linux/drivers/crypto/virtio/virtio_crypto_skcipher_algs.c
zhenwei pi 977231e8d4 virtio-crypto: wait ctrl queue instead of busy polling
Originally, after submitting request into virtio crypto control
queue, the guest side polls the result from the virt queue. This
works like following:
    CPU0   CPU1               ...             CPUx  CPUy
     |      |                                  |     |
     \      \                                  /     /
      \--------spin_lock(&vcrypto->ctrl_lock)-------/
                           |
                 virtqueue add & kick
                           |
                  busy poll virtqueue
                           |
              spin_unlock(&vcrypto->ctrl_lock)
                          ...

There are two problems:
1, The queue depth is always 1, the performance of a virtio crypto
   device gets limited. Multi user processes share a single control
   queue, and hit spin lock race from control queue. Test on Intel
   Platinum 8260, a single worker gets ~35K/s create/close session
   operations, and 8 workers get ~40K/s operations with 800% CPU
   utilization.
2, The control request is supposed to get handled immediately, but
   in the current implementation of QEMU(v6.2), the vCPU thread kicks
   another thread to do this work, the latency also gets unstable.
   Tracking latency of virtio_crypto_alg_akcipher_close_session in 5s:
        usecs               : count     distribution
         0 -> 1          : 0        |                        |
         2 -> 3          : 7        |                        |
         4 -> 7          : 72       |                        |
         8 -> 15         : 186485   |************************|
        16 -> 31         : 687      |                        |
        32 -> 63         : 5        |                        |
        64 -> 127        : 3        |                        |
       128 -> 255        : 1        |                        |
       256 -> 511        : 0        |                        |
       512 -> 1023       : 0        |                        |
      1024 -> 2047       : 0        |                        |
      2048 -> 4095       : 0        |                        |
      4096 -> 8191       : 0        |                        |
      8192 -> 16383      : 2        |                        |
This means that a CPU may hold vcrypto->ctrl_lock as long as 8192~16383us.

To improve the performance of control queue, a request on control queue
waits completion instead of busy polling to reduce lock racing, and gets
completed by control queue callback.
    CPU0   CPU1               ...             CPUx  CPUy
     |      |                                  |     |
     \      \                                  /     /
      \--------spin_lock(&vcrypto->ctrl_lock)-------/
                           |
                 virtqueue add & kick
                           |
      ---------spin_unlock(&vcrypto->ctrl_lock)------
     /      /                                  \     \
     |      |                                  |     |
    wait   wait                               wait  wait

Test this patch, the guest side get ~200K/s operations with 300% CPU
utilization.

Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Reviewed-by: Gonglei <arei.gonglei@huawei.com>
Signed-off-by: zhenwei pi <pizhenwei@bytedance.com>
Message-Id: <20220506131627.180784-4-pizhenwei@bytedance.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-05-31 12:45:09 -04:00

656 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Algorithms supported by virtio crypto device
*
* Authors: Gonglei <arei.gonglei@huawei.com>
*
* Copyright 2016 HUAWEI TECHNOLOGIES CO., LTD.
*/
#include <linux/scatterlist.h>
#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <linux/err.h>
#include <crypto/scatterwalk.h>
#include <linux/atomic.h>
#include <uapi/linux/virtio_crypto.h>
#include "virtio_crypto_common.h"
struct virtio_crypto_skcipher_ctx {
struct crypto_engine_ctx enginectx;
struct virtio_crypto *vcrypto;
struct crypto_skcipher *tfm;
struct virtio_crypto_sym_session_info enc_sess_info;
struct virtio_crypto_sym_session_info dec_sess_info;
};
struct virtio_crypto_sym_request {
struct virtio_crypto_request base;
/* Cipher or aead */
uint32_t type;
struct virtio_crypto_skcipher_ctx *skcipher_ctx;
struct skcipher_request *skcipher_req;
uint8_t *iv;
/* Encryption? */
bool encrypt;
};
struct virtio_crypto_algo {
uint32_t algonum;
uint32_t service;
unsigned int active_devs;
struct skcipher_alg algo;
};
/*
* The algs_lock protects the below global virtio_crypto_active_devs
* and crypto algorithms registion.
*/
static DEFINE_MUTEX(algs_lock);
static void virtio_crypto_skcipher_finalize_req(
struct virtio_crypto_sym_request *vc_sym_req,
struct skcipher_request *req,
int err);
static void virtio_crypto_dataq_sym_callback
(struct virtio_crypto_request *vc_req, int len)
{
struct virtio_crypto_sym_request *vc_sym_req =
container_of(vc_req, struct virtio_crypto_sym_request, base);
struct skcipher_request *ablk_req;
int error;
/* Finish the encrypt or decrypt process */
if (vc_sym_req->type == VIRTIO_CRYPTO_SYM_OP_CIPHER) {
switch (vc_req->status) {
case VIRTIO_CRYPTO_OK:
error = 0;
break;
case VIRTIO_CRYPTO_INVSESS:
case VIRTIO_CRYPTO_ERR:
error = -EINVAL;
break;
case VIRTIO_CRYPTO_BADMSG:
error = -EBADMSG;
break;
default:
error = -EIO;
break;
}
ablk_req = vc_sym_req->skcipher_req;
virtio_crypto_skcipher_finalize_req(vc_sym_req,
ablk_req, error);
}
}
static u64 virtio_crypto_alg_sg_nents_length(struct scatterlist *sg)
{
u64 total = 0;
for (total = 0; sg; sg = sg_next(sg))
total += sg->length;
return total;
}
static int
virtio_crypto_alg_validate_key(int key_len, uint32_t *alg)
{
switch (key_len) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
*alg = VIRTIO_CRYPTO_CIPHER_AES_CBC;
break;
default:
return -EINVAL;
}
return 0;
}
static int virtio_crypto_alg_skcipher_init_session(
struct virtio_crypto_skcipher_ctx *ctx,
uint32_t alg, const uint8_t *key,
unsigned int keylen,
int encrypt)
{
struct scatterlist outhdr, key_sg, inhdr, *sgs[3];
struct virtio_crypto *vcrypto = ctx->vcrypto;
int op = encrypt ? VIRTIO_CRYPTO_OP_ENCRYPT : VIRTIO_CRYPTO_OP_DECRYPT;
int err;
unsigned int num_out = 0, num_in = 0;
struct virtio_crypto_op_ctrl_req *ctrl;
struct virtio_crypto_session_input *input;
struct virtio_crypto_sym_create_session_req *sym_create_session;
struct virtio_crypto_ctrl_request *vc_ctrl_req;
/*
* Avoid to do DMA from the stack, switch to using
* dynamically-allocated for the key
*/
uint8_t *cipher_key = kmemdup(key, keylen, GFP_ATOMIC);
if (!cipher_key)
return -ENOMEM;
vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL);
if (!vc_ctrl_req) {
err = -ENOMEM;
goto out;
}
/* Pad ctrl header */
ctrl = &vc_ctrl_req->ctrl;
ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_CREATE_SESSION);
ctrl->header.algo = cpu_to_le32(alg);
/* Set the default dataqueue id to 0 */
ctrl->header.queue_id = 0;
input = &vc_ctrl_req->input;
input->status = cpu_to_le32(VIRTIO_CRYPTO_ERR);
/* Pad cipher's parameters */
sym_create_session = &ctrl->u.sym_create_session;
sym_create_session->op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER);
sym_create_session->u.cipher.para.algo = ctrl->header.algo;
sym_create_session->u.cipher.para.keylen = cpu_to_le32(keylen);
sym_create_session->u.cipher.para.op = cpu_to_le32(op);
sg_init_one(&outhdr, ctrl, sizeof(*ctrl));
sgs[num_out++] = &outhdr;
/* Set key */
sg_init_one(&key_sg, cipher_key, keylen);
sgs[num_out++] = &key_sg;
/* Return status and session id back */
sg_init_one(&inhdr, input, sizeof(*input));
sgs[num_out + num_in++] = &inhdr;
err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req);
if (err < 0)
goto out;
if (le32_to_cpu(input->status) != VIRTIO_CRYPTO_OK) {
pr_err("virtio_crypto: Create session failed status: %u\n",
le32_to_cpu(input->status));
err = -EINVAL;
goto out;
}
if (encrypt)
ctx->enc_sess_info.session_id = le64_to_cpu(input->session_id);
else
ctx->dec_sess_info.session_id = le64_to_cpu(input->session_id);
err = 0;
out:
kfree(vc_ctrl_req);
kfree_sensitive(cipher_key);
return err;
}
static int virtio_crypto_alg_skcipher_close_session(
struct virtio_crypto_skcipher_ctx *ctx,
int encrypt)
{
struct scatterlist outhdr, status_sg, *sgs[2];
struct virtio_crypto_destroy_session_req *destroy_session;
struct virtio_crypto *vcrypto = ctx->vcrypto;
int err;
unsigned int num_out = 0, num_in = 0;
struct virtio_crypto_op_ctrl_req *ctrl;
struct virtio_crypto_inhdr *ctrl_status;
struct virtio_crypto_ctrl_request *vc_ctrl_req;
vc_ctrl_req = kzalloc(sizeof(*vc_ctrl_req), GFP_KERNEL);
if (!vc_ctrl_req)
return -ENOMEM;
ctrl_status = &vc_ctrl_req->ctrl_status;
ctrl_status->status = VIRTIO_CRYPTO_ERR;
/* Pad ctrl header */
ctrl = &vc_ctrl_req->ctrl;
ctrl->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DESTROY_SESSION);
/* Set the default virtqueue id to 0 */
ctrl->header.queue_id = 0;
destroy_session = &ctrl->u.destroy_session;
if (encrypt)
destroy_session->session_id = cpu_to_le64(ctx->enc_sess_info.session_id);
else
destroy_session->session_id = cpu_to_le64(ctx->dec_sess_info.session_id);
sg_init_one(&outhdr, ctrl, sizeof(*ctrl));
sgs[num_out++] = &outhdr;
/* Return status and session id back */
sg_init_one(&status_sg, &ctrl_status->status, sizeof(ctrl_status->status));
sgs[num_out + num_in++] = &status_sg;
err = virtio_crypto_ctrl_vq_request(vcrypto, sgs, num_out, num_in, vc_ctrl_req);
if (err < 0)
goto out;
if (ctrl_status->status != VIRTIO_CRYPTO_OK) {
pr_err("virtio_crypto: Close session failed status: %u, session_id: 0x%llx\n",
ctrl_status->status, destroy_session->session_id);
return -EINVAL;
}
err = 0;
out:
kfree(vc_ctrl_req);
return err;
}
static int virtio_crypto_alg_skcipher_init_sessions(
struct virtio_crypto_skcipher_ctx *ctx,
const uint8_t *key, unsigned int keylen)
{
uint32_t alg;
int ret;
struct virtio_crypto *vcrypto = ctx->vcrypto;
if (keylen > vcrypto->max_cipher_key_len) {
pr_err("virtio_crypto: the key is too long\n");
return -EINVAL;
}
if (virtio_crypto_alg_validate_key(keylen, &alg))
return -EINVAL;
/* Create encryption session */
ret = virtio_crypto_alg_skcipher_init_session(ctx,
alg, key, keylen, 1);
if (ret)
return ret;
/* Create decryption session */
ret = virtio_crypto_alg_skcipher_init_session(ctx,
alg, key, keylen, 0);
if (ret) {
virtio_crypto_alg_skcipher_close_session(ctx, 1);
return ret;
}
return 0;
}
/* Note: kernel crypto API realization */
static int virtio_crypto_skcipher_setkey(struct crypto_skcipher *tfm,
const uint8_t *key,
unsigned int keylen)
{
struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
uint32_t alg;
int ret;
ret = virtio_crypto_alg_validate_key(keylen, &alg);
if (ret)
return ret;
if (!ctx->vcrypto) {
/* New key */
int node = virtio_crypto_get_current_node();
struct virtio_crypto *vcrypto =
virtcrypto_get_dev_node(node,
VIRTIO_CRYPTO_SERVICE_CIPHER, alg);
if (!vcrypto) {
pr_err("virtio_crypto: Could not find a virtio device in the system or unsupported algo\n");
return -ENODEV;
}
ctx->vcrypto = vcrypto;
} else {
/* Rekeying, we should close the created sessions previously */
virtio_crypto_alg_skcipher_close_session(ctx, 1);
virtio_crypto_alg_skcipher_close_session(ctx, 0);
}
ret = virtio_crypto_alg_skcipher_init_sessions(ctx, key, keylen);
if (ret) {
virtcrypto_dev_put(ctx->vcrypto);
ctx->vcrypto = NULL;
return ret;
}
return 0;
}
static int
__virtio_crypto_skcipher_do_req(struct virtio_crypto_sym_request *vc_sym_req,
struct skcipher_request *req,
struct data_queue *data_vq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct virtio_crypto_skcipher_ctx *ctx = vc_sym_req->skcipher_ctx;
struct virtio_crypto_request *vc_req = &vc_sym_req->base;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct virtio_crypto *vcrypto = ctx->vcrypto;
struct virtio_crypto_op_data_req *req_data;
int src_nents, dst_nents;
int err;
unsigned long flags;
struct scatterlist outhdr, iv_sg, status_sg, **sgs;
u64 dst_len;
unsigned int num_out = 0, num_in = 0;
int sg_total;
uint8_t *iv;
struct scatterlist *sg;
src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (src_nents < 0) {
pr_err("Invalid number of src SG.\n");
return src_nents;
}
dst_nents = sg_nents(req->dst);
pr_debug("virtio_crypto: Number of sgs (src_nents: %d, dst_nents: %d)\n",
src_nents, dst_nents);
/* Why 3? outhdr + iv + inhdr */
sg_total = src_nents + dst_nents + 3;
sgs = kcalloc_node(sg_total, sizeof(*sgs), GFP_KERNEL,
dev_to_node(&vcrypto->vdev->dev));
if (!sgs)
return -ENOMEM;
req_data = kzalloc_node(sizeof(*req_data), GFP_KERNEL,
dev_to_node(&vcrypto->vdev->dev));
if (!req_data) {
kfree(sgs);
return -ENOMEM;
}
vc_req->req_data = req_data;
vc_sym_req->type = VIRTIO_CRYPTO_SYM_OP_CIPHER;
/* Head of operation */
if (vc_sym_req->encrypt) {
req_data->header.session_id =
cpu_to_le64(ctx->enc_sess_info.session_id);
req_data->header.opcode =
cpu_to_le32(VIRTIO_CRYPTO_CIPHER_ENCRYPT);
} else {
req_data->header.session_id =
cpu_to_le64(ctx->dec_sess_info.session_id);
req_data->header.opcode =
cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DECRYPT);
}
req_data->u.sym_req.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER);
req_data->u.sym_req.u.cipher.para.iv_len = cpu_to_le32(ivsize);
req_data->u.sym_req.u.cipher.para.src_data_len =
cpu_to_le32(req->cryptlen);
dst_len = virtio_crypto_alg_sg_nents_length(req->dst);
if (unlikely(dst_len > U32_MAX)) {
pr_err("virtio_crypto: The dst_len is beyond U32_MAX\n");
err = -EINVAL;
goto free;
}
dst_len = min_t(unsigned int, req->cryptlen, dst_len);
pr_debug("virtio_crypto: src_len: %u, dst_len: %llu\n",
req->cryptlen, dst_len);
if (unlikely(req->cryptlen + dst_len + ivsize +
sizeof(vc_req->status) > vcrypto->max_size)) {
pr_err("virtio_crypto: The length is too big\n");
err = -EINVAL;
goto free;
}
req_data->u.sym_req.u.cipher.para.dst_data_len =
cpu_to_le32((uint32_t)dst_len);
/* Outhdr */
sg_init_one(&outhdr, req_data, sizeof(*req_data));
sgs[num_out++] = &outhdr;
/* IV */
/*
* Avoid to do DMA from the stack, switch to using
* dynamically-allocated for the IV
*/
iv = kzalloc_node(ivsize, GFP_ATOMIC,
dev_to_node(&vcrypto->vdev->dev));
if (!iv) {
err = -ENOMEM;
goto free;
}
memcpy(iv, req->iv, ivsize);
if (!vc_sym_req->encrypt)
scatterwalk_map_and_copy(req->iv, req->src,
req->cryptlen - AES_BLOCK_SIZE,
AES_BLOCK_SIZE, 0);
sg_init_one(&iv_sg, iv, ivsize);
sgs[num_out++] = &iv_sg;
vc_sym_req->iv = iv;
/* Source data */
for (sg = req->src; src_nents; sg = sg_next(sg), src_nents--)
sgs[num_out++] = sg;
/* Destination data */
for (sg = req->dst; sg; sg = sg_next(sg))
sgs[num_out + num_in++] = sg;
/* Status */
sg_init_one(&status_sg, &vc_req->status, sizeof(vc_req->status));
sgs[num_out + num_in++] = &status_sg;
vc_req->sgs = sgs;
spin_lock_irqsave(&data_vq->lock, flags);
err = virtqueue_add_sgs(data_vq->vq, sgs, num_out,
num_in, vc_req, GFP_ATOMIC);
virtqueue_kick(data_vq->vq);
spin_unlock_irqrestore(&data_vq->lock, flags);
if (unlikely(err < 0))
goto free_iv;
return 0;
free_iv:
kfree_sensitive(iv);
free:
kfree_sensitive(req_data);
kfree(sgs);
return err;
}
static int virtio_crypto_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req);
struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm);
struct virtio_crypto_sym_request *vc_sym_req =
skcipher_request_ctx(req);
struct virtio_crypto_request *vc_req = &vc_sym_req->base;
struct virtio_crypto *vcrypto = ctx->vcrypto;
/* Use the first data virtqueue as default */
struct data_queue *data_vq = &vcrypto->data_vq[0];
if (!req->cryptlen)
return 0;
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
vc_req->dataq = data_vq;
vc_req->alg_cb = virtio_crypto_dataq_sym_callback;
vc_sym_req->skcipher_ctx = ctx;
vc_sym_req->skcipher_req = req;
vc_sym_req->encrypt = true;
return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req);
}
static int virtio_crypto_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req);
struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm);
struct virtio_crypto_sym_request *vc_sym_req =
skcipher_request_ctx(req);
struct virtio_crypto_request *vc_req = &vc_sym_req->base;
struct virtio_crypto *vcrypto = ctx->vcrypto;
/* Use the first data virtqueue as default */
struct data_queue *data_vq = &vcrypto->data_vq[0];
if (!req->cryptlen)
return 0;
if (req->cryptlen % AES_BLOCK_SIZE)
return -EINVAL;
vc_req->dataq = data_vq;
vc_req->alg_cb = virtio_crypto_dataq_sym_callback;
vc_sym_req->skcipher_ctx = ctx;
vc_sym_req->skcipher_req = req;
vc_sym_req->encrypt = false;
return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req);
}
static int virtio_crypto_skcipher_init(struct crypto_skcipher *tfm)
{
struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct virtio_crypto_sym_request));
ctx->tfm = tfm;
ctx->enginectx.op.do_one_request = virtio_crypto_skcipher_crypt_req;
ctx->enginectx.op.prepare_request = NULL;
ctx->enginectx.op.unprepare_request = NULL;
return 0;
}
static void virtio_crypto_skcipher_exit(struct crypto_skcipher *tfm)
{
struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
if (!ctx->vcrypto)
return;
virtio_crypto_alg_skcipher_close_session(ctx, 1);
virtio_crypto_alg_skcipher_close_session(ctx, 0);
virtcrypto_dev_put(ctx->vcrypto);
ctx->vcrypto = NULL;
}
int virtio_crypto_skcipher_crypt_req(
struct crypto_engine *engine, void *vreq)
{
struct skcipher_request *req = container_of(vreq, struct skcipher_request, base);
struct virtio_crypto_sym_request *vc_sym_req =
skcipher_request_ctx(req);
struct virtio_crypto_request *vc_req = &vc_sym_req->base;
struct data_queue *data_vq = vc_req->dataq;
int ret;
ret = __virtio_crypto_skcipher_do_req(vc_sym_req, req, data_vq);
if (ret < 0)
return ret;
virtqueue_kick(data_vq->vq);
return 0;
}
static void virtio_crypto_skcipher_finalize_req(
struct virtio_crypto_sym_request *vc_sym_req,
struct skcipher_request *req,
int err)
{
if (vc_sym_req->encrypt)
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - AES_BLOCK_SIZE,
AES_BLOCK_SIZE, 0);
kfree_sensitive(vc_sym_req->iv);
virtcrypto_clear_request(&vc_sym_req->base);
crypto_finalize_skcipher_request(vc_sym_req->base.dataq->engine,
req, err);
}
static struct virtio_crypto_algo virtio_crypto_algs[] = { {
.algonum = VIRTIO_CRYPTO_CIPHER_AES_CBC,
.service = VIRTIO_CRYPTO_SERVICE_CIPHER,
.algo = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "virtio_crypto_aes_cbc",
.base.cra_priority = 150,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct virtio_crypto_skcipher_ctx),
.base.cra_module = THIS_MODULE,
.init = virtio_crypto_skcipher_init,
.exit = virtio_crypto_skcipher_exit,
.setkey = virtio_crypto_skcipher_setkey,
.decrypt = virtio_crypto_skcipher_decrypt,
.encrypt = virtio_crypto_skcipher_encrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
} };
int virtio_crypto_skcipher_algs_register(struct virtio_crypto *vcrypto)
{
int ret = 0;
int i = 0;
mutex_lock(&algs_lock);
for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) {
uint32_t service = virtio_crypto_algs[i].service;
uint32_t algonum = virtio_crypto_algs[i].algonum;
if (!virtcrypto_algo_is_supported(vcrypto, service, algonum))
continue;
if (virtio_crypto_algs[i].active_devs == 0) {
ret = crypto_register_skcipher(&virtio_crypto_algs[i].algo);
if (ret)
goto unlock;
}
virtio_crypto_algs[i].active_devs++;
dev_info(&vcrypto->vdev->dev, "Registered algo %s\n",
virtio_crypto_algs[i].algo.base.cra_name);
}
unlock:
mutex_unlock(&algs_lock);
return ret;
}
void virtio_crypto_skcipher_algs_unregister(struct virtio_crypto *vcrypto)
{
int i = 0;
mutex_lock(&algs_lock);
for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) {
uint32_t service = virtio_crypto_algs[i].service;
uint32_t algonum = virtio_crypto_algs[i].algonum;
if (virtio_crypto_algs[i].active_devs == 0 ||
!virtcrypto_algo_is_supported(vcrypto, service, algonum))
continue;
if (virtio_crypto_algs[i].active_devs == 1)
crypto_unregister_skcipher(&virtio_crypto_algs[i].algo);
virtio_crypto_algs[i].active_devs--;
}
mutex_unlock(&algs_lock);
}