|
|
if (IS_ERR(efuse->clk)) {
|
|
dev_err(&pdev->dev, "failed to get enable clock\n");
|
|
return PTR_ERR(efuse->clk);
|
|
}
|
|
|
|
mutex_init(&efuse->mutex);
|
|
efuse->dev = &pdev->dev;
|
|
efuse->data = pdata;
|
|
|
|
econfig.stride = 1;
|
|
econfig.word_size = 1;
|
|
econfig.read_only = false;
|
|
econfig.name = "sprd-efuse";
|
|
econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH;
|
|
econfig.reg_read = sprd_efuse_read;
|
|
econfig.reg_write = sprd_efuse_write;
|
|
econfig.priv = efuse;
|
|
econfig.dev = &pdev->dev;
|
|
nvmem = devm_nvmem_register(&pdev->dev, &econfig);
|
|
if (IS_ERR(nvmem)) {
|
|
dev_err(&pdev->dev, "failed to register nvmem\n");
|
|
return PTR_ERR(nvmem);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id sprd_efuse_of_match[] = {
|
|
{ .compatible = "sprd,ums312-efuse", .data = &ums312_data },
|
|
{ }
|
|
};
|
|
|
|
static struct platform_driver sprd_efuse_driver = {
|
|
.probe = sprd_efuse_probe,
|
|
.driver = {
|
|
.name = "sprd-efuse",
|
|
.of_match_table = sprd_efuse_of_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(sprd_efuse_driver);
|
|
|
|
MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
|
|
MODULE_DESCRIPTION("Spreadtrum AP efuse driver");
|
|
MODULE_LICENSE("GPL v2");
|