linux/drivers/net/ethernet/intel/iavf/iavf_main.c
Stefan Assmann 1a0e880b02 iavf: remove duplicate free resources calls
Both iavf_free_all_tx_resources() and iavf_free_all_rx_resources() have
already been called in the very same function.
Remove the duplicate calls.

Signed-off-by: Stefan Assmann <sassmann@kpanic.de>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-23 09:03:56 -07:00

4042 lines
109 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */
#include "iavf.h"
#include "iavf_prototype.h"
#include "iavf_client.h"
/* All iavf tracepoints are defined by the include below, which must
* be included exactly once across the whole kernel with
* CREATE_TRACE_POINTS defined
*/
#define CREATE_TRACE_POINTS
#include "iavf_trace.h"
static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
static int iavf_close(struct net_device *netdev);
static int iavf_init_get_resources(struct iavf_adapter *adapter);
static int iavf_check_reset_complete(struct iavf_hw *hw);
char iavf_driver_name[] = "iavf";
static const char iavf_driver_string[] =
"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
static const char iavf_copyright[] =
"Copyright (c) 2013 - 2018 Intel Corporation.";
/* iavf_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id iavf_pci_tbl[] = {
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
MODULE_ALIAS("i40evf");
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
MODULE_LICENSE("GPL v2");
static const struct net_device_ops iavf_netdev_ops;
struct workqueue_struct *iavf_wq;
/**
* iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to fill out
* @size: size of memory requested
* @alignment: what to align the allocation to
**/
enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
struct iavf_dma_mem *mem,
u64 size, u32 alignment)
{
struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
if (!mem)
return IAVF_ERR_PARAM;
mem->size = ALIGN(size, alignment);
mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
(dma_addr_t *)&mem->pa, GFP_KERNEL);
if (mem->va)
return 0;
else
return IAVF_ERR_NO_MEMORY;
}
/**
* iavf_free_dma_mem_d - OS specific memory free for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
struct iavf_dma_mem *mem)
{
struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
if (!mem || !mem->va)
return IAVF_ERR_PARAM;
dma_free_coherent(&adapter->pdev->dev, mem->size,
mem->va, (dma_addr_t)mem->pa);
return 0;
}
/**
* iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to fill out
* @size: size of memory requested
**/
enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
struct iavf_virt_mem *mem, u32 size)
{
if (!mem)
return IAVF_ERR_PARAM;
mem->size = size;
mem->va = kzalloc(size, GFP_KERNEL);
if (mem->va)
return 0;
else
return IAVF_ERR_NO_MEMORY;
}
/**
* iavf_free_virt_mem_d - OS specific memory free for shared code
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
struct iavf_virt_mem *mem)
{
if (!mem)
return IAVF_ERR_PARAM;
/* it's ok to kfree a NULL pointer */
kfree(mem->va);
return 0;
}
/**
* iavf_schedule_reset - Set the flags and schedule a reset event
* @adapter: board private structure
**/
void iavf_schedule_reset(struct iavf_adapter *adapter)
{
if (!(adapter->flags &
(IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
adapter->flags |= IAVF_FLAG_RESET_NEEDED;
queue_work(iavf_wq, &adapter->reset_task);
}
}
/**
* iavf_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: queue number that is timing out
**/
static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
adapter->tx_timeout_count++;
iavf_schedule_reset(adapter);
}
/**
* iavf_misc_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
if (!adapter->msix_entries)
return;
wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
iavf_flush(hw);
synchronize_irq(adapter->msix_entries[0].vector);
}
/**
* iavf_misc_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
iavf_flush(hw);
}
/**
* iavf_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void iavf_irq_disable(struct iavf_adapter *adapter)
{
int i;
struct iavf_hw *hw = &adapter->hw;
if (!adapter->msix_entries)
return;
for (i = 1; i < adapter->num_msix_vectors; i++) {
wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
synchronize_irq(adapter->msix_entries[i].vector);
}
iavf_flush(hw);
}
/**
* iavf_irq_enable_queues - Enable interrupt for specified queues
* @adapter: board private structure
* @mask: bitmap of queues to enable
**/
void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
{
struct iavf_hw *hw = &adapter->hw;
int i;
for (i = 1; i < adapter->num_msix_vectors; i++) {
if (mask & BIT(i - 1)) {
wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
}
}
}
/**
* iavf_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
* @flush: boolean value whether to run rd32()
**/
void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
{
struct iavf_hw *hw = &adapter->hw;
iavf_misc_irq_enable(adapter);
iavf_irq_enable_queues(adapter, ~0);
if (flush)
iavf_flush(hw);
}
/**
* iavf_msix_aq - Interrupt handler for vector 0
* @irq: interrupt number
* @data: pointer to netdev
**/
static irqreturn_t iavf_msix_aq(int irq, void *data)
{
struct net_device *netdev = data;
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_hw *hw = &adapter->hw;
/* handle non-queue interrupts, these reads clear the registers */
rd32(hw, IAVF_VFINT_ICR01);
rd32(hw, IAVF_VFINT_ICR0_ENA1);
/* schedule work on the private workqueue */
queue_work(iavf_wq, &adapter->adminq_task);
return IRQ_HANDLED;
}
/**
* iavf_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
**/
static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
{
struct iavf_q_vector *q_vector = data;
if (!q_vector->tx.ring && !q_vector->rx.ring)
return IRQ_HANDLED;
napi_schedule_irqoff(&q_vector->napi);
return IRQ_HANDLED;
}
/**
* iavf_map_vector_to_rxq - associate irqs with rx queues
* @adapter: board private structure
* @v_idx: interrupt number
* @r_idx: queue number
**/
static void
iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
{
struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
struct iavf_hw *hw = &adapter->hw;
rx_ring->q_vector = q_vector;
rx_ring->next = q_vector->rx.ring;
rx_ring->vsi = &adapter->vsi;
q_vector->rx.ring = rx_ring;
q_vector->rx.count++;
q_vector->rx.next_update = jiffies + 1;
q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
q_vector->ring_mask |= BIT(r_idx);
wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
q_vector->rx.current_itr >> 1);
q_vector->rx.current_itr = q_vector->rx.target_itr;
}
/**
* iavf_map_vector_to_txq - associate irqs with tx queues
* @adapter: board private structure
* @v_idx: interrupt number
* @t_idx: queue number
**/
static void
iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
{
struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
struct iavf_hw *hw = &adapter->hw;
tx_ring->q_vector = q_vector;
tx_ring->next = q_vector->tx.ring;
tx_ring->vsi = &adapter->vsi;
q_vector->tx.ring = tx_ring;
q_vector->tx.count++;
q_vector->tx.next_update = jiffies + 1;
q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
q_vector->num_ringpairs++;
wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
q_vector->tx.target_itr >> 1);
q_vector->tx.current_itr = q_vector->tx.target_itr;
}
/**
* iavf_map_rings_to_vectors - Maps descriptor rings to vectors
* @adapter: board private structure to initialize
*
* This function maps descriptor rings to the queue-specific vectors
* we were allotted through the MSI-X enabling code. Ideally, we'd have
* one vector per ring/queue, but on a constrained vector budget, we
* group the rings as "efficiently" as possible. You would add new
* mapping configurations in here.
**/
static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
{
int rings_remaining = adapter->num_active_queues;
int ridx = 0, vidx = 0;
int q_vectors;
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (; ridx < rings_remaining; ridx++) {
iavf_map_vector_to_rxq(adapter, vidx, ridx);
iavf_map_vector_to_txq(adapter, vidx, ridx);
/* In the case where we have more queues than vectors, continue
* round-robin on vectors until all queues are mapped.
*/
if (++vidx >= q_vectors)
vidx = 0;
}
adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
}
/**
* iavf_irq_affinity_notify - Callback for affinity changes
* @notify: context as to what irq was changed
* @mask: the new affinity mask
*
* This is a callback function used by the irq_set_affinity_notifier function
* so that we may register to receive changes to the irq affinity masks.
**/
static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct iavf_q_vector *q_vector =
container_of(notify, struct iavf_q_vector, affinity_notify);
cpumask_copy(&q_vector->affinity_mask, mask);
}
/**
* iavf_irq_affinity_release - Callback for affinity notifier release
* @ref: internal core kernel usage
*
* This is a callback function used by the irq_set_affinity_notifier function
* to inform the current notification subscriber that they will no longer
* receive notifications.
**/
static void iavf_irq_affinity_release(struct kref *ref) {}
/**
* iavf_request_traffic_irqs - Initialize MSI-X interrupts
* @adapter: board private structure
* @basename: device basename
*
* Allocates MSI-X vectors for tx and rx handling, and requests
* interrupts from the kernel.
**/
static int
iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
{
unsigned int vector, q_vectors;
unsigned int rx_int_idx = 0, tx_int_idx = 0;
int irq_num, err;
int cpu;
iavf_irq_disable(adapter);
/* Decrement for Other and TCP Timer vectors */
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (vector = 0; vector < q_vectors; vector++) {
struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
if (q_vector->tx.ring && q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-TxRx-%d", basename, rx_int_idx++);
tx_int_idx++;
} else if (q_vector->rx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-rx-%d", basename, rx_int_idx++);
} else if (q_vector->tx.ring) {
snprintf(q_vector->name, sizeof(q_vector->name),
"iavf-%s-tx-%d", basename, tx_int_idx++);
} else {
/* skip this unused q_vector */
continue;
}
err = request_irq(irq_num,
iavf_msix_clean_rings,
0,
q_vector->name,
q_vector);
if (err) {
dev_info(&adapter->pdev->dev,
"Request_irq failed, error: %d\n", err);
goto free_queue_irqs;
}
/* register for affinity change notifications */
q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
q_vector->affinity_notify.release =
iavf_irq_affinity_release;
irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
/* Spread the IRQ affinity hints across online CPUs. Note that
* get_cpu_mask returns a mask with a permanent lifetime so
* it's safe to use as a hint for irq_set_affinity_hint.
*/
cpu = cpumask_local_spread(q_vector->v_idx, -1);
irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
}
return 0;
free_queue_irqs:
while (vector) {
vector--;
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
irq_set_affinity_notifier(irq_num, NULL);
irq_set_affinity_hint(irq_num, NULL);
free_irq(irq_num, &adapter->q_vectors[vector]);
}
return err;
}
/**
* iavf_request_misc_irq - Initialize MSI-X interrupts
* @adapter: board private structure
*
* Allocates MSI-X vector 0 and requests interrupts from the kernel. This
* vector is only for the admin queue, and stays active even when the netdev
* is closed.
**/
static int iavf_request_misc_irq(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
snprintf(adapter->misc_vector_name,
sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
dev_name(&adapter->pdev->dev));
err = request_irq(adapter->msix_entries[0].vector,
&iavf_msix_aq, 0,
adapter->misc_vector_name, netdev);
if (err) {
dev_err(&adapter->pdev->dev,
"request_irq for %s failed: %d\n",
adapter->misc_vector_name, err);
free_irq(adapter->msix_entries[0].vector, netdev);
}
return err;
}
/**
* iavf_free_traffic_irqs - Free MSI-X interrupts
* @adapter: board private structure
*
* Frees all MSI-X vectors other than 0.
**/
static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
{
int vector, irq_num, q_vectors;
if (!adapter->msix_entries)
return;
q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (vector = 0; vector < q_vectors; vector++) {
irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
irq_set_affinity_notifier(irq_num, NULL);
irq_set_affinity_hint(irq_num, NULL);
free_irq(irq_num, &adapter->q_vectors[vector]);
}
}
/**
* iavf_free_misc_irq - Free MSI-X miscellaneous vector
* @adapter: board private structure
*
* Frees MSI-X vector 0.
**/
static void iavf_free_misc_irq(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (!adapter->msix_entries)
return;
free_irq(adapter->msix_entries[0].vector, netdev);
}
/**
* iavf_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void iavf_configure_tx(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
int i;
for (i = 0; i < adapter->num_active_queues; i++)
adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
}
/**
* iavf_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void iavf_configure_rx(struct iavf_adapter *adapter)
{
unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
struct iavf_hw *hw = &adapter->hw;
int i;
/* Legacy Rx will always default to a 2048 buffer size. */
#if (PAGE_SIZE < 8192)
if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
struct net_device *netdev = adapter->netdev;
/* For jumbo frames on systems with 4K pages we have to use
* an order 1 page, so we might as well increase the size
* of our Rx buffer to make better use of the available space
*/
rx_buf_len = IAVF_RXBUFFER_3072;
/* We use a 1536 buffer size for configurations with
* standard Ethernet mtu. On x86 this gives us enough room
* for shared info and 192 bytes of padding.
*/
if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
(netdev->mtu <= ETH_DATA_LEN))
rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
}
#endif
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
adapter->rx_rings[i].rx_buf_len = rx_buf_len;
if (adapter->flags & IAVF_FLAG_LEGACY_RX)
clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
else
set_ring_build_skb_enabled(&adapter->rx_rings[i]);
}
}
/**
* iavf_find_vlan - Search filter list for specific vlan filter
* @adapter: board private structure
* @vlan: vlan tag
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* mac_vlan_list_lock.
**/
static struct
iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
{
struct iavf_vlan_filter *f;
list_for_each_entry(f, &adapter->vlan_filter_list, list) {
if (vlan == f->vlan)
return f;
}
return NULL;
}
/**
* iavf_add_vlan - Add a vlan filter to the list
* @adapter: board private structure
* @vlan: VLAN tag
*
* Returns ptr to the filter object or NULL when no memory available.
**/
static struct
iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
{
struct iavf_vlan_filter *f = NULL;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_vlan(adapter, vlan);
if (!f) {
f = kzalloc(sizeof(*f), GFP_ATOMIC);
if (!f)
goto clearout;
f->vlan = vlan;
list_add_tail(&f->list, &adapter->vlan_filter_list);
f->add = true;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
}
clearout:
spin_unlock_bh(&adapter->mac_vlan_list_lock);
return f;
}
/**
* iavf_del_vlan - Remove a vlan filter from the list
* @adapter: board private structure
* @vlan: VLAN tag
**/
static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
{
struct iavf_vlan_filter *f;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_vlan(adapter, vlan);
if (f) {
f->remove = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
}
/**
* iavf_vlan_rx_add_vid - Add a VLAN filter to a device
* @netdev: network device struct
* @proto: unused protocol data
* @vid: VLAN tag
**/
static int iavf_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (!VLAN_ALLOWED(adapter))
return -EIO;
if (iavf_add_vlan(adapter, vid) == NULL)
return -ENOMEM;
return 0;
}
/**
* iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
* @netdev: network device struct
* @proto: unused protocol data
* @vid: VLAN tag
**/
static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (VLAN_ALLOWED(adapter)) {
iavf_del_vlan(adapter, vid);
return 0;
}
return -EIO;
}
/**
* iavf_find_filter - Search filter list for specific mac filter
* @adapter: board private structure
* @macaddr: the MAC address
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* mac_vlan_list_lock.
**/
static struct
iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
const u8 *macaddr)
{
struct iavf_mac_filter *f;
if (!macaddr)
return NULL;
list_for_each_entry(f, &adapter->mac_filter_list, list) {
if (ether_addr_equal(macaddr, f->macaddr))
return f;
}
return NULL;
}
/**
* iavf_add_filter - Add a mac filter to the filter list
* @adapter: board private structure
* @macaddr: the MAC address
*
* Returns ptr to the filter object or NULL when no memory available.
**/
struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
const u8 *macaddr)
{
struct iavf_mac_filter *f;
if (!macaddr)
return NULL;
f = iavf_find_filter(adapter, macaddr);
if (!f) {
f = kzalloc(sizeof(*f), GFP_ATOMIC);
if (!f)
return f;
ether_addr_copy(f->macaddr, macaddr);
list_add_tail(&f->list, &adapter->mac_filter_list);
f->add = true;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
} else {
f->remove = false;
}
return f;
}
/**
* iavf_set_mac - NDO callback to set port mac address
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_set_mac(struct net_device *netdev, void *p)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_hw *hw = &adapter->hw;
struct iavf_mac_filter *f;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
return 0;
spin_lock_bh(&adapter->mac_vlan_list_lock);
f = iavf_find_filter(adapter, hw->mac.addr);
if (f) {
f->remove = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
}
f = iavf_add_filter(adapter, addr->sa_data);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
if (f) {
ether_addr_copy(hw->mac.addr, addr->sa_data);
}
return (f == NULL) ? -ENOMEM : 0;
}
/**
* iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be added. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (iavf_add_filter(adapter, addr))
return 0;
else
return -ENOMEM;
}
/**
* iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
* @netdev: the netdevice
* @addr: address to add
*
* Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
* __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
*/
static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_mac_filter *f;
/* Under some circumstances, we might receive a request to delete
* our own device address from our uc list. Because we store the
* device address in the VSI's MAC/VLAN filter list, we need to ignore
* such requests and not delete our device address from this list.
*/
if (ether_addr_equal(addr, netdev->dev_addr))
return 0;
f = iavf_find_filter(adapter, addr);
if (f) {
f->remove = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
}
return 0;
}
/**
* iavf_set_rx_mode - NDO callback to set the netdev filters
* @netdev: network interface device structure
**/
static void iavf_set_rx_mode(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
spin_lock_bh(&adapter->mac_vlan_list_lock);
__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
if (netdev->flags & IFF_PROMISC &&
!(adapter->flags & IAVF_FLAG_PROMISC_ON))
adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
else if (!(netdev->flags & IFF_PROMISC) &&
adapter->flags & IAVF_FLAG_PROMISC_ON)
adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
if (netdev->flags & IFF_ALLMULTI &&
!(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
else if (!(netdev->flags & IFF_ALLMULTI) &&
adapter->flags & IAVF_FLAG_ALLMULTI_ON)
adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
}
/**
* iavf_napi_enable_all - enable NAPI on all queue vectors
* @adapter: board private structure
**/
static void iavf_napi_enable_all(struct iavf_adapter *adapter)
{
int q_idx;
struct iavf_q_vector *q_vector;
int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
struct napi_struct *napi;
q_vector = &adapter->q_vectors[q_idx];
napi = &q_vector->napi;
napi_enable(napi);
}
}
/**
* iavf_napi_disable_all - disable NAPI on all queue vectors
* @adapter: board private structure
**/
static void iavf_napi_disable_all(struct iavf_adapter *adapter)
{
int q_idx;
struct iavf_q_vector *q_vector;
int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
for (q_idx = 0; q_idx < q_vectors; q_idx++) {
q_vector = &adapter->q_vectors[q_idx];
napi_disable(&q_vector->napi);
}
}
/**
* iavf_configure - set up transmit and receive data structures
* @adapter: board private structure
**/
static void iavf_configure(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
iavf_set_rx_mode(netdev);
iavf_configure_tx(adapter);
iavf_configure_rx(adapter);
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
for (i = 0; i < adapter->num_active_queues; i++) {
struct iavf_ring *ring = &adapter->rx_rings[i];
iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
}
}
/**
* iavf_up_complete - Finish the last steps of bringing up a connection
* @adapter: board private structure
*
* Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
**/
static void iavf_up_complete(struct iavf_adapter *adapter)
{
adapter->state = __IAVF_RUNNING;
clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_napi_enable_all(adapter);
adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
if (CLIENT_ENABLED(adapter))
adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_down - Shutdown the connection processing
* @adapter: board private structure
*
* Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
**/
void iavf_down(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct iavf_vlan_filter *vlf;
struct iavf_cloud_filter *cf;
struct iavf_fdir_fltr *fdir;
struct iavf_mac_filter *f;
struct iavf_adv_rss *rss;
if (adapter->state <= __IAVF_DOWN_PENDING)
return;
netif_carrier_off(netdev);
netif_tx_disable(netdev);
adapter->link_up = false;
iavf_napi_disable_all(adapter);
iavf_irq_disable(adapter);
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* clear the sync flag on all filters */
__dev_uc_unsync(adapter->netdev, NULL);
__dev_mc_unsync(adapter->netdev, NULL);
/* remove all MAC filters */
list_for_each_entry(f, &adapter->mac_filter_list, list) {
f->remove = true;
}
/* remove all VLAN filters */
list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
vlf->remove = true;
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
/* remove all cloud filters */
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
cf->del = true;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
/* remove all Flow Director filters */
spin_lock_bh(&adapter->fdir_fltr_lock);
list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
}
spin_unlock_bh(&adapter->fdir_fltr_lock);
/* remove all advance RSS configuration */
spin_lock_bh(&adapter->adv_rss_lock);
list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
rss->state = IAVF_ADV_RSS_DEL_REQUEST;
spin_unlock_bh(&adapter->adv_rss_lock);
if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
adapter->state != __IAVF_RESETTING) {
/* cancel any current operation */
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
/* Schedule operations to close down the HW. Don't wait
* here for this to complete. The watchdog is still running
* and it will take care of this.
*/
adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
}
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
}
/**
* iavf_acquire_msix_vectors - Setup the MSIX capability
* @adapter: board private structure
* @vectors: number of vectors to request
*
* Work with the OS to set up the MSIX vectors needed.
*
* Returns 0 on success, negative on failure
**/
static int
iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
{
int err, vector_threshold;
/* We'll want at least 3 (vector_threshold):
* 0) Other (Admin Queue and link, mostly)
* 1) TxQ[0] Cleanup
* 2) RxQ[0] Cleanup
*/
vector_threshold = MIN_MSIX_COUNT;
/* The more we get, the more we will assign to Tx/Rx Cleanup
* for the separate queues...where Rx Cleanup >= Tx Cleanup.
* Right now, we simply care about how many we'll get; we'll
* set them up later while requesting irq's.
*/
err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
vector_threshold, vectors);
if (err < 0) {
dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
return err;
}
/* Adjust for only the vectors we'll use, which is minimum
* of max_msix_q_vectors + NONQ_VECS, or the number of
* vectors we were allocated.
*/
adapter->num_msix_vectors = err;
return 0;
}
/**
* iavf_free_queues - Free memory for all rings
* @adapter: board private structure to initialize
*
* Free all of the memory associated with queue pairs.
**/
static void iavf_free_queues(struct iavf_adapter *adapter)
{
if (!adapter->vsi_res)
return;
adapter->num_active_queues = 0;
kfree(adapter->tx_rings);
adapter->tx_rings = NULL;
kfree(adapter->rx_rings);
adapter->rx_rings = NULL;
}
/**
* iavf_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
* We allocate one ring per queue at run-time since we don't know the
* number of queues at compile-time. The polling_netdev array is
* intended for Multiqueue, but should work fine with a single queue.
**/
static int iavf_alloc_queues(struct iavf_adapter *adapter)
{
int i, num_active_queues;
/* If we're in reset reallocating queues we don't actually know yet for
* certain the PF gave us the number of queues we asked for but we'll
* assume it did. Once basic reset is finished we'll confirm once we
* start negotiating config with PF.
*/
if (adapter->num_req_queues)
num_active_queues = adapter->num_req_queues;
else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
adapter->num_tc)
num_active_queues = adapter->ch_config.total_qps;
else
num_active_queues = min_t(int,
adapter->vsi_res->num_queue_pairs,
(int)(num_online_cpus()));
adapter->tx_rings = kcalloc(num_active_queues,
sizeof(struct iavf_ring), GFP_KERNEL);
if (!adapter->tx_rings)
goto err_out;
adapter->rx_rings = kcalloc(num_active_queues,
sizeof(struct iavf_ring), GFP_KERNEL);
if (!adapter->rx_rings)
goto err_out;
for (i = 0; i < num_active_queues; i++) {
struct iavf_ring *tx_ring;
struct iavf_ring *rx_ring;
tx_ring = &adapter->tx_rings[i];
tx_ring->queue_index = i;
tx_ring->netdev = adapter->netdev;
tx_ring->dev = &adapter->pdev->dev;
tx_ring->count = adapter->tx_desc_count;
tx_ring->itr_setting = IAVF_ITR_TX_DEF;
if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
rx_ring = &adapter->rx_rings[i];
rx_ring->queue_index = i;
rx_ring->netdev = adapter->netdev;
rx_ring->dev = &adapter->pdev->dev;
rx_ring->count = adapter->rx_desc_count;
rx_ring->itr_setting = IAVF_ITR_RX_DEF;
}
adapter->num_active_queues = num_active_queues;
return 0;
err_out:
iavf_free_queues(adapter);
return -ENOMEM;
}
/**
* iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
* @adapter: board private structure to initialize
*
* Attempt to configure the interrupts using the best available
* capabilities of the hardware and the kernel.
**/
static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
{
int vector, v_budget;
int pairs = 0;
int err = 0;
if (!adapter->vsi_res) {
err = -EIO;
goto out;
}
pairs = adapter->num_active_queues;
/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
* us much good if we have more vectors than CPUs. However, we already
* limit the total number of queues by the number of CPUs so we do not
* need any further limiting here.
*/
v_budget = min_t(int, pairs + NONQ_VECS,
(int)adapter->vf_res->max_vectors);
adapter->msix_entries = kcalloc(v_budget,
sizeof(struct msix_entry), GFP_KERNEL);
if (!adapter->msix_entries) {
err = -ENOMEM;
goto out;
}
for (vector = 0; vector < v_budget; vector++)
adapter->msix_entries[vector].entry = vector;
err = iavf_acquire_msix_vectors(adapter, v_budget);
out:
netif_set_real_num_rx_queues(adapter->netdev, pairs);
netif_set_real_num_tx_queues(adapter->netdev, pairs);
return err;
}
/**
* iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int iavf_config_rss_aq(struct iavf_adapter *adapter)
{
struct iavf_aqc_get_set_rss_key_data *rss_key =
(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
struct iavf_hw *hw = &adapter->hw;
int ret = 0;
if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
/* bail because we already have a command pending */
dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
adapter->current_op);
return -EBUSY;
}
ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
if (ret) {
dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
iavf_stat_str(hw, ret),
iavf_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
adapter->rss_lut, adapter->rss_lut_size);
if (ret) {
dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
iavf_stat_str(hw, ret),
iavf_aq_str(hw, hw->aq.asq_last_status));
}
return ret;
}
/**
* iavf_config_rss_reg - Configure RSS keys and lut by writing registers
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_config_rss_reg(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
u32 *dw;
u16 i;
dw = (u32 *)adapter->rss_key;
for (i = 0; i <= adapter->rss_key_size / 4; i++)
wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
dw = (u32 *)adapter->rss_lut;
for (i = 0; i <= adapter->rss_lut_size / 4; i++)
wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
iavf_flush(hw);
return 0;
}
/**
* iavf_config_rss - Configure RSS keys and lut
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
int iavf_config_rss(struct iavf_adapter *adapter)
{
if (RSS_PF(adapter)) {
adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
IAVF_FLAG_AQ_SET_RSS_KEY;
return 0;
} else if (RSS_AQ(adapter)) {
return iavf_config_rss_aq(adapter);
} else {
return iavf_config_rss_reg(adapter);
}
}
/**
* iavf_fill_rss_lut - Fill the lut with default values
* @adapter: board private structure
**/
static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
{
u16 i;
for (i = 0; i < adapter->rss_lut_size; i++)
adapter->rss_lut[i] = i % adapter->num_active_queues;
}
/**
* iavf_init_rss - Prepare for RSS
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
static int iavf_init_rss(struct iavf_adapter *adapter)
{
struct iavf_hw *hw = &adapter->hw;
int ret;
if (!RSS_PF(adapter)) {
/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
if (adapter->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
else
adapter->hena = IAVF_DEFAULT_RSS_HENA;
wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
}
iavf_fill_rss_lut(adapter);
netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
ret = iavf_config_rss(adapter);
return ret;
}
/**
* iavf_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
**/
static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
{
int q_idx = 0, num_q_vectors;
struct iavf_q_vector *q_vector;
num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
GFP_KERNEL);
if (!adapter->q_vectors)
return -ENOMEM;
for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
q_vector = &adapter->q_vectors[q_idx];
q_vector->adapter = adapter;
q_vector->vsi = &adapter->vsi;
q_vector->v_idx = q_idx;
q_vector->reg_idx = q_idx;
cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
netif_napi_add(adapter->netdev, &q_vector->napi,
iavf_napi_poll, NAPI_POLL_WEIGHT);
}
return 0;
}
/**
* iavf_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
**/
static void iavf_free_q_vectors(struct iavf_adapter *adapter)
{
int q_idx, num_q_vectors;
int napi_vectors;
if (!adapter->q_vectors)
return;
num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
napi_vectors = adapter->num_active_queues;
for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
if (q_idx < napi_vectors)
netif_napi_del(&q_vector->napi);
}
kfree(adapter->q_vectors);
adapter->q_vectors = NULL;
}
/**
* iavf_reset_interrupt_capability - Reset MSIX setup
* @adapter: board private structure
*
**/
void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
{
if (!adapter->msix_entries)
return;
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
}
/**
* iavf_init_interrupt_scheme - Determine if MSIX is supported and init
* @adapter: board private structure to initialize
*
**/
int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
{
int err;
err = iavf_alloc_queues(adapter);
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for queues\n");
goto err_alloc_queues;
}
rtnl_lock();
err = iavf_set_interrupt_capability(adapter);
rtnl_unlock();
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to setup interrupt capabilities\n");
goto err_set_interrupt;
}
err = iavf_alloc_q_vectors(adapter);
if (err) {
dev_err(&adapter->pdev->dev,
"Unable to allocate memory for queue vectors\n");
goto err_alloc_q_vectors;
}
/* If we've made it so far while ADq flag being ON, then we haven't
* bailed out anywhere in middle. And ADq isn't just enabled but actual
* resources have been allocated in the reset path.
* Now we can truly claim that ADq is enabled.
*/
if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
adapter->num_tc)
dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
adapter->num_tc);
dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
(adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
adapter->num_active_queues);
return 0;
err_alloc_q_vectors:
iavf_reset_interrupt_capability(adapter);
err_set_interrupt:
iavf_free_queues(adapter);
err_alloc_queues:
return err;
}
/**
* iavf_free_rss - Free memory used by RSS structs
* @adapter: board private structure
**/
static void iavf_free_rss(struct iavf_adapter *adapter)
{
kfree(adapter->rss_key);
adapter->rss_key = NULL;
kfree(adapter->rss_lut);
adapter->rss_lut = NULL;
}
/**
* iavf_reinit_interrupt_scheme - Reallocate queues and vectors
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
if (netif_running(netdev))
iavf_free_traffic_irqs(adapter);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_q_vectors(adapter);
iavf_free_queues(adapter);
err = iavf_init_interrupt_scheme(adapter);
if (err)
goto err;
netif_tx_stop_all_queues(netdev);
err = iavf_request_misc_irq(adapter);
if (err)
goto err;
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
iavf_map_rings_to_vectors(adapter);
if (RSS_AQ(adapter))
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
else
err = iavf_init_rss(adapter);
err:
return err;
}
/**
* iavf_process_aq_command - process aq_required flags
* and sends aq command
* @adapter: pointer to iavf adapter structure
*
* Returns 0 on success
* Returns error code if no command was sent
* or error code if the command failed.
**/
static int iavf_process_aq_command(struct iavf_adapter *adapter)
{
if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
return iavf_send_vf_config_msg(adapter);
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
iavf_disable_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
iavf_map_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
iavf_add_ether_addrs(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
iavf_add_vlans(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
iavf_del_ether_addrs(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
iavf_del_vlans(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
iavf_enable_vlan_stripping(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
iavf_disable_vlan_stripping(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
iavf_configure_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
iavf_enable_queues(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
/* This message goes straight to the firmware, not the
* PF, so we don't have to set current_op as we will
* not get a response through the ARQ.
*/
adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
iavf_get_hena(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
iavf_set_hena(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
iavf_set_rss_key(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
iavf_set_rss_lut(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
FLAG_VF_MULTICAST_PROMISC);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
return 0;
}
if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
(adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
iavf_set_promiscuous(adapter, 0);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
iavf_enable_channels(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
iavf_disable_channels(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
iavf_add_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
iavf_del_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
iavf_del_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
iavf_add_cloud_filter(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
iavf_add_fdir_filter(adapter);
return IAVF_SUCCESS;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
iavf_del_fdir_filter(adapter);
return IAVF_SUCCESS;
}
if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
iavf_add_adv_rss_cfg(adapter);
return 0;
}
if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
iavf_del_adv_rss_cfg(adapter);
return 0;
}
return -EAGAIN;
}
/**
* iavf_startup - first step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_STARTUP driver state.
* When success the state is changed to __IAVF_INIT_VERSION_CHECK
* when fails it returns -EAGAIN
**/
static int iavf_startup(struct iavf_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct iavf_hw *hw = &adapter->hw;
int err;
WARN_ON(adapter->state != __IAVF_STARTUP);
/* driver loaded, probe complete */
adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
err = iavf_set_mac_type(hw);
if (err) {
dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
goto err;
}
err = iavf_check_reset_complete(hw);
if (err) {
dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
err);
goto err;
}
hw->aq.num_arq_entries = IAVF_AQ_LEN;
hw->aq.num_asq_entries = IAVF_AQ_LEN;
hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
err = iavf_init_adminq(hw);
if (err) {
dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
goto err;
}
err = iavf_send_api_ver(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
iavf_shutdown_adminq(hw);
goto err;
}
adapter->state = __IAVF_INIT_VERSION_CHECK;
err:
return err;
}
/**
* iavf_init_version_check - second step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_INIT_VERSION_CHECK driver state.
* When success the state is changed to __IAVF_INIT_GET_RESOURCES
* when fails it returns -EAGAIN
**/
static int iavf_init_version_check(struct iavf_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct iavf_hw *hw = &adapter->hw;
int err = -EAGAIN;
WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
if (!iavf_asq_done(hw)) {
dev_err(&pdev->dev, "Admin queue command never completed\n");
iavf_shutdown_adminq(hw);
adapter->state = __IAVF_STARTUP;
goto err;
}
/* aq msg sent, awaiting reply */
err = iavf_verify_api_ver(adapter);
if (err) {
if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
err = iavf_send_api_ver(adapter);
else
dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
adapter->pf_version.major,
adapter->pf_version.minor,
VIRTCHNL_VERSION_MAJOR,
VIRTCHNL_VERSION_MINOR);
goto err;
}
err = iavf_send_vf_config_msg(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to send config request (%d)\n",
err);
goto err;
}
adapter->state = __IAVF_INIT_GET_RESOURCES;
err:
return err;
}
/**
* iavf_init_get_resources - third step of driver startup
* @adapter: board private structure
*
* Function process __IAVF_INIT_GET_RESOURCES driver state and
* finishes driver initialization procedure.
* When success the state is changed to __IAVF_DOWN
* when fails it returns -EAGAIN
**/
static int iavf_init_get_resources(struct iavf_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct iavf_hw *hw = &adapter->hw;
int err;
WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
/* aq msg sent, awaiting reply */
if (!adapter->vf_res) {
adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
GFP_KERNEL);
if (!adapter->vf_res) {
err = -ENOMEM;
goto err;
}
}
err = iavf_get_vf_config(adapter);
if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
err = iavf_send_vf_config_msg(adapter);
goto err;
} else if (err == IAVF_ERR_PARAM) {
/* We only get ERR_PARAM if the device is in a very bad
* state or if we've been disabled for previous bad
* behavior. Either way, we're done now.
*/
iavf_shutdown_adminq(hw);
dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
return 0;
}
if (err) {
dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
goto err_alloc;
}
err = iavf_process_config(adapter);
if (err)
goto err_alloc;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
netdev->netdev_ops = &iavf_netdev_ops;
iavf_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
/* MTU range: 68 - 9710 */
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
adapter->hw.mac.addr);
eth_hw_addr_random(netdev);
ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
} else {
ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
}
adapter->tx_desc_count = IAVF_DEFAULT_TXD;
adapter->rx_desc_count = IAVF_DEFAULT_RXD;
err = iavf_init_interrupt_scheme(adapter);
if (err)
goto err_sw_init;
iavf_map_rings_to_vectors(adapter);
if (adapter->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
err = iavf_request_misc_irq(adapter);
if (err)
goto err_sw_init;
netif_carrier_off(netdev);
adapter->link_up = false;
/* set the semaphore to prevent any callbacks after device registration
* up to time when state of driver will be set to __IAVF_DOWN
*/
rtnl_lock();
if (!adapter->netdev_registered) {
err = register_netdevice(netdev);
if (err) {
rtnl_unlock();
goto err_register;
}
}
adapter->netdev_registered = true;
netif_tx_stop_all_queues(netdev);
if (CLIENT_ALLOWED(adapter)) {
err = iavf_lan_add_device(adapter);
if (err)
dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
err);
}
dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
if (netdev->features & NETIF_F_GRO)
dev_info(&pdev->dev, "GRO is enabled\n");
adapter->state = __IAVF_DOWN;
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
rtnl_unlock();
iavf_misc_irq_enable(adapter);
wake_up(&adapter->down_waitqueue);
adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
if (!adapter->rss_key || !adapter->rss_lut) {
err = -ENOMEM;
goto err_mem;
}
if (RSS_AQ(adapter))
adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
else
iavf_init_rss(adapter);
return err;
err_mem:
iavf_free_rss(adapter);
err_register:
iavf_free_misc_irq(adapter);
err_sw_init:
iavf_reset_interrupt_capability(adapter);
err_alloc:
kfree(adapter->vf_res);
adapter->vf_res = NULL;
err:
return err;
}
/**
* iavf_watchdog_task - Periodic call-back task
* @work: pointer to work_struct
**/
static void iavf_watchdog_task(struct work_struct *work)
{
struct iavf_adapter *adapter = container_of(work,
struct iavf_adapter,
watchdog_task.work);
struct iavf_hw *hw = &adapter->hw;
u32 reg_val;
if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
goto restart_watchdog;
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
adapter->state = __IAVF_COMM_FAILED;
switch (adapter->state) {
case __IAVF_COMM_FAILED:
reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
reg_val == VIRTCHNL_VFR_COMPLETED) {
/* A chance for redemption! */
dev_err(&adapter->pdev->dev,
"Hardware came out of reset. Attempting reinit.\n");
adapter->state = __IAVF_STARTUP;
adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
queue_delayed_work(iavf_wq, &adapter->init_task, 10);
clear_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section);
/* Don't reschedule the watchdog, since we've restarted
* the init task. When init_task contacts the PF and
* gets everything set up again, it'll restart the
* watchdog for us. Down, boy. Sit. Stay. Woof.
*/
return;
}
adapter->aq_required = 0;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
clear_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section);
queue_delayed_work(iavf_wq,
&adapter->watchdog_task,
msecs_to_jiffies(10));
goto watchdog_done;
case __IAVF_RESETTING:
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
return;
case __IAVF_DOWN:
case __IAVF_DOWN_PENDING:
case __IAVF_TESTING:
case __IAVF_RUNNING:
if (adapter->current_op) {
if (!iavf_asq_done(hw)) {
dev_dbg(&adapter->pdev->dev,
"Admin queue timeout\n");
iavf_send_api_ver(adapter);
}
} else {
/* An error will be returned if no commands were
* processed; use this opportunity to update stats
*/
if (iavf_process_aq_command(adapter) &&
adapter->state == __IAVF_RUNNING)
iavf_request_stats(adapter);
}
break;
case __IAVF_REMOVE:
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return;
default:
goto restart_watchdog;
}
/* check for hw reset */
reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
if (!reg_val) {
adapter->state = __IAVF_RESETTING;
adapter->flags |= IAVF_FLAG_RESET_PENDING;
adapter->aq_required = 0;
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
queue_work(iavf_wq, &adapter->reset_task);
goto watchdog_done;
}
schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
watchdog_done:
if (adapter->state == __IAVF_RUNNING ||
adapter->state == __IAVF_COMM_FAILED)
iavf_detect_recover_hung(&adapter->vsi);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
restart_watchdog:
if (adapter->aq_required)
queue_delayed_work(iavf_wq, &adapter->watchdog_task,
msecs_to_jiffies(20));
else
queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
queue_work(iavf_wq, &adapter->adminq_task);
}
static void iavf_disable_vf(struct iavf_adapter *adapter)
{
struct iavf_mac_filter *f, *ftmp;
struct iavf_vlan_filter *fv, *fvtmp;
struct iavf_cloud_filter *cf, *cftmp;
adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
/* We don't use netif_running() because it may be true prior to
* ndo_open() returning, so we can't assume it means all our open
* tasks have finished, since we're not holding the rtnl_lock here.
*/
if (adapter->state == __IAVF_RUNNING) {
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
netif_carrier_off(adapter->netdev);
netif_tx_disable(adapter->netdev);
adapter->link_up = false;
iavf_napi_disable_all(adapter);
iavf_irq_disable(adapter);
iavf_free_traffic_irqs(adapter);
iavf_free_all_tx_resources(adapter);
iavf_free_all_rx_resources(adapter);
}
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* Delete all of the filters */
list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
list_del(&f->list);
kfree(f);
}
list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
list_del(&fv->list);
kfree(fv);
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
list_del(&cf->list);
kfree(cf);
adapter->num_cloud_filters--;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_queues(adapter);
iavf_free_q_vectors(adapter);
memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
iavf_shutdown_adminq(&adapter->hw);
adapter->netdev->flags &= ~IFF_UP;
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
adapter->state = __IAVF_DOWN;
wake_up(&adapter->down_waitqueue);
dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
}
/**
* iavf_reset_task - Call-back task to handle hardware reset
* @work: pointer to work_struct
*
* During reset we need to shut down and reinitialize the admin queue
* before we can use it to communicate with the PF again. We also clear
* and reinit the rings because that context is lost as well.
**/
static void iavf_reset_task(struct work_struct *work)
{
struct iavf_adapter *adapter = container_of(work,
struct iavf_adapter,
reset_task);
struct virtchnl_vf_resource *vfres = adapter->vf_res;
struct net_device *netdev = adapter->netdev;
struct iavf_hw *hw = &adapter->hw;
struct iavf_mac_filter *f, *ftmp;
struct iavf_vlan_filter *vlf;
struct iavf_cloud_filter *cf;
u32 reg_val;
int i = 0, err;
bool running;
/* When device is being removed it doesn't make sense to run the reset
* task, just return in such a case.
*/
if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
return;
while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (CLIENT_ENABLED(adapter)) {
adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
IAVF_FLAG_CLIENT_NEEDS_CLOSE |
IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
cancel_delayed_work_sync(&adapter->client_task);
iavf_notify_client_close(&adapter->vsi, true);
}
iavf_misc_irq_disable(adapter);
if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
/* Restart the AQ here. If we have been reset but didn't
* detect it, or if the PF had to reinit, our AQ will be hosed.
*/
iavf_shutdown_adminq(hw);
iavf_init_adminq(hw);
iavf_request_reset(adapter);
}
adapter->flags |= IAVF_FLAG_RESET_PENDING;
/* poll until we see the reset actually happen */
for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
IAVF_VF_ARQLEN1_ARQENABLE_MASK;
if (!reg_val)
break;
usleep_range(5000, 10000);
}
if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
dev_info(&adapter->pdev->dev, "Never saw reset\n");
goto continue_reset; /* act like the reset happened */
}
/* wait until the reset is complete and the PF is responding to us */
for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
/* sleep first to make sure a minimum wait time is met */
msleep(IAVF_RESET_WAIT_MS);
reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if (reg_val == VIRTCHNL_VFR_VFACTIVE)
break;
}
pci_set_master(adapter->pdev);
if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
reg_val);
iavf_disable_vf(adapter);
clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
return; /* Do not attempt to reinit. It's dead, Jim. */
}
continue_reset:
/* We don't use netif_running() because it may be true prior to
* ndo_open() returning, so we can't assume it means all our open
* tasks have finished, since we're not holding the rtnl_lock here.
*/
running = ((adapter->state == __IAVF_RUNNING) ||
(adapter->state == __IAVF_RESETTING));
if (running) {
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
adapter->link_up = false;
iavf_napi_disable_all(adapter);
}
iavf_irq_disable(adapter);
adapter->state = __IAVF_RESETTING;
adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
/* free the Tx/Rx rings and descriptors, might be better to just
* re-use them sometime in the future
*/
iavf_free_all_rx_resources(adapter);
iavf_free_all_tx_resources(adapter);
adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
/* kill and reinit the admin queue */
iavf_shutdown_adminq(hw);
adapter->current_op = VIRTCHNL_OP_UNKNOWN;
err = iavf_init_adminq(hw);
if (err)
dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
err);
adapter->aq_required = 0;
if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
err = iavf_reinit_interrupt_scheme(adapter);
if (err)
goto reset_err;
}
adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* Delete filter for the current MAC address, it could have
* been changed by the PF via administratively set MAC.
* Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
*/
list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
list_del(&f->list);
kfree(f);
}
}
/* re-add all MAC filters */
list_for_each_entry(f, &adapter->mac_filter_list, list) {
f->add = true;
}
/* re-add all VLAN filters */
list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
vlf->add = true;
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
/* check if TCs are running and re-add all cloud filters */
spin_lock_bh(&adapter->cloud_filter_list_lock);
if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
adapter->num_tc) {
list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
cf->add = true;
}
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
iavf_misc_irq_enable(adapter);
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
/* We were running when the reset started, so we need to restore some
* state here.
*/
if (running) {
/* allocate transmit descriptors */
err = iavf_setup_all_tx_resources(adapter);
if (err)
goto reset_err;
/* allocate receive descriptors */
err = iavf_setup_all_rx_resources(adapter);
if (err)
goto reset_err;
if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
err = iavf_request_traffic_irqs(adapter, netdev->name);
if (err)
goto reset_err;
adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
}
iavf_configure(adapter);
iavf_up_complete(adapter);
iavf_irq_enable(adapter, true);
} else {
adapter->state = __IAVF_DOWN;
wake_up(&adapter->down_waitqueue);
}
clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return;
reset_err:
clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
iavf_close(netdev);
}
/**
* iavf_adminq_task - worker thread to clean the admin queue
* @work: pointer to work_struct containing our data
**/
static void iavf_adminq_task(struct work_struct *work)
{
struct iavf_adapter *adapter =
container_of(work, struct iavf_adapter, adminq_task);
struct iavf_hw *hw = &adapter->hw;
struct iavf_arq_event_info event;
enum virtchnl_ops v_op;
enum iavf_status ret, v_ret;
u32 val, oldval;
u16 pending;
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
goto out;
event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
if (!event.msg_buf)
goto out;
do {
ret = iavf_clean_arq_element(hw, &event, &pending);
v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
if (ret || !v_op)
break; /* No event to process or error cleaning ARQ */
iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
event.msg_len);
if (pending != 0)
memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
} while (pending);
if ((adapter->flags &
(IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
adapter->state == __IAVF_RESETTING)
goto freedom;
/* check for error indications */
val = rd32(hw, hw->aq.arq.len);
if (val == 0xdeadbeef) /* indicates device in reset */
goto freedom;
oldval = val;
if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
}
if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
}
if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
}
if (oldval != val)
wr32(hw, hw->aq.arq.len, val);
val = rd32(hw, hw->aq.asq.len);
oldval = val;
if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
}
if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
}
if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
}
if (oldval != val)
wr32(hw, hw->aq.asq.len, val);
freedom:
kfree(event.msg_buf);
out:
/* re-enable Admin queue interrupt cause */
iavf_misc_irq_enable(adapter);
}
/**
* iavf_client_task - worker thread to perform client work
* @work: pointer to work_struct containing our data
*
* This task handles client interactions. Because client calls can be
* reentrant, we can't handle them in the watchdog.
**/
static void iavf_client_task(struct work_struct *work)
{
struct iavf_adapter *adapter =
container_of(work, struct iavf_adapter, client_task.work);
/* If we can't get the client bit, just give up. We'll be rescheduled
* later.
*/
if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
return;
if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
iavf_client_subtask(adapter);
adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
goto out;
}
if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
iavf_notify_client_l2_params(&adapter->vsi);
adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
goto out;
}
if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
iavf_notify_client_close(&adapter->vsi, false);
adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
goto out;
}
if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
iavf_notify_client_open(&adapter->vsi);
adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
}
out:
clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
}
/**
* iavf_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
{
int i;
if (!adapter->tx_rings)
return;
for (i = 0; i < adapter->num_active_queues; i++)
if (adapter->tx_rings[i].desc)
iavf_free_tx_resources(&adapter->tx_rings[i]);
}
/**
* iavf_setup_all_tx_resources - allocate all queues Tx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->tx_rings[i].count = adapter->tx_desc_count;
err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
if (!err)
continue;
dev_err(&adapter->pdev->dev,
"Allocation for Tx Queue %u failed\n", i);
break;
}
return err;
}
/**
* iavf_setup_all_rx_resources - allocate all queues Rx resources
* @adapter: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_active_queues; i++) {
adapter->rx_rings[i].count = adapter->rx_desc_count;
err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
if (!err)
continue;
dev_err(&adapter->pdev->dev,
"Allocation for Rx Queue %u failed\n", i);
break;
}
return err;
}
/**
* iavf_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
{
int i;
if (!adapter->rx_rings)
return;
for (i = 0; i < adapter->num_active_queues; i++)
if (adapter->rx_rings[i].desc)
iavf_free_rx_resources(&adapter->rx_rings[i]);
}
/**
* iavf_validate_tx_bandwidth - validate the max Tx bandwidth
* @adapter: board private structure
* @max_tx_rate: max Tx bw for a tc
**/
static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
u64 max_tx_rate)
{
int speed = 0, ret = 0;
if (ADV_LINK_SUPPORT(adapter)) {
if (adapter->link_speed_mbps < U32_MAX) {
speed = adapter->link_speed_mbps;
goto validate_bw;
} else {
dev_err(&adapter->pdev->dev, "Unknown link speed\n");
return -EINVAL;
}
}
switch (adapter->link_speed) {
case VIRTCHNL_LINK_SPEED_40GB:
speed = SPEED_40000;
break;
case VIRTCHNL_LINK_SPEED_25GB:
speed = SPEED_25000;
break;
case VIRTCHNL_LINK_SPEED_20GB:
speed = SPEED_20000;
break;
case VIRTCHNL_LINK_SPEED_10GB:
speed = SPEED_10000;
break;
case VIRTCHNL_LINK_SPEED_5GB:
speed = SPEED_5000;
break;
case VIRTCHNL_LINK_SPEED_2_5GB:
speed = SPEED_2500;
break;
case VIRTCHNL_LINK_SPEED_1GB:
speed = SPEED_1000;
break;
case VIRTCHNL_LINK_SPEED_100MB:
speed = SPEED_100;
break;
default:
break;
}
validate_bw:
if (max_tx_rate > speed) {
dev_err(&adapter->pdev->dev,
"Invalid tx rate specified\n");
ret = -EINVAL;
}
return ret;
}
/**
* iavf_validate_ch_config - validate queue mapping info
* @adapter: board private structure
* @mqprio_qopt: queue parameters
*
* This function validates if the config provided by the user to
* configure queue channels is valid or not. Returns 0 on a valid
* config.
**/
static int iavf_validate_ch_config(struct iavf_adapter *adapter,
struct tc_mqprio_qopt_offload *mqprio_qopt)
{
u64 total_max_rate = 0;
int i, num_qps = 0;
u64 tx_rate = 0;
int ret = 0;
if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
mqprio_qopt->qopt.num_tc < 1)
return -EINVAL;
for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
if (!mqprio_qopt->qopt.count[i] ||
mqprio_qopt->qopt.offset[i] != num_qps)
return -EINVAL;
if (mqprio_qopt->min_rate[i]) {
dev_err(&adapter->pdev->dev,
"Invalid min tx rate (greater than 0) specified\n");
return -EINVAL;
}
/*convert to Mbps */
tx_rate = div_u64(mqprio_qopt->max_rate[i],
IAVF_MBPS_DIVISOR);
total_max_rate += tx_rate;
num_qps += mqprio_qopt->qopt.count[i];
}
if (num_qps > IAVF_MAX_REQ_QUEUES)
return -EINVAL;
ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
return ret;
}
/**
* iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
* @adapter: board private structure
**/
static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
{
struct iavf_cloud_filter *cf, *cftmp;
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
list) {
list_del(&cf->list);
kfree(cf);
adapter->num_cloud_filters--;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
}
/**
* __iavf_setup_tc - configure multiple traffic classes
* @netdev: network interface device structure
* @type_data: tc offload data
*
* This function processes the config information provided by the
* user to configure traffic classes/queue channels and packages the
* information to request the PF to setup traffic classes.
*
* Returns 0 on success.
**/
static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct iavf_adapter *adapter = netdev_priv(netdev);
struct virtchnl_vf_resource *vfres = adapter->vf_res;
u8 num_tc = 0, total_qps = 0;
int ret = 0, netdev_tc = 0;
u64 max_tx_rate;
u16 mode;
int i;
num_tc = mqprio_qopt->qopt.num_tc;
mode = mqprio_qopt->mode;
/* delete queue_channel */
if (!mqprio_qopt->qopt.hw) {
if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
/* reset the tc configuration */
netdev_reset_tc(netdev);
adapter->num_tc = 0;
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
iavf_del_all_cloud_filters(adapter);
adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
goto exit;
} else {
return -EINVAL;
}
}
/* add queue channel */
if (mode == TC_MQPRIO_MODE_CHANNEL) {
if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
dev_err(&adapter->pdev->dev, "ADq not supported\n");
return -EOPNOTSUPP;
}
if (adapter->ch_config.state != __IAVF_TC_INVALID) {
dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
return -EINVAL;
}
ret = iavf_validate_ch_config(adapter, mqprio_qopt);
if (ret)
return ret;
/* Return if same TC config is requested */
if (adapter->num_tc == num_tc)
return 0;
adapter->num_tc = num_tc;
for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
if (i < num_tc) {
adapter->ch_config.ch_info[i].count =
mqprio_qopt->qopt.count[i];
adapter->ch_config.ch_info[i].offset =
mqprio_qopt->qopt.offset[i];
total_qps += mqprio_qopt->qopt.count[i];
max_tx_rate = mqprio_qopt->max_rate[i];
/* convert to Mbps */
max_tx_rate = div_u64(max_tx_rate,
IAVF_MBPS_DIVISOR);
adapter->ch_config.ch_info[i].max_tx_rate =
max_tx_rate;
} else {
adapter->ch_config.ch_info[i].count = 1;
adapter->ch_config.ch_info[i].offset = 0;
}
}
adapter->ch_config.total_qps = total_qps;
netif_tx_stop_all_queues(netdev);
netif_tx_disable(netdev);
adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
netdev_reset_tc(netdev);
/* Report the tc mapping up the stack */
netdev_set_num_tc(adapter->netdev, num_tc);
for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
u16 qcount = mqprio_qopt->qopt.count[i];
u16 qoffset = mqprio_qopt->qopt.offset[i];
if (i < num_tc)
netdev_set_tc_queue(netdev, netdev_tc++, qcount,
qoffset);
}
}
exit:
return ret;
}
/**
* iavf_parse_cls_flower - Parse tc flower filters provided by kernel
* @adapter: board private structure
* @f: pointer to struct flow_cls_offload
* @filter: pointer to cloud filter structure
*/
static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
struct flow_cls_offload *f,
struct iavf_cloud_filter *filter)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
u16 n_proto_mask = 0;
u16 n_proto_key = 0;
u8 field_flags = 0;
u16 addr_type = 0;
u16 n_proto = 0;
int i = 0;
struct virtchnl_filter *vf = &filter->f;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_PORTS) |
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
if (match.mask->keyid != 0)
field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
n_proto_key = ntohs(match.key->n_proto);
n_proto_mask = ntohs(match.mask->n_proto);
if (n_proto_key == ETH_P_ALL) {
n_proto_key = 0;
n_proto_mask = 0;
}
n_proto = n_proto_key & n_proto_mask;
if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
return -EINVAL;
if (n_proto == ETH_P_IPV6) {
/* specify flow type as TCP IPv6 */
vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
}
if (match.key->ip_proto != IPPROTO_TCP) {
dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
return -EINVAL;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
/* use is_broadcast and is_zero to check for all 0xf or 0 */
if (!is_zero_ether_addr(match.mask->dst)) {
if (is_broadcast_ether_addr(match.mask->dst)) {
field_flags |= IAVF_CLOUD_FIELD_OMAC;
} else {
dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
match.mask->dst);
return IAVF_ERR_CONFIG;
}
}
if (!is_zero_ether_addr(match.mask->src)) {
if (is_broadcast_ether_addr(match.mask->src)) {
field_flags |= IAVF_CLOUD_FIELD_IMAC;
} else {
dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
match.mask->src);
return IAVF_ERR_CONFIG;
}
}
if (!is_zero_ether_addr(match.key->dst))
if (is_valid_ether_addr(match.key->dst) ||
is_multicast_ether_addr(match.key->dst)) {
/* set the mask if a valid dst_mac address */
for (i = 0; i < ETH_ALEN; i++)
vf->mask.tcp_spec.dst_mac[i] |= 0xff;
ether_addr_copy(vf->data.tcp_spec.dst_mac,
match.key->dst);
}
if (!is_zero_ether_addr(match.key->src))
if (is_valid_ether_addr(match.key->src) ||
is_multicast_ether_addr(match.key->src)) {
/* set the mask if a valid dst_mac address */
for (i = 0; i < ETH_ALEN; i++)
vf->mask.tcp_spec.src_mac[i] |= 0xff;
ether_addr_copy(vf->data.tcp_spec.src_mac,
match.key->src);
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_id) {
if (match.mask->vlan_id == VLAN_VID_MASK) {
field_flags |= IAVF_CLOUD_FIELD_IVLAN;
} else {
dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
match.mask->vlan_id);
return IAVF_ERR_CONFIG;
}
}
vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
addr_type = match.key->addr_type;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
if (match.mask->dst) {
if (match.mask->dst == cpu_to_be32(0xffffffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
be32_to_cpu(match.mask->dst));
return IAVF_ERR_CONFIG;
}
}
if (match.mask->src) {
if (match.mask->src == cpu_to_be32(0xffffffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
be32_to_cpu(match.mask->dst));
return IAVF_ERR_CONFIG;
}
}
if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
return IAVF_ERR_CONFIG;
}
if (match.key->dst) {
vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
vf->data.tcp_spec.dst_ip[0] = match.key->dst;
}
if (match.key->src) {
vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
vf->data.tcp_spec.src_ip[0] = match.key->src;
}
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
/* validate mask, make sure it is not IPV6_ADDR_ANY */
if (ipv6_addr_any(&match.mask->dst)) {
dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
IPV6_ADDR_ANY);
return IAVF_ERR_CONFIG;
}
/* src and dest IPv6 address should not be LOOPBACK
* (0:0:0:0:0:0:0:1) which can be represented as ::1
*/
if (ipv6_addr_loopback(&match.key->dst) ||
ipv6_addr_loopback(&match.key->src)) {
dev_err(&adapter->pdev->dev,
"ipv6 addr should not be loopback\n");
return IAVF_ERR_CONFIG;
}
if (!ipv6_addr_any(&match.mask->dst) ||
!ipv6_addr_any(&match.mask->src))
field_flags |= IAVF_CLOUD_FIELD_IIP;
for (i = 0; i < 4; i++)
vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
sizeof(vf->data.tcp_spec.dst_ip));
for (i = 0; i < 4; i++)
vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
sizeof(vf->data.tcp_spec.src_ip));
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
if (match.mask->src) {
if (match.mask->src == cpu_to_be16(0xffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
be16_to_cpu(match.mask->src));
return IAVF_ERR_CONFIG;
}
}
if (match.mask->dst) {
if (match.mask->dst == cpu_to_be16(0xffff)) {
field_flags |= IAVF_CLOUD_FIELD_IIP;
} else {
dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
be16_to_cpu(match.mask->dst));
return IAVF_ERR_CONFIG;
}
}
if (match.key->dst) {
vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
vf->data.tcp_spec.dst_port = match.key->dst;
}
if (match.key->src) {
vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
vf->data.tcp_spec.src_port = match.key->src;
}
}
vf->field_flags = field_flags;
return 0;
}
/**
* iavf_handle_tclass - Forward to a traffic class on the device
* @adapter: board private structure
* @tc: traffic class index on the device
* @filter: pointer to cloud filter structure
*/
static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
struct iavf_cloud_filter *filter)
{
if (tc == 0)
return 0;
if (tc < adapter->num_tc) {
if (!filter->f.data.tcp_spec.dst_port) {
dev_err(&adapter->pdev->dev,
"Specify destination port to redirect to traffic class other than TC0\n");
return -EINVAL;
}
}
/* redirect to a traffic class on the same device */
filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
filter->f.action_meta = tc;
return 0;
}
/**
* iavf_configure_clsflower - Add tc flower filters
* @adapter: board private structure
* @cls_flower: Pointer to struct flow_cls_offload
*/
static int iavf_configure_clsflower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
struct iavf_cloud_filter *filter = NULL;
int err = -EINVAL, count = 50;
if (tc < 0) {
dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
return -EINVAL;
}
filter = kzalloc(sizeof(*filter), GFP_KERNEL);
if (!filter)
return -ENOMEM;
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section)) {
if (--count == 0)
goto err;
udelay(1);
}
filter->cookie = cls_flower->cookie;
/* set the mask to all zeroes to begin with */
memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
/* start out with flow type and eth type IPv4 to begin with */
filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
err = iavf_parse_cls_flower(adapter, cls_flower, filter);
if (err < 0)
goto err;
err = iavf_handle_tclass(adapter, tc, filter);
if (err < 0)
goto err;
/* add filter to the list */
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_add_tail(&filter->list, &adapter->cloud_filter_list);
adapter->num_cloud_filters++;
filter->add = true;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
spin_unlock_bh(&adapter->cloud_filter_list_lock);
err:
if (err)
kfree(filter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return err;
}
/* iavf_find_cf - Find the cloud filter in the list
* @adapter: Board private structure
* @cookie: filter specific cookie
*
* Returns ptr to the filter object or NULL. Must be called while holding the
* cloud_filter_list_lock.
*/
static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
unsigned long *cookie)
{
struct iavf_cloud_filter *filter = NULL;
if (!cookie)
return NULL;
list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
return filter;
}
return NULL;
}
/**
* iavf_delete_clsflower - Remove tc flower filters
* @adapter: board private structure
* @cls_flower: Pointer to struct flow_cls_offload
*/
static int iavf_delete_clsflower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
struct iavf_cloud_filter *filter = NULL;
int err = 0;
spin_lock_bh(&adapter->cloud_filter_list_lock);
filter = iavf_find_cf(adapter, &cls_flower->cookie);
if (filter) {
filter->del = true;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
} else {
err = -EINVAL;
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
return err;
}
/**
* iavf_setup_tc_cls_flower - flower classifier offloads
* @adapter: board private structure
* @cls_flower: pointer to flow_cls_offload struct with flow info
*/
static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return iavf_configure_clsflower(adapter, cls_flower);
case FLOW_CLS_DESTROY:
return iavf_delete_clsflower(adapter, cls_flower);
case FLOW_CLS_STATS:
return -EOPNOTSUPP;
default:
return -EOPNOTSUPP;
}
}
/**
* iavf_setup_tc_block_cb - block callback for tc
* @type: type of offload
* @type_data: offload data
* @cb_priv:
*
* This function is the block callback for traffic classes
**/
static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct iavf_adapter *adapter = cb_priv;
if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return iavf_setup_tc_cls_flower(cb_priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(iavf_block_cb_list);
/**
* iavf_setup_tc - configure multiple traffic classes
* @netdev: network interface device structure
* @type: type of offload
* @type_data: tc offload data
*
* This function is the callback to ndo_setup_tc in the
* netdev_ops.
*
* Returns 0 on success
**/
static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
void *type_data)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return __iavf_setup_tc(netdev, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&iavf_block_cb_list,
iavf_setup_tc_block_cb,
adapter, adapter, true);
default:
return -EOPNOTSUPP;
}
}
/**
* iavf_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog is started,
* and the stack is notified that the interface is ready.
**/
static int iavf_open(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int err;
if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
return -EIO;
}
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (adapter->state != __IAVF_DOWN) {
err = -EBUSY;
goto err_unlock;
}
/* allocate transmit descriptors */
err = iavf_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = iavf_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
/* clear any pending interrupts, may auto mask */
err = iavf_request_traffic_irqs(adapter, netdev->name);
if (err)
goto err_req_irq;
spin_lock_bh(&adapter->mac_vlan_list_lock);
iavf_add_filter(adapter, adapter->hw.mac.addr);
spin_unlock_bh(&adapter->mac_vlan_list_lock);
iavf_configure(adapter);
iavf_up_complete(adapter);
iavf_irq_enable(adapter, true);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return 0;
err_req_irq:
iavf_down(adapter);
iavf_free_traffic_irqs(adapter);
err_setup_rx:
iavf_free_all_rx_resources(adapter);
err_setup_tx:
iavf_free_all_tx_resources(adapter);
err_unlock:
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return err;
}
/**
* iavf_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
* are freed, along with all transmit and receive resources.
**/
static int iavf_close(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int status;
if (adapter->state <= __IAVF_DOWN_PENDING)
return 0;
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
if (CLIENT_ENABLED(adapter))
adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
iavf_down(adapter);
adapter->state = __IAVF_DOWN_PENDING;
iavf_free_traffic_irqs(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
/* We explicitly don't free resources here because the hardware is
* still active and can DMA into memory. Resources are cleared in
* iavf_virtchnl_completion() after we get confirmation from the PF
* driver that the rings have been stopped.
*
* Also, we wait for state to transition to __IAVF_DOWN before
* returning. State change occurs in iavf_virtchnl_completion() after
* VF resources are released (which occurs after PF driver processes and
* responds to admin queue commands).
*/
status = wait_event_timeout(adapter->down_waitqueue,
adapter->state == __IAVF_DOWN,
msecs_to_jiffies(500));
if (!status)
netdev_warn(netdev, "Device resources not yet released\n");
return 0;
}
/**
* iavf_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
netdev->mtu = new_mtu;
if (CLIENT_ENABLED(adapter)) {
iavf_notify_client_l2_params(&adapter->vsi);
adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
}
adapter->flags |= IAVF_FLAG_RESET_NEEDED;
queue_work(iavf_wq, &adapter->reset_task);
return 0;
}
/**
* iavf_set_features - set the netdev feature flags
* @netdev: ptr to the netdev being adjusted
* @features: the feature set that the stack is suggesting
* Note: expects to be called while under rtnl_lock()
**/
static int iavf_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
/* Don't allow changing VLAN_RX flag when adapter is not capable
* of VLAN offload
*/
if (!VLAN_ALLOWED(adapter)) {
if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
return -EINVAL;
} else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
adapter->aq_required |=
IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
else
adapter->aq_required |=
IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
}
return 0;
}
/**
* iavf_features_check - Validate encapsulated packet conforms to limits
* @skb: skb buff
* @dev: This physical port's netdev
* @features: Offload features that the stack believes apply
**/
static netdev_features_t iavf_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
size_t len;
/* No point in doing any of this if neither checksum nor GSO are
* being requested for this frame. We can rule out both by just
* checking for CHECKSUM_PARTIAL
*/
if (skb->ip_summed != CHECKSUM_PARTIAL)
return features;
/* We cannot support GSO if the MSS is going to be less than
* 64 bytes. If it is then we need to drop support for GSO.
*/
if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
features &= ~NETIF_F_GSO_MASK;
/* MACLEN can support at most 63 words */
len = skb_network_header(skb) - skb->data;
if (len & ~(63 * 2))
goto out_err;
/* IPLEN and EIPLEN can support at most 127 dwords */
len = skb_transport_header(skb) - skb_network_header(skb);
if (len & ~(127 * 4))
goto out_err;
if (skb->encapsulation) {
/* L4TUNLEN can support 127 words */
len = skb_inner_network_header(skb) - skb_transport_header(skb);
if (len & ~(127 * 2))
goto out_err;
/* IPLEN can support at most 127 dwords */
len = skb_inner_transport_header(skb) -
skb_inner_network_header(skb);
if (len & ~(127 * 4))
goto out_err;
}
/* No need to validate L4LEN as TCP is the only protocol with a
* a flexible value and we support all possible values supported
* by TCP, which is at most 15 dwords
*/
return features;
out_err:
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
/**
* iavf_fix_features - fix up the netdev feature bits
* @netdev: our net device
* @features: desired feature bits
*
* Returns fixed-up features bits
**/
static netdev_features_t iavf_fix_features(struct net_device *netdev,
netdev_features_t features)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_FILTER);
return features;
}
static const struct net_device_ops iavf_netdev_ops = {
.ndo_open = iavf_open,
.ndo_stop = iavf_close,
.ndo_start_xmit = iavf_xmit_frame,
.ndo_set_rx_mode = iavf_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = iavf_set_mac,
.ndo_change_mtu = iavf_change_mtu,
.ndo_tx_timeout = iavf_tx_timeout,
.ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
.ndo_features_check = iavf_features_check,
.ndo_fix_features = iavf_fix_features,
.ndo_set_features = iavf_set_features,
.ndo_setup_tc = iavf_setup_tc,
};
/**
* iavf_check_reset_complete - check that VF reset is complete
* @hw: pointer to hw struct
*
* Returns 0 if device is ready to use, or -EBUSY if it's in reset.
**/
static int iavf_check_reset_complete(struct iavf_hw *hw)
{
u32 rstat;
int i;
for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
(rstat == VIRTCHNL_VFR_COMPLETED))
return 0;
usleep_range(10, 20);
}
return -EBUSY;
}
/**
* iavf_process_config - Process the config information we got from the PF
* @adapter: board private structure
*
* Verify that we have a valid config struct, and set up our netdev features
* and our VSI struct.
**/
int iavf_process_config(struct iavf_adapter *adapter)
{
struct virtchnl_vf_resource *vfres = adapter->vf_res;
int i, num_req_queues = adapter->num_req_queues;
struct net_device *netdev = adapter->netdev;
struct iavf_vsi *vsi = &adapter->vsi;
netdev_features_t hw_enc_features;
netdev_features_t hw_features;
/* got VF config message back from PF, now we can parse it */
for (i = 0; i < vfres->num_vsis; i++) {
if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
adapter->vsi_res = &vfres->vsi_res[i];
}
if (!adapter->vsi_res) {
dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
return -ENODEV;
}
if (num_req_queues &&
num_req_queues > adapter->vsi_res->num_queue_pairs) {
/* Problem. The PF gave us fewer queues than what we had
* negotiated in our request. Need a reset to see if we can't
* get back to a working state.
*/
dev_err(&adapter->pdev->dev,
"Requested %d queues, but PF only gave us %d.\n",
num_req_queues,
adapter->vsi_res->num_queue_pairs);
adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
iavf_schedule_reset(adapter);
return -ENODEV;
}
adapter->num_req_queues = 0;
hw_enc_features = NETIF_F_SG |
NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_HIGHDMA |
NETIF_F_SOFT_FEATURES |
NETIF_F_TSO |
NETIF_F_TSO_ECN |
NETIF_F_TSO6 |
NETIF_F_SCTP_CRC |
NETIF_F_RXHASH |
NETIF_F_RXCSUM |
0;
/* advertise to stack only if offloads for encapsulated packets is
* supported
*/
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM |
NETIF_F_GSO_IPXIP4 |
NETIF_F_GSO_IPXIP6 |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_GSO_PARTIAL |
0;
if (!(vfres->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
netdev->gso_partial_features |=
NETIF_F_GSO_UDP_TUNNEL_CSUM;
netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
netdev->hw_enc_features |= hw_enc_features;
}
/* record features VLANs can make use of */
netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
/* Write features and hw_features separately to avoid polluting
* with, or dropping, features that are set when we registered.
*/
hw_features = hw_enc_features;
/* Enable VLAN features if supported */
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX);
/* Enable cloud filter if ADQ is supported */
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
hw_features |= NETIF_F_HW_TC;
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
hw_features |= NETIF_F_GSO_UDP_L4;
netdev->hw_features |= hw_features;
netdev->features |= hw_features;
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
netdev->priv_flags |= IFF_UNICAST_FLT;
/* Do not turn on offloads when they are requested to be turned off.
* TSO needs minimum 576 bytes to work correctly.
*/
if (netdev->wanted_features) {
if (!(netdev->wanted_features & NETIF_F_TSO) ||
netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO;
if (!(netdev->wanted_features & NETIF_F_TSO6) ||
netdev->mtu < 576)
netdev->features &= ~NETIF_F_TSO6;
if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
netdev->features &= ~NETIF_F_TSO_ECN;
if (!(netdev->wanted_features & NETIF_F_GRO))
netdev->features &= ~NETIF_F_GRO;
if (!(netdev->wanted_features & NETIF_F_GSO))
netdev->features &= ~NETIF_F_GSO;
}
adapter->vsi.id = adapter->vsi_res->vsi_id;
adapter->vsi.back = adapter;
adapter->vsi.base_vector = 1;
adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
vsi->netdev = adapter->netdev;
vsi->qs_handle = adapter->vsi_res->qset_handle;
if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
adapter->rss_key_size = vfres->rss_key_size;
adapter->rss_lut_size = vfres->rss_lut_size;
} else {
adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
}
return 0;
}
/**
* iavf_init_task - worker thread to perform delayed initialization
* @work: pointer to work_struct containing our data
*
* This task completes the work that was begun in probe. Due to the nature
* of VF-PF communications, we may need to wait tens of milliseconds to get
* responses back from the PF. Rather than busy-wait in probe and bog down the
* whole system, we'll do it in a task so we can sleep.
* This task only runs during driver init. Once we've established
* communications with the PF driver and set up our netdev, the watchdog
* takes over.
**/
static void iavf_init_task(struct work_struct *work)
{
struct iavf_adapter *adapter = container_of(work,
struct iavf_adapter,
init_task.work);
struct iavf_hw *hw = &adapter->hw;
switch (adapter->state) {
case __IAVF_STARTUP:
if (iavf_startup(adapter) < 0)
goto init_failed;
break;
case __IAVF_INIT_VERSION_CHECK:
if (iavf_init_version_check(adapter) < 0)
goto init_failed;
break;
case __IAVF_INIT_GET_RESOURCES:
if (iavf_init_get_resources(adapter) < 0)
goto init_failed;
return;
default:
goto init_failed;
}
queue_delayed_work(iavf_wq, &adapter->init_task,
msecs_to_jiffies(30));
return;
init_failed:
if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
dev_err(&adapter->pdev->dev,
"Failed to communicate with PF; waiting before retry\n");
adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
iavf_shutdown_adminq(hw);
adapter->state = __IAVF_STARTUP;
queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
return;
}
queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
}
/**
* iavf_shutdown - Shutdown the device in preparation for a reboot
* @pdev: pci device structure
**/
static void iavf_shutdown(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (netif_running(netdev))
iavf_close(netdev);
/* Prevent the watchdog from running. */
adapter->state = __IAVF_REMOVE;
adapter->aq_required = 0;
#ifdef CONFIG_PM
pci_save_state(pdev);
#endif
pci_disable_device(pdev);
}
/**
* iavf_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in iavf_pci_tbl
*
* Returns 0 on success, negative on failure
*
* iavf_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct iavf_adapter *adapter = NULL;
struct iavf_hw *hw = NULL;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: 0x%x\n", err);
goto err_dma;
}
}
err = pci_request_regions(pdev, iavf_driver_name);
if (err) {
dev_err(&pdev->dev,
"pci_request_regions failed 0x%x\n", err);
goto err_pci_reg;
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
IAVF_MAX_REQ_QUEUES);
if (!netdev) {
err = -ENOMEM;
goto err_alloc_etherdev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
hw = &adapter->hw;
hw->back = adapter;
adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
adapter->state = __IAVF_STARTUP;
/* Call save state here because it relies on the adapter struct. */
pci_save_state(pdev);
hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!hw->hw_addr) {
err = -EIO;
goto err_ioremap;
}
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_device_id = pdev->subsystem_device;
hw->bus.device = PCI_SLOT(pdev->devfn);
hw->bus.func = PCI_FUNC(pdev->devfn);
hw->bus.bus_id = pdev->bus->number;
/* set up the locks for the AQ, do this only once in probe
* and destroy them only once in remove
*/
mutex_init(&hw->aq.asq_mutex);
mutex_init(&hw->aq.arq_mutex);
spin_lock_init(&adapter->mac_vlan_list_lock);
spin_lock_init(&adapter->cloud_filter_list_lock);
spin_lock_init(&adapter->fdir_fltr_lock);
spin_lock_init(&adapter->adv_rss_lock);
INIT_LIST_HEAD(&adapter->mac_filter_list);
INIT_LIST_HEAD(&adapter->vlan_filter_list);
INIT_LIST_HEAD(&adapter->cloud_filter_list);
INIT_LIST_HEAD(&adapter->fdir_list_head);
INIT_LIST_HEAD(&adapter->adv_rss_list_head);
INIT_WORK(&adapter->reset_task, iavf_reset_task);
INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
queue_delayed_work(iavf_wq, &adapter->init_task,
msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
/* Setup the wait queue for indicating transition to down status */
init_waitqueue_head(&adapter->down_waitqueue);
return 0;
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* iavf_suspend - Power management suspend routine
* @dev_d: device info pointer
*
* Called when the system (VM) is entering sleep/suspend.
**/
static int __maybe_unused iavf_suspend(struct device *dev_d)
{
struct net_device *netdev = dev_get_drvdata(dev_d);
struct iavf_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
&adapter->crit_section))
usleep_range(500, 1000);
if (netif_running(netdev)) {
rtnl_lock();
iavf_down(adapter);
rtnl_unlock();
}
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
return 0;
}
/**
* iavf_resume - Power management resume routine
* @dev_d: device info pointer
*
* Called when the system (VM) is resumed from sleep/suspend.
**/
static int __maybe_unused iavf_resume(struct device *dev_d)
{
struct pci_dev *pdev = to_pci_dev(dev_d);
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_master(pdev);
rtnl_lock();
err = iavf_set_interrupt_capability(adapter);
if (err) {
rtnl_unlock();
dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
return err;
}
err = iavf_request_misc_irq(adapter);
rtnl_unlock();
if (err) {
dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
return err;
}
queue_work(iavf_wq, &adapter->reset_task);
netif_device_attach(netdev);
return err;
}
/**
* iavf_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* iavf_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void iavf_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_fdir_fltr *fdir, *fdirtmp;
struct iavf_vlan_filter *vlf, *vlftmp;
struct iavf_adv_rss *rss, *rsstmp;
struct iavf_mac_filter *f, *ftmp;
struct iavf_cloud_filter *cf, *cftmp;
struct iavf_hw *hw = &adapter->hw;
int err;
/* Indicate we are in remove and not to run reset_task */
set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
cancel_delayed_work_sync(&adapter->init_task);
cancel_work_sync(&adapter->reset_task);
cancel_delayed_work_sync(&adapter->client_task);
if (adapter->netdev_registered) {
unregister_netdev(netdev);
adapter->netdev_registered = false;
}
if (CLIENT_ALLOWED(adapter)) {
err = iavf_lan_del_device(adapter);
if (err)
dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
err);
}
/* Shut down all the garbage mashers on the detention level */
adapter->state = __IAVF_REMOVE;
adapter->aq_required = 0;
adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
iavf_request_reset(adapter);
msleep(50);
/* If the FW isn't responding, kick it once, but only once. */
if (!iavf_asq_done(hw)) {
iavf_request_reset(adapter);
msleep(50);
}
iavf_free_all_tx_resources(adapter);
iavf_free_all_rx_resources(adapter);
iavf_misc_irq_disable(adapter);
iavf_free_misc_irq(adapter);
iavf_reset_interrupt_capability(adapter);
iavf_free_q_vectors(adapter);
cancel_delayed_work_sync(&adapter->watchdog_task);
cancel_work_sync(&adapter->adminq_task);
iavf_free_rss(adapter);
if (hw->aq.asq.count)
iavf_shutdown_adminq(hw);
/* destroy the locks only once, here */
mutex_destroy(&hw->aq.arq_mutex);
mutex_destroy(&hw->aq.asq_mutex);
iounmap(hw->hw_addr);
pci_release_regions(pdev);
iavf_free_queues(adapter);
kfree(adapter->vf_res);
spin_lock_bh(&adapter->mac_vlan_list_lock);
/* If we got removed before an up/down sequence, we've got a filter
* hanging out there that we need to get rid of.
*/
list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
list_del(&f->list);
kfree(f);
}
list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
list) {
list_del(&vlf->list);
kfree(vlf);
}
spin_unlock_bh(&adapter->mac_vlan_list_lock);
spin_lock_bh(&adapter->cloud_filter_list_lock);
list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
list_del(&cf->list);
kfree(cf);
}
spin_unlock_bh(&adapter->cloud_filter_list_lock);
spin_lock_bh(&adapter->fdir_fltr_lock);
list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
list_del(&fdir->list);
kfree(fdir);
}
spin_unlock_bh(&adapter->fdir_fltr_lock);
spin_lock_bh(&adapter->adv_rss_lock);
list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
list) {
list_del(&rss->list);
kfree(rss);
}
spin_unlock_bh(&adapter->adv_rss_lock);
free_netdev(netdev);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
static struct pci_driver iavf_driver = {
.name = iavf_driver_name,
.id_table = iavf_pci_tbl,
.probe = iavf_probe,
.remove = iavf_remove,
.driver.pm = &iavf_pm_ops,
.shutdown = iavf_shutdown,
};
/**
* iavf_init_module - Driver Registration Routine
*
* iavf_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init iavf_init_module(void)
{
int ret;
pr_info("iavf: %s\n", iavf_driver_string);
pr_info("%s\n", iavf_copyright);
iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
iavf_driver_name);
if (!iavf_wq) {
pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
return -ENOMEM;
}
ret = pci_register_driver(&iavf_driver);
return ret;
}
module_init(iavf_init_module);
/**
* iavf_exit_module - Driver Exit Cleanup Routine
*
* iavf_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit iavf_exit_module(void)
{
pci_unregister_driver(&iavf_driver);
destroy_workqueue(iavf_wq);
}
module_exit(iavf_exit_module);
/* iavf_main.c */