mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 08:14:15 +08:00
2f50304e9e
Add serial support for RZ/V2H(P) SoC with earlycon. The SCIF interface in the Renesas RZ/V2H(P) is similar to that available in the RZ/G2L (R9A07G044) SoC, with the following differences: - RZ/V2H(P) SoC has three additional interrupts: one for Tx end/Rx ready and two for Rx and Tx buffer full, all of which are edge-triggered. - RZ/V2H(P) supports asynchronous mode, whereas RZ/G2L supports both synchronous and asynchronous modes. - There are differences in the configuration of certain registers such as SCSMR, SCFCR, and SCSPTR between the two SoCs. To handle these differences on RZ/V2H(P) SoC SCIx_RZV2H_SCIF_REGTYPE is added. Signed-off-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> Link: https://lore.kernel.org/r/20240604170513.522631-6-prabhakar.mahadev-lad.rj@bp.renesas.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
3613 lines
88 KiB
C
3613 lines
88 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
|
|
*
|
|
* Copyright (C) 2002 - 2011 Paul Mundt
|
|
* Copyright (C) 2015 Glider bvba
|
|
* Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
|
|
*
|
|
* based off of the old drivers/char/sh-sci.c by:
|
|
*
|
|
* Copyright (C) 1999, 2000 Niibe Yutaka
|
|
* Copyright (C) 2000 Sugioka Toshinobu
|
|
* Modified to support multiple serial ports. Stuart Menefy (May 2000).
|
|
* Modified to support SecureEdge. David McCullough (2002)
|
|
* Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
|
|
* Removed SH7300 support (Jul 2007).
|
|
*/
|
|
#undef DEBUG
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/console.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/major.h>
|
|
#include <linux/minmax.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_sci.h>
|
|
#include <linux/sh_dma.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
|
|
#ifdef CONFIG_SUPERH
|
|
#include <asm/sh_bios.h>
|
|
#include <asm/platform_early.h>
|
|
#endif
|
|
|
|
#include "serial_mctrl_gpio.h"
|
|
#include "sh-sci.h"
|
|
|
|
/* Offsets into the sci_port->irqs array */
|
|
enum {
|
|
SCIx_ERI_IRQ,
|
|
SCIx_RXI_IRQ,
|
|
SCIx_TXI_IRQ,
|
|
SCIx_BRI_IRQ,
|
|
SCIx_DRI_IRQ,
|
|
SCIx_TEI_IRQ,
|
|
SCIx_NR_IRQS,
|
|
|
|
SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
|
|
};
|
|
|
|
#define SCIx_IRQ_IS_MUXED(port) \
|
|
((port)->irqs[SCIx_ERI_IRQ] == \
|
|
(port)->irqs[SCIx_RXI_IRQ]) || \
|
|
((port)->irqs[SCIx_ERI_IRQ] && \
|
|
((port)->irqs[SCIx_RXI_IRQ] < 0))
|
|
|
|
enum SCI_CLKS {
|
|
SCI_FCK, /* Functional Clock */
|
|
SCI_SCK, /* Optional External Clock */
|
|
SCI_BRG_INT, /* Optional BRG Internal Clock Source */
|
|
SCI_SCIF_CLK, /* Optional BRG External Clock Source */
|
|
SCI_NUM_CLKS
|
|
};
|
|
|
|
/* Bit x set means sampling rate x + 1 is supported */
|
|
#define SCI_SR(x) BIT((x) - 1)
|
|
#define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
|
|
|
|
#define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
|
|
SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
|
|
SCI_SR(19) | SCI_SR(27)
|
|
|
|
#define min_sr(_port) ffs((_port)->sampling_rate_mask)
|
|
#define max_sr(_port) fls((_port)->sampling_rate_mask)
|
|
|
|
/* Iterate over all supported sampling rates, from high to low */
|
|
#define for_each_sr(_sr, _port) \
|
|
for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
|
|
if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
|
|
|
|
struct plat_sci_reg {
|
|
u8 offset, size;
|
|
};
|
|
|
|
struct sci_port_params {
|
|
const struct plat_sci_reg regs[SCIx_NR_REGS];
|
|
unsigned int fifosize;
|
|
unsigned int overrun_reg;
|
|
unsigned int overrun_mask;
|
|
unsigned int sampling_rate_mask;
|
|
unsigned int error_mask;
|
|
unsigned int error_clear;
|
|
};
|
|
|
|
struct sci_port {
|
|
struct uart_port port;
|
|
|
|
/* Platform configuration */
|
|
const struct sci_port_params *params;
|
|
const struct plat_sci_port *cfg;
|
|
unsigned int sampling_rate_mask;
|
|
resource_size_t reg_size;
|
|
struct mctrl_gpios *gpios;
|
|
|
|
/* Clocks */
|
|
struct clk *clks[SCI_NUM_CLKS];
|
|
unsigned long clk_rates[SCI_NUM_CLKS];
|
|
|
|
int irqs[SCIx_NR_IRQS];
|
|
char *irqstr[SCIx_NR_IRQS];
|
|
|
|
struct dma_chan *chan_tx;
|
|
struct dma_chan *chan_rx;
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
struct dma_chan *chan_tx_saved;
|
|
struct dma_chan *chan_rx_saved;
|
|
dma_cookie_t cookie_tx;
|
|
dma_cookie_t cookie_rx[2];
|
|
dma_cookie_t active_rx;
|
|
dma_addr_t tx_dma_addr;
|
|
unsigned int tx_dma_len;
|
|
struct scatterlist sg_rx[2];
|
|
void *rx_buf[2];
|
|
size_t buf_len_rx;
|
|
struct work_struct work_tx;
|
|
struct hrtimer rx_timer;
|
|
unsigned int rx_timeout; /* microseconds */
|
|
#endif
|
|
unsigned int rx_frame;
|
|
int rx_trigger;
|
|
struct timer_list rx_fifo_timer;
|
|
int rx_fifo_timeout;
|
|
u16 hscif_tot;
|
|
|
|
bool has_rtscts;
|
|
bool autorts;
|
|
};
|
|
|
|
#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
|
|
|
|
static struct sci_port sci_ports[SCI_NPORTS];
|
|
static unsigned long sci_ports_in_use;
|
|
static struct uart_driver sci_uart_driver;
|
|
|
|
static inline struct sci_port *
|
|
to_sci_port(struct uart_port *uart)
|
|
{
|
|
return container_of(uart, struct sci_port, port);
|
|
}
|
|
|
|
static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
|
|
/*
|
|
* Common SCI definitions, dependent on the port's regshift
|
|
* value.
|
|
*/
|
|
[SCIx_SCI_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x01, 8 },
|
|
[SCSCR] = { 0x02, 8 },
|
|
[SCxTDR] = { 0x03, 8 },
|
|
[SCxSR] = { 0x04, 8 },
|
|
[SCxRDR] = { 0x05, 8 },
|
|
},
|
|
.fifosize = 1,
|
|
.overrun_reg = SCxSR,
|
|
.overrun_mask = SCI_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
|
|
.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
|
|
},
|
|
|
|
/*
|
|
* Common definitions for legacy IrDA ports.
|
|
*/
|
|
[SCIx_IRDA_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x02, 8 },
|
|
[SCSCR] = { 0x04, 8 },
|
|
[SCxTDR] = { 0x06, 8 },
|
|
[SCxSR] = { 0x08, 16 },
|
|
[SCxRDR] = { 0x0a, 8 },
|
|
[SCFCR] = { 0x0c, 8 },
|
|
[SCFDR] = { 0x0e, 16 },
|
|
},
|
|
.fifosize = 1,
|
|
.overrun_reg = SCxSR,
|
|
.overrun_mask = SCI_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
|
|
.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
|
|
},
|
|
|
|
/*
|
|
* Common SCIFA definitions.
|
|
*/
|
|
[SCIx_SCIFA_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x20, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x24, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCPCR] = { 0x30, 16 },
|
|
[SCPDR] = { 0x34, 16 },
|
|
},
|
|
.fifosize = 64,
|
|
.overrun_reg = SCxSR,
|
|
.overrun_mask = SCIFA_ORER,
|
|
.sampling_rate_mask = SCI_SR_SCIFAB,
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
|
|
.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
|
|
},
|
|
|
|
/*
|
|
* Common SCIFB definitions.
|
|
*/
|
|
[SCIx_SCIFB_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x40, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x60, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCTFDR] = { 0x38, 16 },
|
|
[SCRFDR] = { 0x3c, 16 },
|
|
[SCPCR] = { 0x30, 16 },
|
|
[SCPDR] = { 0x34, 16 },
|
|
},
|
|
.fifosize = 256,
|
|
.overrun_reg = SCxSR,
|
|
.overrun_mask = SCIFA_ORER,
|
|
.sampling_rate_mask = SCI_SR_SCIFAB,
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
|
|
.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
|
|
},
|
|
|
|
/*
|
|
* Common SH-2(A) SCIF definitions for ports with FIFO data
|
|
* count registers.
|
|
*/
|
|
[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
|
|
* It looks like a normal SCIF with FIFO data, but with a
|
|
* compressed address space. Also, the break out of interrupts
|
|
* are different: ERI/BRI, RXI, TXI, TEI, DRI.
|
|
*/
|
|
[SCIx_RZ_SCIFA_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x02, 8 },
|
|
[SCSCR] = { 0x04, 16 },
|
|
[SCxTDR] = { 0x06, 8 },
|
|
[SCxSR] = { 0x08, 16 },
|
|
[SCxRDR] = { 0x0A, 8 },
|
|
[SCFCR] = { 0x0C, 16 },
|
|
[SCFDR] = { 0x0E, 16 },
|
|
[SCSPTR] = { 0x10, 16 },
|
|
[SCLSR] = { 0x12, 16 },
|
|
[SEMR] = { 0x14, 8 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* The "SCIF" that is in RZ/V2H(P) SoC is similar to one found on RZ/G2L SoC
|
|
* with below differences,
|
|
* - Break out of interrupts are different: ERI, BRI, RXI, TXI, TEI, DRI,
|
|
* TEI-DRI, RXI-EDGE and TXI-EDGE.
|
|
* - SCSMR register does not have CM bit (BIT(7)) ie it does not support synchronous mode.
|
|
* - SCFCR register does not have SCFCR_MCE bit.
|
|
* - SCSPTR register has only bits SCSPTR_SPB2DT and SCSPTR_SPB2IO.
|
|
*/
|
|
[SCIx_RZV2H_SCIF_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x02, 8 },
|
|
[SCSCR] = { 0x04, 16 },
|
|
[SCxTDR] = { 0x06, 8 },
|
|
[SCxSR] = { 0x08, 16 },
|
|
[SCxRDR] = { 0x0a, 8 },
|
|
[SCFCR] = { 0x0c, 16 },
|
|
[SCFDR] = { 0x0e, 16 },
|
|
[SCSPTR] = { 0x10, 16 },
|
|
[SCLSR] = { 0x12, 16 },
|
|
[SEMR] = { 0x14, 8 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common SH-3 SCIF definitions.
|
|
*/
|
|
[SCIx_SH3_SCIF_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 8 },
|
|
[SCBRR] = { 0x02, 8 },
|
|
[SCSCR] = { 0x04, 8 },
|
|
[SCxTDR] = { 0x06, 8 },
|
|
[SCxSR] = { 0x08, 16 },
|
|
[SCxRDR] = { 0x0a, 8 },
|
|
[SCFCR] = { 0x0c, 8 },
|
|
[SCFDR] = { 0x0e, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions.
|
|
*/
|
|
[SCIx_SH4_SCIF_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common SCIF definitions for ports with a Baud Rate Generator for
|
|
* External Clock (BRG).
|
|
*/
|
|
[SCIx_SH4_SCIF_BRG_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
[SCDL] = { 0x30, 16 },
|
|
[SCCKS] = { 0x34, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common HSCIF definitions.
|
|
*/
|
|
[SCIx_HSCIF_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCSPTR] = { 0x20, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
[HSSRR] = { 0x40, 16 },
|
|
[SCDL] = { 0x30, 16 },
|
|
[SCCKS] = { 0x34, 16 },
|
|
[HSRTRGR] = { 0x54, 16 },
|
|
[HSTTRGR] = { 0x58, 16 },
|
|
},
|
|
.fifosize = 128,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR_RANGE(8, 32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
|
|
* register.
|
|
*/
|
|
[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCLSR] = { 0x24, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* Common SH-4(A) SCIF(B) definitions for ports with FIFO data
|
|
* count registers.
|
|
*/
|
|
[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x0c, 8 },
|
|
[SCxSR] = { 0x10, 16 },
|
|
[SCxRDR] = { 0x14, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
[SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
|
|
[SCRFDR] = { 0x20, 16 },
|
|
[SCSPTR] = { 0x24, 16 },
|
|
[SCLSR] = { 0x28, 16 },
|
|
},
|
|
.fifosize = 16,
|
|
.overrun_reg = SCLSR,
|
|
.overrun_mask = SCLSR_ORER,
|
|
.sampling_rate_mask = SCI_SR(32),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK,
|
|
.error_clear = SCIF_ERROR_CLEAR,
|
|
},
|
|
|
|
/*
|
|
* SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
|
|
* registers.
|
|
*/
|
|
[SCIx_SH7705_SCIF_REGTYPE] = {
|
|
.regs = {
|
|
[SCSMR] = { 0x00, 16 },
|
|
[SCBRR] = { 0x04, 8 },
|
|
[SCSCR] = { 0x08, 16 },
|
|
[SCxTDR] = { 0x20, 8 },
|
|
[SCxSR] = { 0x14, 16 },
|
|
[SCxRDR] = { 0x24, 8 },
|
|
[SCFCR] = { 0x18, 16 },
|
|
[SCFDR] = { 0x1c, 16 },
|
|
},
|
|
.fifosize = 64,
|
|
.overrun_reg = SCxSR,
|
|
.overrun_mask = SCIFA_ORER,
|
|
.sampling_rate_mask = SCI_SR(16),
|
|
.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
|
|
.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
|
|
},
|
|
};
|
|
|
|
#define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
|
|
|
|
/*
|
|
* The "offset" here is rather misleading, in that it refers to an enum
|
|
* value relative to the port mapping rather than the fixed offset
|
|
* itself, which needs to be manually retrieved from the platform's
|
|
* register map for the given port.
|
|
*/
|
|
static unsigned int sci_serial_in(struct uart_port *p, int offset)
|
|
{
|
|
const struct plat_sci_reg *reg = sci_getreg(p, offset);
|
|
|
|
if (reg->size == 8)
|
|
return ioread8(p->membase + (reg->offset << p->regshift));
|
|
else if (reg->size == 16)
|
|
return ioread16(p->membase + (reg->offset << p->regshift));
|
|
else
|
|
WARN(1, "Invalid register access\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_serial_out(struct uart_port *p, int offset, int value)
|
|
{
|
|
const struct plat_sci_reg *reg = sci_getreg(p, offset);
|
|
|
|
if (reg->size == 8)
|
|
iowrite8(value, p->membase + (reg->offset << p->regshift));
|
|
else if (reg->size == 16)
|
|
iowrite16(value, p->membase + (reg->offset << p->regshift));
|
|
else
|
|
WARN(1, "Invalid register access\n");
|
|
}
|
|
|
|
static void sci_port_enable(struct sci_port *sci_port)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!sci_port->port.dev)
|
|
return;
|
|
|
|
pm_runtime_get_sync(sci_port->port.dev);
|
|
|
|
for (i = 0; i < SCI_NUM_CLKS; i++) {
|
|
clk_prepare_enable(sci_port->clks[i]);
|
|
sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
|
|
}
|
|
sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
|
|
}
|
|
|
|
static void sci_port_disable(struct sci_port *sci_port)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!sci_port->port.dev)
|
|
return;
|
|
|
|
for (i = SCI_NUM_CLKS; i-- > 0; )
|
|
clk_disable_unprepare(sci_port->clks[i]);
|
|
|
|
pm_runtime_put_sync(sci_port->port.dev);
|
|
}
|
|
|
|
static inline unsigned long port_rx_irq_mask(struct uart_port *port)
|
|
{
|
|
/*
|
|
* Not all ports (such as SCIFA) will support REIE. Rather than
|
|
* special-casing the port type, we check the port initialization
|
|
* IRQ enable mask to see whether the IRQ is desired at all. If
|
|
* it's unset, it's logically inferred that there's no point in
|
|
* testing for it.
|
|
*/
|
|
return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
|
|
}
|
|
|
|
static void sci_start_tx(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned short ctrl;
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
u16 new, scr = sci_serial_in(port, SCSCR);
|
|
if (s->chan_tx)
|
|
new = scr | SCSCR_TDRQE;
|
|
else
|
|
new = scr & ~SCSCR_TDRQE;
|
|
if (new != scr)
|
|
sci_serial_out(port, SCSCR, new);
|
|
}
|
|
|
|
if (s->chan_tx && !kfifo_is_empty(&port->state->port.xmit_fifo) &&
|
|
dma_submit_error(s->cookie_tx)) {
|
|
if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
|
|
/* Switch irq from SCIF to DMA */
|
|
disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
|
|
|
|
s->cookie_tx = 0;
|
|
schedule_work(&s->work_tx);
|
|
}
|
|
#endif
|
|
|
|
if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
|
|
port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
|
|
/*
|
|
* For SCI, TE (transmit enable) must be set after setting TIE
|
|
* (transmit interrupt enable) or in the same instruction to start
|
|
* the transmit process.
|
|
*/
|
|
if (port->type == PORT_SCI)
|
|
ctrl |= SCSCR_TE;
|
|
|
|
sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
|
|
}
|
|
}
|
|
|
|
static void sci_stop_tx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_TDRQE;
|
|
|
|
ctrl &= ~SCSCR_TIE;
|
|
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
if (to_sci_port(port)->chan_tx &&
|
|
!dma_submit_error(to_sci_port(port)->cookie_tx)) {
|
|
dmaengine_terminate_async(to_sci_port(port)->chan_tx);
|
|
to_sci_port(port)->cookie_tx = -EINVAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void sci_start_rx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_RDRQE;
|
|
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
static void sci_stop_rx(struct uart_port *port)
|
|
{
|
|
unsigned short ctrl;
|
|
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
ctrl &= ~SCSCR_RDRQE;
|
|
|
|
ctrl &= ~port_rx_irq_mask(port);
|
|
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
|
|
{
|
|
if (port->type == PORT_SCI) {
|
|
/* Just store the mask */
|
|
sci_serial_out(port, SCxSR, mask);
|
|
} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
|
|
/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
|
|
/* Only clear the status bits we want to clear */
|
|
sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
|
|
} else {
|
|
/* Store the mask, clear parity/framing errors */
|
|
sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
|
|
defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
|
|
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
static int sci_poll_get_char(struct uart_port *port)
|
|
{
|
|
unsigned short status;
|
|
int c;
|
|
|
|
do {
|
|
status = sci_serial_in(port, SCxSR);
|
|
if (status & SCxSR_ERRORS(port)) {
|
|
sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
|
|
continue;
|
|
}
|
|
break;
|
|
} while (1);
|
|
|
|
if (!(status & SCxSR_RDxF(port)))
|
|
return NO_POLL_CHAR;
|
|
|
|
c = sci_serial_in(port, SCxRDR);
|
|
|
|
/* Dummy read */
|
|
sci_serial_in(port, SCxSR);
|
|
sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
|
|
|
|
return c;
|
|
}
|
|
#endif
|
|
|
|
static void sci_poll_put_char(struct uart_port *port, unsigned char c)
|
|
{
|
|
unsigned short status;
|
|
|
|
do {
|
|
status = sci_serial_in(port, SCxSR);
|
|
} while (!(status & SCxSR_TDxE(port)));
|
|
|
|
sci_serial_out(port, SCxTDR, c);
|
|
sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
|
|
}
|
|
#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
|
|
CONFIG_SERIAL_SH_SCI_EARLYCON */
|
|
|
|
static void sci_init_pins(struct uart_port *port, unsigned int cflag)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
/*
|
|
* Use port-specific handler if provided.
|
|
*/
|
|
if (s->cfg->ops && s->cfg->ops->init_pins) {
|
|
s->cfg->ops->init_pins(port, cflag);
|
|
return;
|
|
}
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
u16 data = sci_serial_in(port, SCPDR);
|
|
u16 ctrl = sci_serial_in(port, SCPCR);
|
|
|
|
/* Enable RXD and TXD pin functions */
|
|
ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
|
|
if (to_sci_port(port)->has_rtscts) {
|
|
/* RTS# is output, active low, unless autorts */
|
|
if (!(port->mctrl & TIOCM_RTS)) {
|
|
ctrl |= SCPCR_RTSC;
|
|
data |= SCPDR_RTSD;
|
|
} else if (!s->autorts) {
|
|
ctrl |= SCPCR_RTSC;
|
|
data &= ~SCPDR_RTSD;
|
|
} else {
|
|
/* Enable RTS# pin function */
|
|
ctrl &= ~SCPCR_RTSC;
|
|
}
|
|
/* Enable CTS# pin function */
|
|
ctrl &= ~SCPCR_CTSC;
|
|
}
|
|
sci_serial_out(port, SCPDR, data);
|
|
sci_serial_out(port, SCPCR, ctrl);
|
|
} else if (sci_getreg(port, SCSPTR)->size && s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE) {
|
|
u16 status = sci_serial_in(port, SCSPTR);
|
|
|
|
/* RTS# is always output; and active low, unless autorts */
|
|
status |= SCSPTR_RTSIO;
|
|
if (!(port->mctrl & TIOCM_RTS))
|
|
status |= SCSPTR_RTSDT;
|
|
else if (!s->autorts)
|
|
status &= ~SCSPTR_RTSDT;
|
|
/* CTS# and SCK are inputs */
|
|
status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
|
|
sci_serial_out(port, SCSPTR, status);
|
|
}
|
|
}
|
|
|
|
static int sci_txfill(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
|
|
const struct plat_sci_reg *reg;
|
|
|
|
reg = sci_getreg(port, SCTFDR);
|
|
if (reg->size)
|
|
return sci_serial_in(port, SCTFDR) & fifo_mask;
|
|
|
|
reg = sci_getreg(port, SCFDR);
|
|
if (reg->size)
|
|
return sci_serial_in(port, SCFDR) >> 8;
|
|
|
|
return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
|
|
}
|
|
|
|
static int sci_txroom(struct uart_port *port)
|
|
{
|
|
return port->fifosize - sci_txfill(port);
|
|
}
|
|
|
|
static int sci_rxfill(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
|
|
const struct plat_sci_reg *reg;
|
|
|
|
reg = sci_getreg(port, SCRFDR);
|
|
if (reg->size)
|
|
return sci_serial_in(port, SCRFDR) & fifo_mask;
|
|
|
|
reg = sci_getreg(port, SCFDR);
|
|
if (reg->size)
|
|
return sci_serial_in(port, SCFDR) & fifo_mask;
|
|
|
|
return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
|
|
}
|
|
|
|
/* ********************************************************************** *
|
|
* the interrupt related routines *
|
|
* ********************************************************************** */
|
|
|
|
static void sci_transmit_chars(struct uart_port *port)
|
|
{
|
|
struct tty_port *tport = &port->state->port;
|
|
unsigned int stopped = uart_tx_stopped(port);
|
|
unsigned short status;
|
|
unsigned short ctrl;
|
|
int count;
|
|
|
|
status = sci_serial_in(port, SCxSR);
|
|
if (!(status & SCxSR_TDxE(port))) {
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
if (kfifo_is_empty(&tport->xmit_fifo))
|
|
ctrl &= ~SCSCR_TIE;
|
|
else
|
|
ctrl |= SCSCR_TIE;
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
return;
|
|
}
|
|
|
|
count = sci_txroom(port);
|
|
|
|
do {
|
|
unsigned char c;
|
|
|
|
if (port->x_char) {
|
|
c = port->x_char;
|
|
port->x_char = 0;
|
|
} else if (stopped || !kfifo_get(&tport->xmit_fifo, &c)) {
|
|
if (port->type == PORT_SCI &&
|
|
kfifo_is_empty(&tport->xmit_fifo)) {
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
ctrl &= ~SCSCR_TE;
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
sci_serial_out(port, SCxTDR, c);
|
|
|
|
port->icount.tx++;
|
|
} while (--count > 0);
|
|
|
|
sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
|
|
|
|
if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
|
|
uart_write_wakeup(port);
|
|
if (kfifo_is_empty(&tport->xmit_fifo)) {
|
|
if (port->type == PORT_SCI) {
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
ctrl &= ~SCSCR_TIE;
|
|
ctrl |= SCSCR_TEIE;
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
}
|
|
|
|
sci_stop_tx(port);
|
|
}
|
|
}
|
|
|
|
static void sci_receive_chars(struct uart_port *port)
|
|
{
|
|
struct tty_port *tport = &port->state->port;
|
|
int i, count, copied = 0;
|
|
unsigned short status;
|
|
unsigned char flag;
|
|
|
|
status = sci_serial_in(port, SCxSR);
|
|
if (!(status & SCxSR_RDxF(port)))
|
|
return;
|
|
|
|
while (1) {
|
|
/* Don't copy more bytes than there is room for in the buffer */
|
|
count = tty_buffer_request_room(tport, sci_rxfill(port));
|
|
|
|
/* If for any reason we can't copy more data, we're done! */
|
|
if (count == 0)
|
|
break;
|
|
|
|
if (port->type == PORT_SCI) {
|
|
char c = sci_serial_in(port, SCxRDR);
|
|
if (uart_handle_sysrq_char(port, c))
|
|
count = 0;
|
|
else
|
|
tty_insert_flip_char(tport, c, TTY_NORMAL);
|
|
} else {
|
|
for (i = 0; i < count; i++) {
|
|
char c;
|
|
|
|
if (port->type == PORT_SCIF ||
|
|
port->type == PORT_HSCIF) {
|
|
status = sci_serial_in(port, SCxSR);
|
|
c = sci_serial_in(port, SCxRDR);
|
|
} else {
|
|
c = sci_serial_in(port, SCxRDR);
|
|
status = sci_serial_in(port, SCxSR);
|
|
}
|
|
if (uart_handle_sysrq_char(port, c)) {
|
|
count--; i--;
|
|
continue;
|
|
}
|
|
|
|
/* Store data and status */
|
|
if (status & SCxSR_FER(port)) {
|
|
flag = TTY_FRAME;
|
|
port->icount.frame++;
|
|
} else if (status & SCxSR_PER(port)) {
|
|
flag = TTY_PARITY;
|
|
port->icount.parity++;
|
|
} else
|
|
flag = TTY_NORMAL;
|
|
|
|
tty_insert_flip_char(tport, c, flag);
|
|
}
|
|
}
|
|
|
|
sci_serial_in(port, SCxSR); /* dummy read */
|
|
sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
|
|
|
|
copied += count;
|
|
port->icount.rx += count;
|
|
}
|
|
|
|
if (copied) {
|
|
/* Tell the rest of the system the news. New characters! */
|
|
tty_flip_buffer_push(tport);
|
|
} else {
|
|
/* TTY buffers full; read from RX reg to prevent lockup */
|
|
sci_serial_in(port, SCxRDR);
|
|
sci_serial_in(port, SCxSR); /* dummy read */
|
|
sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
|
|
}
|
|
}
|
|
|
|
static int sci_handle_errors(struct uart_port *port)
|
|
{
|
|
int copied = 0;
|
|
unsigned short status = sci_serial_in(port, SCxSR);
|
|
struct tty_port *tport = &port->state->port;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
/* Handle overruns */
|
|
if (status & s->params->overrun_mask) {
|
|
port->icount.overrun++;
|
|
|
|
/* overrun error */
|
|
if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
|
|
copied++;
|
|
}
|
|
|
|
if (status & SCxSR_FER(port)) {
|
|
/* frame error */
|
|
port->icount.frame++;
|
|
|
|
if (tty_insert_flip_char(tport, 0, TTY_FRAME))
|
|
copied++;
|
|
}
|
|
|
|
if (status & SCxSR_PER(port)) {
|
|
/* parity error */
|
|
port->icount.parity++;
|
|
|
|
if (tty_insert_flip_char(tport, 0, TTY_PARITY))
|
|
copied++;
|
|
}
|
|
|
|
if (copied)
|
|
tty_flip_buffer_push(tport);
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int sci_handle_fifo_overrun(struct uart_port *port)
|
|
{
|
|
struct tty_port *tport = &port->state->port;
|
|
struct sci_port *s = to_sci_port(port);
|
|
const struct plat_sci_reg *reg;
|
|
int copied = 0;
|
|
u16 status;
|
|
|
|
reg = sci_getreg(port, s->params->overrun_reg);
|
|
if (!reg->size)
|
|
return 0;
|
|
|
|
status = sci_serial_in(port, s->params->overrun_reg);
|
|
if (status & s->params->overrun_mask) {
|
|
status &= ~s->params->overrun_mask;
|
|
sci_serial_out(port, s->params->overrun_reg, status);
|
|
|
|
port->icount.overrun++;
|
|
|
|
tty_insert_flip_char(tport, 0, TTY_OVERRUN);
|
|
tty_flip_buffer_push(tport);
|
|
copied++;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int sci_handle_breaks(struct uart_port *port)
|
|
{
|
|
int copied = 0;
|
|
unsigned short status = sci_serial_in(port, SCxSR);
|
|
struct tty_port *tport = &port->state->port;
|
|
|
|
if (uart_handle_break(port))
|
|
return 0;
|
|
|
|
if (status & SCxSR_BRK(port)) {
|
|
port->icount.brk++;
|
|
|
|
/* Notify of BREAK */
|
|
if (tty_insert_flip_char(tport, 0, TTY_BREAK))
|
|
copied++;
|
|
}
|
|
|
|
if (copied)
|
|
tty_flip_buffer_push(tport);
|
|
|
|
copied += sci_handle_fifo_overrun(port);
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int scif_set_rtrg(struct uart_port *port, int rx_trig)
|
|
{
|
|
unsigned int bits;
|
|
|
|
if (rx_trig >= port->fifosize)
|
|
rx_trig = port->fifosize - 1;
|
|
if (rx_trig < 1)
|
|
rx_trig = 1;
|
|
|
|
/* HSCIF can be set to an arbitrary level. */
|
|
if (sci_getreg(port, HSRTRGR)->size) {
|
|
sci_serial_out(port, HSRTRGR, rx_trig);
|
|
return rx_trig;
|
|
}
|
|
|
|
switch (port->type) {
|
|
case PORT_SCIF:
|
|
if (rx_trig < 4) {
|
|
bits = 0;
|
|
rx_trig = 1;
|
|
} else if (rx_trig < 8) {
|
|
bits = SCFCR_RTRG0;
|
|
rx_trig = 4;
|
|
} else if (rx_trig < 14) {
|
|
bits = SCFCR_RTRG1;
|
|
rx_trig = 8;
|
|
} else {
|
|
bits = SCFCR_RTRG0 | SCFCR_RTRG1;
|
|
rx_trig = 14;
|
|
}
|
|
break;
|
|
case PORT_SCIFA:
|
|
case PORT_SCIFB:
|
|
if (rx_trig < 16) {
|
|
bits = 0;
|
|
rx_trig = 1;
|
|
} else if (rx_trig < 32) {
|
|
bits = SCFCR_RTRG0;
|
|
rx_trig = 16;
|
|
} else if (rx_trig < 48) {
|
|
bits = SCFCR_RTRG1;
|
|
rx_trig = 32;
|
|
} else {
|
|
bits = SCFCR_RTRG0 | SCFCR_RTRG1;
|
|
rx_trig = 48;
|
|
}
|
|
break;
|
|
default:
|
|
WARN(1, "unknown FIFO configuration");
|
|
return 1;
|
|
}
|
|
|
|
sci_serial_out(port, SCFCR,
|
|
(sci_serial_in(port, SCFCR) &
|
|
~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
|
|
|
|
return rx_trig;
|
|
}
|
|
|
|
static int scif_rtrg_enabled(struct uart_port *port)
|
|
{
|
|
if (sci_getreg(port, HSRTRGR)->size)
|
|
return sci_serial_in(port, HSRTRGR) != 0;
|
|
else
|
|
return (sci_serial_in(port, SCFCR) &
|
|
(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
|
|
}
|
|
|
|
static void rx_fifo_timer_fn(struct timer_list *t)
|
|
{
|
|
struct sci_port *s = from_timer(s, t, rx_fifo_timer);
|
|
struct uart_port *port = &s->port;
|
|
|
|
dev_dbg(port->dev, "Rx timed out\n");
|
|
scif_set_rtrg(port, 1);
|
|
}
|
|
|
|
static ssize_t rx_fifo_trigger_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct uart_port *port = dev_get_drvdata(dev);
|
|
struct sci_port *sci = to_sci_port(port);
|
|
|
|
return sprintf(buf, "%d\n", sci->rx_trigger);
|
|
}
|
|
|
|
static ssize_t rx_fifo_trigger_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct uart_port *port = dev_get_drvdata(dev);
|
|
struct sci_port *sci = to_sci_port(port);
|
|
int ret;
|
|
long r;
|
|
|
|
ret = kstrtol(buf, 0, &r);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sci->rx_trigger = scif_set_rtrg(port, r);
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
scif_set_rtrg(port, 1);
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(rx_fifo_trigger);
|
|
|
|
static ssize_t rx_fifo_timeout_show(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct uart_port *port = dev_get_drvdata(dev);
|
|
struct sci_port *sci = to_sci_port(port);
|
|
int v;
|
|
|
|
if (port->type == PORT_HSCIF)
|
|
v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
|
|
else
|
|
v = sci->rx_fifo_timeout;
|
|
|
|
return sprintf(buf, "%d\n", v);
|
|
}
|
|
|
|
static ssize_t rx_fifo_timeout_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct uart_port *port = dev_get_drvdata(dev);
|
|
struct sci_port *sci = to_sci_port(port);
|
|
int ret;
|
|
long r;
|
|
|
|
ret = kstrtol(buf, 0, &r);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (port->type == PORT_HSCIF) {
|
|
if (r < 0 || r > 3)
|
|
return -EINVAL;
|
|
sci->hscif_tot = r << HSSCR_TOT_SHIFT;
|
|
} else {
|
|
sci->rx_fifo_timeout = r;
|
|
scif_set_rtrg(port, 1);
|
|
if (r > 0)
|
|
timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(rx_fifo_timeout);
|
|
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
static void sci_dma_tx_complete(void *arg)
|
|
{
|
|
struct sci_port *s = arg;
|
|
struct uart_port *port = &s->port;
|
|
struct tty_port *tport = &port->state->port;
|
|
unsigned long flags;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
|
|
uart_xmit_advance(port, s->tx_dma_len);
|
|
|
|
if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
|
|
uart_write_wakeup(port);
|
|
|
|
if (!kfifo_is_empty(&tport->xmit_fifo)) {
|
|
s->cookie_tx = 0;
|
|
schedule_work(&s->work_tx);
|
|
} else {
|
|
s->cookie_tx = -EINVAL;
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
|
|
s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
|
|
u16 ctrl = sci_serial_in(port, SCSCR);
|
|
sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
|
|
if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
|
|
/* Switch irq from DMA to SCIF */
|
|
dmaengine_pause(s->chan_tx_saved);
|
|
enable_irq(s->irqs[SCIx_TXI_IRQ]);
|
|
}
|
|
}
|
|
}
|
|
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
}
|
|
|
|
/* Locking: called with port lock held */
|
|
static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
|
|
{
|
|
struct uart_port *port = &s->port;
|
|
struct tty_port *tport = &port->state->port;
|
|
int copied;
|
|
|
|
copied = tty_insert_flip_string(tport, buf, count);
|
|
if (copied < count)
|
|
port->icount.buf_overrun++;
|
|
|
|
port->icount.rx += copied;
|
|
|
|
return copied;
|
|
}
|
|
|
|
static int sci_dma_rx_find_active(struct sci_port *s)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
|
|
if (s->active_rx == s->cookie_rx[i])
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Must only be called with uart_port_lock taken */
|
|
static void sci_dma_rx_chan_invalidate(struct sci_port *s)
|
|
{
|
|
unsigned int i;
|
|
|
|
s->chan_rx = NULL;
|
|
for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
|
|
s->cookie_rx[i] = -EINVAL;
|
|
s->active_rx = 0;
|
|
}
|
|
|
|
static void sci_dma_rx_release(struct sci_port *s)
|
|
{
|
|
struct dma_chan *chan = s->chan_rx_saved;
|
|
struct uart_port *port = &s->port;
|
|
unsigned long flags;
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
s->chan_rx_saved = NULL;
|
|
sci_dma_rx_chan_invalidate(s);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
dmaengine_terminate_sync(chan);
|
|
dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
|
|
sg_dma_address(&s->sg_rx[0]));
|
|
dma_release_channel(chan);
|
|
}
|
|
|
|
static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
|
|
{
|
|
long sec = usec / 1000000;
|
|
long nsec = (usec % 1000000) * 1000;
|
|
ktime_t t = ktime_set(sec, nsec);
|
|
|
|
hrtimer_start(hrt, t, HRTIMER_MODE_REL);
|
|
}
|
|
|
|
static void sci_dma_rx_reenable_irq(struct sci_port *s)
|
|
{
|
|
struct uart_port *port = &s->port;
|
|
u16 scr;
|
|
|
|
/* Direct new serial port interrupts back to CPU */
|
|
scr = sci_serial_in(port, SCSCR);
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
|
|
s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
|
|
enable_irq(s->irqs[SCIx_RXI_IRQ]);
|
|
if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
|
|
scif_set_rtrg(port, s->rx_trigger);
|
|
else
|
|
scr &= ~SCSCR_RDRQE;
|
|
}
|
|
sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
|
|
}
|
|
|
|
static void sci_dma_rx_complete(void *arg)
|
|
{
|
|
struct sci_port *s = arg;
|
|
struct dma_chan *chan = s->chan_rx;
|
|
struct uart_port *port = &s->port;
|
|
struct dma_async_tx_descriptor *desc;
|
|
unsigned long flags;
|
|
int active, count = 0;
|
|
|
|
dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
|
|
s->active_rx);
|
|
|
|
hrtimer_cancel(&s->rx_timer);
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
|
|
active = sci_dma_rx_find_active(s);
|
|
if (active >= 0)
|
|
count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
|
|
|
|
if (count)
|
|
tty_flip_buffer_push(&port->state->port);
|
|
|
|
desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc)
|
|
goto fail;
|
|
|
|
desc->callback = sci_dma_rx_complete;
|
|
desc->callback_param = s;
|
|
s->cookie_rx[active] = dmaengine_submit(desc);
|
|
if (dma_submit_error(s->cookie_rx[active]))
|
|
goto fail;
|
|
|
|
s->active_rx = s->cookie_rx[!active];
|
|
|
|
dma_async_issue_pending(chan);
|
|
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
|
|
__func__, s->cookie_rx[active], active, s->active_rx);
|
|
|
|
start_hrtimer_us(&s->rx_timer, s->rx_timeout);
|
|
|
|
return;
|
|
|
|
fail:
|
|
/* Switch to PIO */
|
|
dmaengine_terminate_async(chan);
|
|
sci_dma_rx_chan_invalidate(s);
|
|
sci_dma_rx_reenable_irq(s);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
|
|
}
|
|
|
|
static void sci_dma_tx_release(struct sci_port *s)
|
|
{
|
|
struct dma_chan *chan = s->chan_tx_saved;
|
|
|
|
cancel_work_sync(&s->work_tx);
|
|
s->chan_tx_saved = s->chan_tx = NULL;
|
|
s->cookie_tx = -EINVAL;
|
|
dmaengine_terminate_sync(chan);
|
|
dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
|
|
DMA_TO_DEVICE);
|
|
dma_release_channel(chan);
|
|
}
|
|
|
|
static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
|
|
{
|
|
struct dma_chan *chan = s->chan_rx;
|
|
struct uart_port *port = &s->port;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct scatterlist *sg = &s->sg_rx[i];
|
|
struct dma_async_tx_descriptor *desc;
|
|
|
|
desc = dmaengine_prep_slave_sg(chan,
|
|
sg, 1, DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc)
|
|
goto fail;
|
|
|
|
desc->callback = sci_dma_rx_complete;
|
|
desc->callback_param = s;
|
|
s->cookie_rx[i] = dmaengine_submit(desc);
|
|
if (dma_submit_error(s->cookie_rx[i]))
|
|
goto fail;
|
|
|
|
}
|
|
|
|
s->active_rx = s->cookie_rx[0];
|
|
|
|
dma_async_issue_pending(chan);
|
|
return 0;
|
|
|
|
fail:
|
|
/* Switch to PIO */
|
|
if (!port_lock_held)
|
|
uart_port_lock_irqsave(port, &flags);
|
|
if (i)
|
|
dmaengine_terminate_async(chan);
|
|
sci_dma_rx_chan_invalidate(s);
|
|
sci_start_rx(port);
|
|
if (!port_lock_held)
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void sci_dma_tx_work_fn(struct work_struct *work)
|
|
{
|
|
struct sci_port *s = container_of(work, struct sci_port, work_tx);
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct dma_chan *chan = s->chan_tx;
|
|
struct uart_port *port = &s->port;
|
|
struct tty_port *tport = &port->state->port;
|
|
unsigned long flags;
|
|
unsigned int tail;
|
|
dma_addr_t buf;
|
|
|
|
/*
|
|
* DMA is idle now.
|
|
* Port xmit buffer is already mapped, and it is one page... Just adjust
|
|
* offsets and lengths. Since it is a circular buffer, we have to
|
|
* transmit till the end, and then the rest. Take the port lock to get a
|
|
* consistent xmit buffer state.
|
|
*/
|
|
uart_port_lock_irq(port);
|
|
s->tx_dma_len = kfifo_out_linear(&tport->xmit_fifo, &tail,
|
|
UART_XMIT_SIZE);
|
|
buf = s->tx_dma_addr + tail;
|
|
if (!s->tx_dma_len) {
|
|
/* Transmit buffer has been flushed */
|
|
uart_port_unlock_irq(port);
|
|
return;
|
|
}
|
|
|
|
desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
uart_port_unlock_irq(port);
|
|
dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
|
|
goto switch_to_pio;
|
|
}
|
|
|
|
dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
|
|
DMA_TO_DEVICE);
|
|
|
|
desc->callback = sci_dma_tx_complete;
|
|
desc->callback_param = s;
|
|
s->cookie_tx = dmaengine_submit(desc);
|
|
if (dma_submit_error(s->cookie_tx)) {
|
|
uart_port_unlock_irq(port);
|
|
dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
|
|
goto switch_to_pio;
|
|
}
|
|
|
|
uart_port_unlock_irq(port);
|
|
dev_dbg(port->dev, "%s: %p: %u, cookie %d\n",
|
|
__func__, tport->xmit_buf, tail, s->cookie_tx);
|
|
|
|
dma_async_issue_pending(chan);
|
|
return;
|
|
|
|
switch_to_pio:
|
|
uart_port_lock_irqsave(port, &flags);
|
|
s->chan_tx = NULL;
|
|
sci_start_tx(port);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
return;
|
|
}
|
|
|
|
static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
|
|
{
|
|
struct sci_port *s = container_of(t, struct sci_port, rx_timer);
|
|
struct dma_chan *chan = s->chan_rx;
|
|
struct uart_port *port = &s->port;
|
|
struct dma_tx_state state;
|
|
enum dma_status status;
|
|
unsigned long flags;
|
|
unsigned int read;
|
|
int active, count;
|
|
|
|
dev_dbg(port->dev, "DMA Rx timed out\n");
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
|
|
active = sci_dma_rx_find_active(s);
|
|
if (active < 0) {
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
|
|
if (status == DMA_COMPLETE) {
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
|
|
s->active_rx, active);
|
|
|
|
/* Let packet complete handler take care of the packet */
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
dmaengine_pause(chan);
|
|
|
|
/*
|
|
* sometimes DMA transfer doesn't stop even if it is stopped and
|
|
* data keeps on coming until transaction is complete so check
|
|
* for DMA_COMPLETE again
|
|
* Let packet complete handler take care of the packet
|
|
*/
|
|
status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
|
|
if (status == DMA_COMPLETE) {
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
/* Handle incomplete DMA receive */
|
|
dmaengine_terminate_async(s->chan_rx);
|
|
read = sg_dma_len(&s->sg_rx[active]) - state.residue;
|
|
|
|
if (read) {
|
|
count = sci_dma_rx_push(s, s->rx_buf[active], read);
|
|
if (count)
|
|
tty_flip_buffer_push(&port->state->port);
|
|
}
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
|
|
s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
|
|
sci_dma_rx_submit(s, true);
|
|
|
|
sci_dma_rx_reenable_irq(s);
|
|
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
|
|
enum dma_transfer_direction dir)
|
|
{
|
|
struct dma_chan *chan;
|
|
struct dma_slave_config cfg;
|
|
int ret;
|
|
|
|
chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
|
|
if (IS_ERR(chan)) {
|
|
dev_dbg(port->dev, "dma_request_chan failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
cfg.direction = dir;
|
|
cfg.dst_addr = port->mapbase +
|
|
(sci_getreg(port, SCxTDR)->offset << port->regshift);
|
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
cfg.src_addr = port->mapbase +
|
|
(sci_getreg(port, SCxRDR)->offset << port->regshift);
|
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
|
|
ret = dmaengine_slave_config(chan, &cfg);
|
|
if (ret) {
|
|
dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
|
|
dma_release_channel(chan);
|
|
return NULL;
|
|
}
|
|
|
|
return chan;
|
|
}
|
|
|
|
static void sci_request_dma(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct tty_port *tport = &port->state->port;
|
|
struct dma_chan *chan;
|
|
|
|
dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
|
|
|
|
/*
|
|
* DMA on console may interfere with Kernel log messages which use
|
|
* plain putchar(). So, simply don't use it with a console.
|
|
*/
|
|
if (uart_console(port))
|
|
return;
|
|
|
|
if (!port->dev->of_node)
|
|
return;
|
|
|
|
s->cookie_tx = -EINVAL;
|
|
|
|
/*
|
|
* Don't request a dma channel if no channel was specified
|
|
* in the device tree.
|
|
*/
|
|
if (!of_property_present(port->dev->of_node, "dmas"))
|
|
return;
|
|
|
|
chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
|
|
dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
|
|
if (chan) {
|
|
/* UART circular tx buffer is an aligned page. */
|
|
s->tx_dma_addr = dma_map_single(chan->device->dev,
|
|
tport->xmit_buf,
|
|
UART_XMIT_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
|
|
dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
|
|
dma_release_channel(chan);
|
|
} else {
|
|
dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
|
|
__func__, UART_XMIT_SIZE,
|
|
tport->xmit_buf, &s->tx_dma_addr);
|
|
|
|
INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
|
|
s->chan_tx_saved = s->chan_tx = chan;
|
|
}
|
|
}
|
|
|
|
chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
|
|
dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
|
|
if (chan) {
|
|
unsigned int i;
|
|
dma_addr_t dma;
|
|
void *buf;
|
|
|
|
s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
|
|
buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
|
|
&dma, GFP_KERNEL);
|
|
if (!buf) {
|
|
dev_warn(port->dev,
|
|
"Failed to allocate Rx dma buffer, using PIO\n");
|
|
dma_release_channel(chan);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct scatterlist *sg = &s->sg_rx[i];
|
|
|
|
sg_init_table(sg, 1);
|
|
s->rx_buf[i] = buf;
|
|
sg_dma_address(sg) = dma;
|
|
sg_dma_len(sg) = s->buf_len_rx;
|
|
|
|
buf += s->buf_len_rx;
|
|
dma += s->buf_len_rx;
|
|
}
|
|
|
|
hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
s->rx_timer.function = sci_dma_rx_timer_fn;
|
|
|
|
s->chan_rx_saved = s->chan_rx = chan;
|
|
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
|
|
s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
|
|
sci_dma_rx_submit(s, false);
|
|
}
|
|
}
|
|
|
|
static void sci_free_dma(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (s->chan_tx_saved)
|
|
sci_dma_tx_release(s);
|
|
if (s->chan_rx_saved)
|
|
sci_dma_rx_release(s);
|
|
}
|
|
|
|
static void sci_flush_buffer(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
/*
|
|
* In uart_flush_buffer(), the xmit circular buffer has just been
|
|
* cleared, so we have to reset tx_dma_len accordingly, and stop any
|
|
* pending transfers
|
|
*/
|
|
s->tx_dma_len = 0;
|
|
if (s->chan_tx) {
|
|
dmaengine_terminate_async(s->chan_tx);
|
|
s->cookie_tx = -EINVAL;
|
|
}
|
|
}
|
|
#else /* !CONFIG_SERIAL_SH_SCI_DMA */
|
|
static inline void sci_request_dma(struct uart_port *port)
|
|
{
|
|
}
|
|
|
|
static inline void sci_free_dma(struct uart_port *port)
|
|
{
|
|
}
|
|
|
|
#define sci_flush_buffer NULL
|
|
#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
|
|
|
|
static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
if (s->chan_rx) {
|
|
u16 scr = sci_serial_in(port, SCSCR);
|
|
u16 ssr = sci_serial_in(port, SCxSR);
|
|
|
|
/* Disable future Rx interrupts */
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
|
|
s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
|
|
disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
|
|
if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
|
|
scif_set_rtrg(port, 1);
|
|
scr |= SCSCR_RIE;
|
|
} else {
|
|
scr |= SCSCR_RDRQE;
|
|
}
|
|
} else {
|
|
if (sci_dma_rx_submit(s, false) < 0)
|
|
goto handle_pio;
|
|
|
|
scr &= ~SCSCR_RIE;
|
|
}
|
|
sci_serial_out(port, SCSCR, scr);
|
|
/* Clear current interrupt */
|
|
sci_serial_out(port, SCxSR,
|
|
ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
|
|
dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
|
|
jiffies, s->rx_timeout);
|
|
start_hrtimer_us(&s->rx_timer, s->rx_timeout);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
handle_pio:
|
|
#endif
|
|
|
|
if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
|
|
if (!scif_rtrg_enabled(port))
|
|
scif_set_rtrg(port, s->rx_trigger);
|
|
|
|
mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
|
|
s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
|
|
}
|
|
|
|
/* I think sci_receive_chars has to be called irrespective
|
|
* of whether the I_IXOFF is set, otherwise, how is the interrupt
|
|
* to be disabled?
|
|
*/
|
|
sci_receive_chars(port);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
unsigned long flags;
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
sci_transmit_chars(port);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
unsigned long flags;
|
|
unsigned short ctrl;
|
|
|
|
if (port->type != PORT_SCI)
|
|
return sci_tx_interrupt(irq, ptr);
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_br_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
|
|
/* Handle BREAKs */
|
|
sci_handle_breaks(port);
|
|
|
|
/* drop invalid character received before break was detected */
|
|
sci_serial_in(port, SCxRDR);
|
|
|
|
sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_er_interrupt(int irq, void *ptr)
|
|
{
|
|
struct uart_port *port = ptr;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
|
|
/* Break and Error interrupts are muxed */
|
|
unsigned short ssr_status = sci_serial_in(port, SCxSR);
|
|
|
|
/* Break Interrupt */
|
|
if (ssr_status & SCxSR_BRK(port))
|
|
sci_br_interrupt(irq, ptr);
|
|
|
|
/* Break only? */
|
|
if (!(ssr_status & SCxSR_ERRORS(port)))
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle errors */
|
|
if (port->type == PORT_SCI) {
|
|
if (sci_handle_errors(port)) {
|
|
/* discard character in rx buffer */
|
|
sci_serial_in(port, SCxSR);
|
|
sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
|
|
}
|
|
} else {
|
|
sci_handle_fifo_overrun(port);
|
|
if (!s->chan_rx)
|
|
sci_receive_chars(port);
|
|
}
|
|
|
|
sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
|
|
|
|
/* Kick the transmission */
|
|
if (!s->chan_tx)
|
|
sci_tx_interrupt(irq, ptr);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
|
|
{
|
|
unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
|
|
struct uart_port *port = ptr;
|
|
struct sci_port *s = to_sci_port(port);
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
ssr_status = sci_serial_in(port, SCxSR);
|
|
scr_status = sci_serial_in(port, SCSCR);
|
|
if (s->params->overrun_reg == SCxSR)
|
|
orer_status = ssr_status;
|
|
else if (sci_getreg(port, s->params->overrun_reg)->size)
|
|
orer_status = sci_serial_in(port, s->params->overrun_reg);
|
|
|
|
err_enabled = scr_status & port_rx_irq_mask(port);
|
|
|
|
/* Tx Interrupt */
|
|
if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
|
|
!s->chan_tx)
|
|
ret = sci_tx_interrupt(irq, ptr);
|
|
|
|
/*
|
|
* Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
|
|
* DR flags
|
|
*/
|
|
if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
|
|
(scr_status & SCSCR_RIE))
|
|
ret = sci_rx_interrupt(irq, ptr);
|
|
|
|
/* Error Interrupt */
|
|
if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
|
|
ret = sci_er_interrupt(irq, ptr);
|
|
|
|
/* Break Interrupt */
|
|
if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
|
|
(ssr_status & SCxSR_BRK(port)) && err_enabled)
|
|
ret = sci_br_interrupt(irq, ptr);
|
|
|
|
/* Overrun Interrupt */
|
|
if (orer_status & s->params->overrun_mask) {
|
|
sci_handle_fifo_overrun(port);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct sci_irq_desc {
|
|
const char *desc;
|
|
irq_handler_t handler;
|
|
} sci_irq_desc[] = {
|
|
/*
|
|
* Split out handlers, the default case.
|
|
*/
|
|
[SCIx_ERI_IRQ] = {
|
|
.desc = "rx err",
|
|
.handler = sci_er_interrupt,
|
|
},
|
|
|
|
[SCIx_RXI_IRQ] = {
|
|
.desc = "rx full",
|
|
.handler = sci_rx_interrupt,
|
|
},
|
|
|
|
[SCIx_TXI_IRQ] = {
|
|
.desc = "tx empty",
|
|
.handler = sci_tx_interrupt,
|
|
},
|
|
|
|
[SCIx_BRI_IRQ] = {
|
|
.desc = "break",
|
|
.handler = sci_br_interrupt,
|
|
},
|
|
|
|
[SCIx_DRI_IRQ] = {
|
|
.desc = "rx ready",
|
|
.handler = sci_rx_interrupt,
|
|
},
|
|
|
|
[SCIx_TEI_IRQ] = {
|
|
.desc = "tx end",
|
|
.handler = sci_tx_end_interrupt,
|
|
},
|
|
|
|
/*
|
|
* Special muxed handler.
|
|
*/
|
|
[SCIx_MUX_IRQ] = {
|
|
.desc = "mux",
|
|
.handler = sci_mpxed_interrupt,
|
|
},
|
|
};
|
|
|
|
static int sci_request_irq(struct sci_port *port)
|
|
{
|
|
struct uart_port *up = &port->port;
|
|
int i, j, w, ret = 0;
|
|
|
|
for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
|
|
const struct sci_irq_desc *desc;
|
|
int irq;
|
|
|
|
/* Check if already registered (muxed) */
|
|
for (w = 0; w < i; w++)
|
|
if (port->irqs[w] == port->irqs[i])
|
|
w = i + 1;
|
|
if (w > i)
|
|
continue;
|
|
|
|
if (SCIx_IRQ_IS_MUXED(port)) {
|
|
i = SCIx_MUX_IRQ;
|
|
irq = up->irq;
|
|
} else {
|
|
irq = port->irqs[i];
|
|
|
|
/*
|
|
* Certain port types won't support all of the
|
|
* available interrupt sources.
|
|
*/
|
|
if (unlikely(irq < 0))
|
|
continue;
|
|
}
|
|
|
|
desc = sci_irq_desc + i;
|
|
port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
|
|
dev_name(up->dev), desc->desc);
|
|
if (!port->irqstr[j]) {
|
|
ret = -ENOMEM;
|
|
goto out_nomem;
|
|
}
|
|
|
|
ret = request_irq(irq, desc->handler, up->irqflags,
|
|
port->irqstr[j], port);
|
|
if (unlikely(ret)) {
|
|
dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
|
|
goto out_noirq;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_noirq:
|
|
while (--i >= 0)
|
|
free_irq(port->irqs[i], port);
|
|
|
|
out_nomem:
|
|
while (--j >= 0)
|
|
kfree(port->irqstr[j]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sci_free_irq(struct sci_port *port)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* Intentionally in reverse order so we iterate over the muxed
|
|
* IRQ first.
|
|
*/
|
|
for (i = 0; i < SCIx_NR_IRQS; i++) {
|
|
int irq = port->irqs[i];
|
|
|
|
/*
|
|
* Certain port types won't support all of the available
|
|
* interrupt sources.
|
|
*/
|
|
if (unlikely(irq < 0))
|
|
continue;
|
|
|
|
/* Check if already freed (irq was muxed) */
|
|
for (j = 0; j < i; j++)
|
|
if (port->irqs[j] == irq)
|
|
j = i + 1;
|
|
if (j > i)
|
|
continue;
|
|
|
|
free_irq(port->irqs[i], port);
|
|
kfree(port->irqstr[i]);
|
|
|
|
if (SCIx_IRQ_IS_MUXED(port)) {
|
|
/* If there's only one IRQ, we're done. */
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int sci_tx_empty(struct uart_port *port)
|
|
{
|
|
unsigned short status = sci_serial_in(port, SCxSR);
|
|
unsigned short in_tx_fifo = sci_txfill(port);
|
|
|
|
return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
|
|
}
|
|
|
|
static void sci_set_rts(struct uart_port *port, bool state)
|
|
{
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
u16 data = sci_serial_in(port, SCPDR);
|
|
|
|
/* Active low */
|
|
if (state)
|
|
data &= ~SCPDR_RTSD;
|
|
else
|
|
data |= SCPDR_RTSD;
|
|
sci_serial_out(port, SCPDR, data);
|
|
|
|
/* RTS# is output */
|
|
sci_serial_out(port, SCPCR,
|
|
sci_serial_in(port, SCPCR) | SCPCR_RTSC);
|
|
} else if (sci_getreg(port, SCSPTR)->size) {
|
|
u16 ctrl = sci_serial_in(port, SCSPTR);
|
|
|
|
/* Active low */
|
|
if (state)
|
|
ctrl &= ~SCSPTR_RTSDT;
|
|
else
|
|
ctrl |= SCSPTR_RTSDT;
|
|
sci_serial_out(port, SCSPTR, ctrl);
|
|
}
|
|
}
|
|
|
|
static bool sci_get_cts(struct uart_port *port)
|
|
{
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
/* Active low */
|
|
return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
|
|
} else if (sci_getreg(port, SCSPTR)->size) {
|
|
/* Active low */
|
|
return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Modem control is a bit of a mixed bag for SCI(F) ports. Generally
|
|
* CTS/RTS is supported in hardware by at least one port and controlled
|
|
* via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
|
|
* handled via the ->init_pins() op, which is a bit of a one-way street,
|
|
* lacking any ability to defer pin control -- this will later be
|
|
* converted over to the GPIO framework).
|
|
*
|
|
* Other modes (such as loopback) are supported generically on certain
|
|
* port types, but not others. For these it's sufficient to test for the
|
|
* existence of the support register and simply ignore the port type.
|
|
*/
|
|
static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
if (mctrl & TIOCM_LOOP) {
|
|
const struct plat_sci_reg *reg;
|
|
|
|
/*
|
|
* Standard loopback mode for SCFCR ports.
|
|
*/
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size)
|
|
sci_serial_out(port, SCFCR,
|
|
sci_serial_in(port, SCFCR) | SCFCR_LOOP);
|
|
}
|
|
|
|
mctrl_gpio_set(s->gpios, mctrl);
|
|
|
|
if (!s->has_rtscts)
|
|
return;
|
|
|
|
if (!(mctrl & TIOCM_RTS)) {
|
|
/* Disable Auto RTS */
|
|
if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
|
|
sci_serial_out(port, SCFCR,
|
|
sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
|
|
|
|
/* Clear RTS */
|
|
sci_set_rts(port, 0);
|
|
} else if (s->autorts) {
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
|
|
/* Enable RTS# pin function */
|
|
sci_serial_out(port, SCPCR,
|
|
sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
|
|
}
|
|
|
|
/* Enable Auto RTS */
|
|
if (s->cfg->regtype != SCIx_RZV2H_SCIF_REGTYPE)
|
|
sci_serial_out(port, SCFCR,
|
|
sci_serial_in(port, SCFCR) | SCFCR_MCE);
|
|
} else {
|
|
/* Set RTS */
|
|
sci_set_rts(port, 1);
|
|
}
|
|
}
|
|
|
|
static unsigned int sci_get_mctrl(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
struct mctrl_gpios *gpios = s->gpios;
|
|
unsigned int mctrl = 0;
|
|
|
|
mctrl_gpio_get(gpios, &mctrl);
|
|
|
|
/*
|
|
* CTS/RTS is handled in hardware when supported, while nothing
|
|
* else is wired up.
|
|
*/
|
|
if (s->autorts) {
|
|
if (sci_get_cts(port))
|
|
mctrl |= TIOCM_CTS;
|
|
} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
|
|
mctrl |= TIOCM_CTS;
|
|
}
|
|
if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
|
|
mctrl |= TIOCM_DSR;
|
|
if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
|
|
mctrl |= TIOCM_CAR;
|
|
|
|
return mctrl;
|
|
}
|
|
|
|
static void sci_enable_ms(struct uart_port *port)
|
|
{
|
|
mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
|
|
}
|
|
|
|
static void sci_break_ctl(struct uart_port *port, int break_state)
|
|
{
|
|
unsigned short scscr, scsptr;
|
|
unsigned long flags;
|
|
|
|
/* check whether the port has SCSPTR */
|
|
if (!sci_getreg(port, SCSPTR)->size) {
|
|
/*
|
|
* Not supported by hardware. Most parts couple break and rx
|
|
* interrupts together, with break detection always enabled.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
scsptr = sci_serial_in(port, SCSPTR);
|
|
scscr = sci_serial_in(port, SCSCR);
|
|
|
|
if (break_state == -1) {
|
|
scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
|
|
scscr &= ~SCSCR_TE;
|
|
} else {
|
|
scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
|
|
scscr |= SCSCR_TE;
|
|
}
|
|
|
|
sci_serial_out(port, SCSPTR, scsptr);
|
|
sci_serial_out(port, SCSCR, scscr);
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
}
|
|
|
|
static int sci_startup(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
int ret;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
sci_request_dma(port);
|
|
|
|
ret = sci_request_irq(s);
|
|
if (unlikely(ret < 0)) {
|
|
sci_free_dma(port);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_shutdown(struct uart_port *port)
|
|
{
|
|
struct sci_port *s = to_sci_port(port);
|
|
unsigned long flags;
|
|
u16 scr;
|
|
|
|
dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
|
|
|
|
s->autorts = false;
|
|
mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
sci_stop_rx(port);
|
|
sci_stop_tx(port);
|
|
/*
|
|
* Stop RX and TX, disable related interrupts, keep clock source
|
|
* and HSCIF TOT bits
|
|
*/
|
|
scr = sci_serial_in(port, SCSCR);
|
|
sci_serial_out(port, SCSCR,
|
|
scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
if (s->chan_rx_saved) {
|
|
dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
|
|
port->line);
|
|
hrtimer_cancel(&s->rx_timer);
|
|
}
|
|
#endif
|
|
|
|
if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
|
|
del_timer_sync(&s->rx_fifo_timer);
|
|
sci_free_irq(s);
|
|
sci_free_dma(port);
|
|
}
|
|
|
|
static int sci_sck_calc(struct sci_port *s, unsigned int bps,
|
|
unsigned int *srr)
|
|
{
|
|
unsigned long freq = s->clk_rates[SCI_SCK];
|
|
int err, min_err = INT_MAX;
|
|
unsigned int sr;
|
|
|
|
if (s->port.type != PORT_HSCIF)
|
|
freq *= 2;
|
|
|
|
for_each_sr(sr, s) {
|
|
err = DIV_ROUND_CLOSEST(freq, sr) - bps;
|
|
if (abs(err) >= abs(min_err))
|
|
continue;
|
|
|
|
min_err = err;
|
|
*srr = sr - 1;
|
|
|
|
if (!err)
|
|
break;
|
|
}
|
|
|
|
dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
|
|
*srr + 1);
|
|
return min_err;
|
|
}
|
|
|
|
static int sci_brg_calc(struct sci_port *s, unsigned int bps,
|
|
unsigned long freq, unsigned int *dlr,
|
|
unsigned int *srr)
|
|
{
|
|
int err, min_err = INT_MAX;
|
|
unsigned int sr, dl;
|
|
|
|
if (s->port.type != PORT_HSCIF)
|
|
freq *= 2;
|
|
|
|
for_each_sr(sr, s) {
|
|
dl = DIV_ROUND_CLOSEST(freq, sr * bps);
|
|
dl = clamp(dl, 1U, 65535U);
|
|
|
|
err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
|
|
if (abs(err) >= abs(min_err))
|
|
continue;
|
|
|
|
min_err = err;
|
|
*dlr = dl;
|
|
*srr = sr - 1;
|
|
|
|
if (!err)
|
|
break;
|
|
}
|
|
|
|
dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
|
|
min_err, *dlr, *srr + 1);
|
|
return min_err;
|
|
}
|
|
|
|
/* calculate sample rate, BRR, and clock select */
|
|
static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
|
|
unsigned int *brr, unsigned int *srr,
|
|
unsigned int *cks)
|
|
{
|
|
unsigned long freq = s->clk_rates[SCI_FCK];
|
|
unsigned int sr, br, prediv, scrate, c;
|
|
int err, min_err = INT_MAX;
|
|
|
|
if (s->port.type != PORT_HSCIF)
|
|
freq *= 2;
|
|
|
|
/*
|
|
* Find the combination of sample rate and clock select with the
|
|
* smallest deviation from the desired baud rate.
|
|
* Prefer high sample rates to maximise the receive margin.
|
|
*
|
|
* M: Receive margin (%)
|
|
* N: Ratio of bit rate to clock (N = sampling rate)
|
|
* D: Clock duty (D = 0 to 1.0)
|
|
* L: Frame length (L = 9 to 12)
|
|
* F: Absolute value of clock frequency deviation
|
|
*
|
|
* M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
|
|
* (|D - 0.5| / N * (1 + F))|
|
|
* NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
|
|
*/
|
|
for_each_sr(sr, s) {
|
|
for (c = 0; c <= 3; c++) {
|
|
/* integerized formulas from HSCIF documentation */
|
|
prediv = sr << (2 * c + 1);
|
|
|
|
/*
|
|
* We need to calculate:
|
|
*
|
|
* br = freq / (prediv * bps) clamped to [1..256]
|
|
* err = freq / (br * prediv) - bps
|
|
*
|
|
* Watch out for overflow when calculating the desired
|
|
* sampling clock rate!
|
|
*/
|
|
if (bps > UINT_MAX / prediv)
|
|
break;
|
|
|
|
scrate = prediv * bps;
|
|
br = DIV_ROUND_CLOSEST(freq, scrate);
|
|
br = clamp(br, 1U, 256U);
|
|
|
|
err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
|
|
if (abs(err) >= abs(min_err))
|
|
continue;
|
|
|
|
min_err = err;
|
|
*brr = br - 1;
|
|
*srr = sr - 1;
|
|
*cks = c;
|
|
|
|
if (!err)
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
found:
|
|
dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
|
|
min_err, *brr, *srr + 1, *cks);
|
|
return min_err;
|
|
}
|
|
|
|
static void sci_reset(struct uart_port *port)
|
|
{
|
|
const struct plat_sci_reg *reg;
|
|
unsigned int status;
|
|
struct sci_port *s = to_sci_port(port);
|
|
|
|
sci_serial_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
|
|
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size)
|
|
sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
|
|
|
|
sci_clear_SCxSR(port,
|
|
SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
|
|
SCxSR_BREAK_CLEAR(port));
|
|
if (sci_getreg(port, SCLSR)->size) {
|
|
status = sci_serial_in(port, SCLSR);
|
|
status &= ~(SCLSR_TO | SCLSR_ORER);
|
|
sci_serial_out(port, SCLSR, status);
|
|
}
|
|
|
|
if (s->rx_trigger > 1) {
|
|
if (s->rx_fifo_timeout) {
|
|
scif_set_rtrg(port, 1);
|
|
timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
|
|
} else {
|
|
if (port->type == PORT_SCIFA ||
|
|
port->type == PORT_SCIFB)
|
|
scif_set_rtrg(port, 1);
|
|
else
|
|
scif_set_rtrg(port, s->rx_trigger);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
const struct ktermios *old)
|
|
{
|
|
unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
|
|
unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
|
|
unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
|
|
struct sci_port *s = to_sci_port(port);
|
|
const struct plat_sci_reg *reg;
|
|
int min_err = INT_MAX, err;
|
|
unsigned long max_freq = 0;
|
|
int best_clk = -1;
|
|
unsigned long flags;
|
|
|
|
if ((termios->c_cflag & CSIZE) == CS7) {
|
|
smr_val |= SCSMR_CHR;
|
|
} else {
|
|
termios->c_cflag &= ~CSIZE;
|
|
termios->c_cflag |= CS8;
|
|
}
|
|
if (termios->c_cflag & PARENB)
|
|
smr_val |= SCSMR_PE;
|
|
if (termios->c_cflag & PARODD)
|
|
smr_val |= SCSMR_PE | SCSMR_ODD;
|
|
if (termios->c_cflag & CSTOPB)
|
|
smr_val |= SCSMR_STOP;
|
|
|
|
/*
|
|
* earlyprintk comes here early on with port->uartclk set to zero.
|
|
* the clock framework is not up and running at this point so here
|
|
* we assume that 115200 is the maximum baud rate. please note that
|
|
* the baud rate is not programmed during earlyprintk - it is assumed
|
|
* that the previous boot loader has enabled required clocks and
|
|
* setup the baud rate generator hardware for us already.
|
|
*/
|
|
if (!port->uartclk) {
|
|
baud = uart_get_baud_rate(port, termios, old, 0, 115200);
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < SCI_NUM_CLKS; i++)
|
|
max_freq = max(max_freq, s->clk_rates[i]);
|
|
|
|
baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
|
|
if (!baud)
|
|
goto done;
|
|
|
|
/*
|
|
* There can be multiple sources for the sampling clock. Find the one
|
|
* that gives us the smallest deviation from the desired baud rate.
|
|
*/
|
|
|
|
/* Optional Undivided External Clock */
|
|
if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
|
|
port->type != PORT_SCIFB) {
|
|
err = sci_sck_calc(s, baud, &srr1);
|
|
if (abs(err) < abs(min_err)) {
|
|
best_clk = SCI_SCK;
|
|
scr_val = SCSCR_CKE1;
|
|
sccks = SCCKS_CKS;
|
|
min_err = err;
|
|
srr = srr1;
|
|
if (!err)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Optional BRG Frequency Divided External Clock */
|
|
if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
|
|
err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
|
|
&srr1);
|
|
if (abs(err) < abs(min_err)) {
|
|
best_clk = SCI_SCIF_CLK;
|
|
scr_val = SCSCR_CKE1;
|
|
sccks = 0;
|
|
min_err = err;
|
|
dl = dl1;
|
|
srr = srr1;
|
|
if (!err)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Optional BRG Frequency Divided Internal Clock */
|
|
if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
|
|
err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
|
|
&srr1);
|
|
if (abs(err) < abs(min_err)) {
|
|
best_clk = SCI_BRG_INT;
|
|
scr_val = SCSCR_CKE1;
|
|
sccks = SCCKS_XIN;
|
|
min_err = err;
|
|
dl = dl1;
|
|
srr = srr1;
|
|
if (!min_err)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Divided Functional Clock using standard Bit Rate Register */
|
|
err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
|
|
if (abs(err) < abs(min_err)) {
|
|
best_clk = SCI_FCK;
|
|
scr_val = 0;
|
|
min_err = err;
|
|
brr = brr1;
|
|
srr = srr1;
|
|
cks = cks1;
|
|
}
|
|
|
|
done:
|
|
if (best_clk >= 0)
|
|
dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
|
|
s->clks[best_clk], baud, min_err);
|
|
|
|
sci_port_enable(s);
|
|
|
|
/*
|
|
* Program the optional External Baud Rate Generator (BRG) first.
|
|
* It controls the mux to select (H)SCK or frequency divided clock.
|
|
*/
|
|
if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
|
|
sci_serial_out(port, SCDL, dl);
|
|
sci_serial_out(port, SCCKS, sccks);
|
|
}
|
|
|
|
uart_port_lock_irqsave(port, &flags);
|
|
|
|
sci_reset(port);
|
|
|
|
uart_update_timeout(port, termios->c_cflag, baud);
|
|
|
|
/* byte size and parity */
|
|
bits = tty_get_frame_size(termios->c_cflag);
|
|
|
|
if (sci_getreg(port, SEMR)->size)
|
|
sci_serial_out(port, SEMR, 0);
|
|
|
|
if (best_clk >= 0) {
|
|
if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
|
|
switch (srr + 1) {
|
|
case 5: smr_val |= SCSMR_SRC_5; break;
|
|
case 7: smr_val |= SCSMR_SRC_7; break;
|
|
case 11: smr_val |= SCSMR_SRC_11; break;
|
|
case 13: smr_val |= SCSMR_SRC_13; break;
|
|
case 16: smr_val |= SCSMR_SRC_16; break;
|
|
case 17: smr_val |= SCSMR_SRC_17; break;
|
|
case 19: smr_val |= SCSMR_SRC_19; break;
|
|
case 27: smr_val |= SCSMR_SRC_27; break;
|
|
}
|
|
smr_val |= cks;
|
|
sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
|
|
sci_serial_out(port, SCSMR, smr_val);
|
|
sci_serial_out(port, SCBRR, brr);
|
|
if (sci_getreg(port, HSSRR)->size) {
|
|
unsigned int hssrr = srr | HSCIF_SRE;
|
|
/* Calculate deviation from intended rate at the
|
|
* center of the last stop bit in sampling clocks.
|
|
*/
|
|
int last_stop = bits * 2 - 1;
|
|
int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
|
|
(int)(srr + 1),
|
|
2 * (int)baud);
|
|
|
|
if (abs(deviation) >= 2) {
|
|
/* At least two sampling clocks off at the
|
|
* last stop bit; we can increase the error
|
|
* margin by shifting the sampling point.
|
|
*/
|
|
int shift = clamp(deviation / 2, -8, 7);
|
|
|
|
hssrr |= (shift << HSCIF_SRHP_SHIFT) &
|
|
HSCIF_SRHP_MASK;
|
|
hssrr |= HSCIF_SRDE;
|
|
}
|
|
sci_serial_out(port, HSSRR, hssrr);
|
|
}
|
|
|
|
/* Wait one bit interval */
|
|
udelay((1000000 + (baud - 1)) / baud);
|
|
} else {
|
|
/* Don't touch the bit rate configuration */
|
|
scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
|
|
smr_val |= sci_serial_in(port, SCSMR) &
|
|
(SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
|
|
sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
|
|
sci_serial_out(port, SCSMR, smr_val);
|
|
}
|
|
|
|
sci_init_pins(port, termios->c_cflag);
|
|
|
|
port->status &= ~UPSTAT_AUTOCTS;
|
|
s->autorts = false;
|
|
reg = sci_getreg(port, SCFCR);
|
|
if (reg->size) {
|
|
unsigned short ctrl = sci_serial_in(port, SCFCR);
|
|
|
|
if ((port->flags & UPF_HARD_FLOW) &&
|
|
(termios->c_cflag & CRTSCTS)) {
|
|
/* There is no CTS interrupt to restart the hardware */
|
|
port->status |= UPSTAT_AUTOCTS;
|
|
/* MCE is enabled when RTS is raised */
|
|
s->autorts = true;
|
|
}
|
|
|
|
/*
|
|
* As we've done a sci_reset() above, ensure we don't
|
|
* interfere with the FIFOs while toggling MCE. As the
|
|
* reset values could still be set, simply mask them out.
|
|
*/
|
|
ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
|
|
|
|
sci_serial_out(port, SCFCR, ctrl);
|
|
}
|
|
if (port->flags & UPF_HARD_FLOW) {
|
|
/* Refresh (Auto) RTS */
|
|
sci_set_mctrl(port, port->mctrl);
|
|
}
|
|
|
|
/*
|
|
* For SCI, TE (transmit enable) must be set after setting TIE
|
|
* (transmit interrupt enable) or in the same instruction to
|
|
* start the transmitting process. So skip setting TE here for SCI.
|
|
*/
|
|
if (port->type != PORT_SCI)
|
|
scr_val |= SCSCR_TE;
|
|
scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
|
|
sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
|
|
if ((srr + 1 == 5) &&
|
|
(port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
|
|
/*
|
|
* In asynchronous mode, when the sampling rate is 1/5, first
|
|
* received data may become invalid on some SCIFA and SCIFB.
|
|
* To avoid this problem wait more than 1 serial data time (1
|
|
* bit time x serial data number) after setting SCSCR.RE = 1.
|
|
*/
|
|
udelay(DIV_ROUND_UP(10 * 1000000, baud));
|
|
}
|
|
|
|
/* Calculate delay for 2 DMA buffers (4 FIFO). */
|
|
s->rx_frame = (10000 * bits) / (baud / 100);
|
|
#ifdef CONFIG_SERIAL_SH_SCI_DMA
|
|
s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
|
|
#endif
|
|
|
|
if ((termios->c_cflag & CREAD) != 0)
|
|
sci_start_rx(port);
|
|
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
|
|
sci_port_disable(s);
|
|
|
|
if (UART_ENABLE_MS(port, termios->c_cflag))
|
|
sci_enable_ms(port);
|
|
}
|
|
|
|
static void sci_pm(struct uart_port *port, unsigned int state,
|
|
unsigned int oldstate)
|
|
{
|
|
struct sci_port *sci_port = to_sci_port(port);
|
|
|
|
switch (state) {
|
|
case UART_PM_STATE_OFF:
|
|
sci_port_disable(sci_port);
|
|
break;
|
|
default:
|
|
sci_port_enable(sci_port);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const char *sci_type(struct uart_port *port)
|
|
{
|
|
switch (port->type) {
|
|
case PORT_IRDA:
|
|
return "irda";
|
|
case PORT_SCI:
|
|
return "sci";
|
|
case PORT_SCIF:
|
|
return "scif";
|
|
case PORT_SCIFA:
|
|
return "scifa";
|
|
case PORT_SCIFB:
|
|
return "scifb";
|
|
case PORT_HSCIF:
|
|
return "hscif";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int sci_remap_port(struct uart_port *port)
|
|
{
|
|
struct sci_port *sport = to_sci_port(port);
|
|
|
|
/*
|
|
* Nothing to do if there's already an established membase.
|
|
*/
|
|
if (port->membase)
|
|
return 0;
|
|
|
|
if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
|
|
port->membase = ioremap(port->mapbase, sport->reg_size);
|
|
if (unlikely(!port->membase)) {
|
|
dev_err(port->dev, "can't remap port#%d\n", port->line);
|
|
return -ENXIO;
|
|
}
|
|
} else {
|
|
/*
|
|
* For the simple (and majority of) cases where we don't
|
|
* need to do any remapping, just cast the cookie
|
|
* directly.
|
|
*/
|
|
port->membase = (void __iomem *)(uintptr_t)port->mapbase;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_release_port(struct uart_port *port)
|
|
{
|
|
struct sci_port *sport = to_sci_port(port);
|
|
|
|
if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
|
|
iounmap(port->membase);
|
|
port->membase = NULL;
|
|
}
|
|
|
|
release_mem_region(port->mapbase, sport->reg_size);
|
|
}
|
|
|
|
static int sci_request_port(struct uart_port *port)
|
|
{
|
|
struct resource *res;
|
|
struct sci_port *sport = to_sci_port(port);
|
|
int ret;
|
|
|
|
res = request_mem_region(port->mapbase, sport->reg_size,
|
|
dev_name(port->dev));
|
|
if (unlikely(res == NULL)) {
|
|
dev_err(port->dev, "request_mem_region failed.");
|
|
return -EBUSY;
|
|
}
|
|
|
|
ret = sci_remap_port(port);
|
|
if (unlikely(ret != 0)) {
|
|
release_resource(res);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_config_port(struct uart_port *port, int flags)
|
|
{
|
|
if (flags & UART_CONFIG_TYPE) {
|
|
struct sci_port *sport = to_sci_port(port);
|
|
|
|
port->type = sport->cfg->type;
|
|
sci_request_port(port);
|
|
}
|
|
}
|
|
|
|
static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
|
|
{
|
|
if (ser->baud_base < 2400)
|
|
/* No paper tape reader for Mitch.. */
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct uart_ops sci_uart_ops = {
|
|
.tx_empty = sci_tx_empty,
|
|
.set_mctrl = sci_set_mctrl,
|
|
.get_mctrl = sci_get_mctrl,
|
|
.start_tx = sci_start_tx,
|
|
.stop_tx = sci_stop_tx,
|
|
.stop_rx = sci_stop_rx,
|
|
.enable_ms = sci_enable_ms,
|
|
.break_ctl = sci_break_ctl,
|
|
.startup = sci_startup,
|
|
.shutdown = sci_shutdown,
|
|
.flush_buffer = sci_flush_buffer,
|
|
.set_termios = sci_set_termios,
|
|
.pm = sci_pm,
|
|
.type = sci_type,
|
|
.release_port = sci_release_port,
|
|
.request_port = sci_request_port,
|
|
.config_port = sci_config_port,
|
|
.verify_port = sci_verify_port,
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
.poll_get_char = sci_poll_get_char,
|
|
.poll_put_char = sci_poll_put_char,
|
|
#endif
|
|
};
|
|
|
|
static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
|
|
{
|
|
const char *clk_names[] = {
|
|
[SCI_FCK] = "fck",
|
|
[SCI_SCK] = "sck",
|
|
[SCI_BRG_INT] = "brg_int",
|
|
[SCI_SCIF_CLK] = "scif_clk",
|
|
};
|
|
struct clk *clk;
|
|
unsigned int i;
|
|
|
|
if (sci_port->cfg->type == PORT_HSCIF)
|
|
clk_names[SCI_SCK] = "hsck";
|
|
|
|
for (i = 0; i < SCI_NUM_CLKS; i++) {
|
|
clk = devm_clk_get_optional(dev, clk_names[i]);
|
|
if (IS_ERR(clk))
|
|
return PTR_ERR(clk);
|
|
|
|
if (!clk && i == SCI_FCK) {
|
|
/*
|
|
* Not all SH platforms declare a clock lookup entry
|
|
* for SCI devices, in which case we need to get the
|
|
* global "peripheral_clk" clock.
|
|
*/
|
|
clk = devm_clk_get(dev, "peripheral_clk");
|
|
if (IS_ERR(clk))
|
|
return dev_err_probe(dev, PTR_ERR(clk),
|
|
"failed to get %s\n",
|
|
clk_names[i]);
|
|
}
|
|
|
|
if (!clk)
|
|
dev_dbg(dev, "failed to get %s\n", clk_names[i]);
|
|
else
|
|
dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
|
|
clk, clk_get_rate(clk));
|
|
sci_port->clks[i] = clk;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct sci_port_params *
|
|
sci_probe_regmap(const struct plat_sci_port *cfg)
|
|
{
|
|
unsigned int regtype;
|
|
|
|
if (cfg->regtype != SCIx_PROBE_REGTYPE)
|
|
return &sci_port_params[cfg->regtype];
|
|
|
|
switch (cfg->type) {
|
|
case PORT_SCI:
|
|
regtype = SCIx_SCI_REGTYPE;
|
|
break;
|
|
case PORT_IRDA:
|
|
regtype = SCIx_IRDA_REGTYPE;
|
|
break;
|
|
case PORT_SCIFA:
|
|
regtype = SCIx_SCIFA_REGTYPE;
|
|
break;
|
|
case PORT_SCIFB:
|
|
regtype = SCIx_SCIFB_REGTYPE;
|
|
break;
|
|
case PORT_SCIF:
|
|
/*
|
|
* The SH-4 is a bit of a misnomer here, although that's
|
|
* where this particular port layout originated. This
|
|
* configuration (or some slight variation thereof)
|
|
* remains the dominant model for all SCIFs.
|
|
*/
|
|
regtype = SCIx_SH4_SCIF_REGTYPE;
|
|
break;
|
|
case PORT_HSCIF:
|
|
regtype = SCIx_HSCIF_REGTYPE;
|
|
break;
|
|
default:
|
|
pr_err("Can't probe register map for given port\n");
|
|
return NULL;
|
|
}
|
|
|
|
return &sci_port_params[regtype];
|
|
}
|
|
|
|
static int sci_init_single(struct platform_device *dev,
|
|
struct sci_port *sci_port, unsigned int index,
|
|
const struct plat_sci_port *p, bool early)
|
|
{
|
|
struct uart_port *port = &sci_port->port;
|
|
const struct resource *res;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
sci_port->cfg = p;
|
|
|
|
port->ops = &sci_uart_ops;
|
|
port->iotype = UPIO_MEM;
|
|
port->line = index;
|
|
port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
|
|
|
|
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
|
|
if (res == NULL)
|
|
return -ENOMEM;
|
|
|
|
port->mapbase = res->start;
|
|
sci_port->reg_size = resource_size(res);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
|
|
if (i)
|
|
sci_port->irqs[i] = platform_get_irq_optional(dev, i);
|
|
else
|
|
sci_port->irqs[i] = platform_get_irq(dev, i);
|
|
}
|
|
|
|
/*
|
|
* The fourth interrupt on SCI port is transmit end interrupt, so
|
|
* shuffle the interrupts.
|
|
*/
|
|
if (p->type == PORT_SCI)
|
|
swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
|
|
|
|
/* The SCI generates several interrupts. They can be muxed together or
|
|
* connected to different interrupt lines. In the muxed case only one
|
|
* interrupt resource is specified as there is only one interrupt ID.
|
|
* In the non-muxed case, up to 6 interrupt signals might be generated
|
|
* from the SCI, however those signals might have their own individual
|
|
* interrupt ID numbers, or muxed together with another interrupt.
|
|
*/
|
|
if (sci_port->irqs[0] < 0)
|
|
return -ENXIO;
|
|
|
|
if (sci_port->irqs[1] < 0)
|
|
for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
|
|
sci_port->irqs[i] = sci_port->irqs[0];
|
|
|
|
sci_port->params = sci_probe_regmap(p);
|
|
if (unlikely(sci_port->params == NULL))
|
|
return -EINVAL;
|
|
|
|
switch (p->type) {
|
|
case PORT_SCIFB:
|
|
sci_port->rx_trigger = 48;
|
|
break;
|
|
case PORT_HSCIF:
|
|
sci_port->rx_trigger = 64;
|
|
break;
|
|
case PORT_SCIFA:
|
|
sci_port->rx_trigger = 32;
|
|
break;
|
|
case PORT_SCIF:
|
|
if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
|
|
/* RX triggering not implemented for this IP */
|
|
sci_port->rx_trigger = 1;
|
|
else
|
|
sci_port->rx_trigger = 8;
|
|
break;
|
|
default:
|
|
sci_port->rx_trigger = 1;
|
|
break;
|
|
}
|
|
|
|
sci_port->rx_fifo_timeout = 0;
|
|
sci_port->hscif_tot = 0;
|
|
|
|
/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
|
|
* match the SoC datasheet, this should be investigated. Let platform
|
|
* data override the sampling rate for now.
|
|
*/
|
|
sci_port->sampling_rate_mask = p->sampling_rate
|
|
? SCI_SR(p->sampling_rate)
|
|
: sci_port->params->sampling_rate_mask;
|
|
|
|
if (!early) {
|
|
ret = sci_init_clocks(sci_port, &dev->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
port->dev = &dev->dev;
|
|
|
|
pm_runtime_enable(&dev->dev);
|
|
}
|
|
|
|
port->type = p->type;
|
|
port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
|
|
port->fifosize = sci_port->params->fifosize;
|
|
|
|
if (port->type == PORT_SCI && !dev->dev.of_node) {
|
|
if (sci_port->reg_size >= 0x20)
|
|
port->regshift = 2;
|
|
else
|
|
port->regshift = 1;
|
|
}
|
|
|
|
/*
|
|
* The UART port needs an IRQ value, so we peg this to the RX IRQ
|
|
* for the multi-IRQ ports, which is where we are primarily
|
|
* concerned with the shutdown path synchronization.
|
|
*
|
|
* For the muxed case there's nothing more to do.
|
|
*/
|
|
port->irq = sci_port->irqs[SCIx_RXI_IRQ];
|
|
port->irqflags = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sci_cleanup_single(struct sci_port *port)
|
|
{
|
|
pm_runtime_disable(port->port.dev);
|
|
}
|
|
|
|
#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
|
|
defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
|
|
static void serial_console_putchar(struct uart_port *port, unsigned char ch)
|
|
{
|
|
sci_poll_put_char(port, ch);
|
|
}
|
|
|
|
/*
|
|
* Print a string to the serial port trying not to disturb
|
|
* any possible real use of the port...
|
|
*/
|
|
static void serial_console_write(struct console *co, const char *s,
|
|
unsigned count)
|
|
{
|
|
struct sci_port *sci_port = &sci_ports[co->index];
|
|
struct uart_port *port = &sci_port->port;
|
|
unsigned short bits, ctrl, ctrl_temp;
|
|
unsigned long flags;
|
|
int locked = 1;
|
|
|
|
if (port->sysrq)
|
|
locked = 0;
|
|
else if (oops_in_progress)
|
|
locked = uart_port_trylock_irqsave(port, &flags);
|
|
else
|
|
uart_port_lock_irqsave(port, &flags);
|
|
|
|
/* first save SCSCR then disable interrupts, keep clock source */
|
|
ctrl = sci_serial_in(port, SCSCR);
|
|
ctrl_temp = SCSCR_RE | SCSCR_TE |
|
|
(sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
|
|
(ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
|
|
sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
|
|
|
|
uart_console_write(port, s, count, serial_console_putchar);
|
|
|
|
/* wait until fifo is empty and last bit has been transmitted */
|
|
bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
|
|
while ((sci_serial_in(port, SCxSR) & bits) != bits)
|
|
cpu_relax();
|
|
|
|
/* restore the SCSCR */
|
|
sci_serial_out(port, SCSCR, ctrl);
|
|
|
|
if (locked)
|
|
uart_port_unlock_irqrestore(port, flags);
|
|
}
|
|
|
|
static int serial_console_setup(struct console *co, char *options)
|
|
{
|
|
struct sci_port *sci_port;
|
|
struct uart_port *port;
|
|
int baud = 115200;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int flow = 'n';
|
|
int ret;
|
|
|
|
/*
|
|
* Refuse to handle any bogus ports.
|
|
*/
|
|
if (co->index < 0 || co->index >= SCI_NPORTS)
|
|
return -ENODEV;
|
|
|
|
sci_port = &sci_ports[co->index];
|
|
port = &sci_port->port;
|
|
|
|
/*
|
|
* Refuse to handle uninitialized ports.
|
|
*/
|
|
if (!port->ops)
|
|
return -ENODEV;
|
|
|
|
ret = sci_remap_port(port);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
if (options)
|
|
uart_parse_options(options, &baud, &parity, &bits, &flow);
|
|
|
|
return uart_set_options(port, co, baud, parity, bits, flow);
|
|
}
|
|
|
|
static struct console serial_console = {
|
|
.name = "ttySC",
|
|
.device = uart_console_device,
|
|
.write = serial_console_write,
|
|
.setup = serial_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
.data = &sci_uart_driver,
|
|
};
|
|
|
|
#ifdef CONFIG_SUPERH
|
|
static char early_serial_buf[32];
|
|
|
|
static int early_serial_console_setup(struct console *co, char *options)
|
|
{
|
|
/*
|
|
* This early console is always registered using the earlyprintk=
|
|
* parameter, which does not call add_preferred_console(). Thus
|
|
* @options is always NULL and the options for this early console
|
|
* are passed using a custom buffer.
|
|
*/
|
|
WARN_ON(options);
|
|
|
|
return serial_console_setup(co, early_serial_buf);
|
|
}
|
|
|
|
static struct console early_serial_console = {
|
|
.name = "early_ttySC",
|
|
.write = serial_console_write,
|
|
.setup = early_serial_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
};
|
|
|
|
static int sci_probe_earlyprintk(struct platform_device *pdev)
|
|
{
|
|
const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
|
|
|
|
if (early_serial_console.data)
|
|
return -EEXIST;
|
|
|
|
early_serial_console.index = pdev->id;
|
|
|
|
sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
|
|
|
|
if (!strstr(early_serial_buf, "keep"))
|
|
early_serial_console.flags |= CON_BOOT;
|
|
|
|
register_console(&early_serial_console);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define SCI_CONSOLE (&serial_console)
|
|
|
|
#else
|
|
static inline int sci_probe_earlyprintk(struct platform_device *pdev)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
#define SCI_CONSOLE NULL
|
|
|
|
#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
|
|
|
|
static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
|
|
|
|
static DEFINE_MUTEX(sci_uart_registration_lock);
|
|
static struct uart_driver sci_uart_driver = {
|
|
.owner = THIS_MODULE,
|
|
.driver_name = "sci",
|
|
.dev_name = "ttySC",
|
|
.major = SCI_MAJOR,
|
|
.minor = SCI_MINOR_START,
|
|
.nr = SCI_NPORTS,
|
|
.cons = SCI_CONSOLE,
|
|
};
|
|
|
|
static void sci_remove(struct platform_device *dev)
|
|
{
|
|
struct sci_port *port = platform_get_drvdata(dev);
|
|
unsigned int type = port->port.type; /* uart_remove_... clears it */
|
|
|
|
sci_ports_in_use &= ~BIT(port->port.line);
|
|
uart_remove_one_port(&sci_uart_driver, &port->port);
|
|
|
|
sci_cleanup_single(port);
|
|
|
|
if (port->port.fifosize > 1)
|
|
device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
|
|
if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
|
|
device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
|
|
}
|
|
|
|
|
|
#define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
|
|
#define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
|
|
#define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
|
|
|
|
static const struct of_device_id of_sci_match[] __maybe_unused = {
|
|
/* SoC-specific types */
|
|
{
|
|
.compatible = "renesas,scif-r7s72100",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
|
|
},
|
|
{
|
|
.compatible = "renesas,scif-r7s9210",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
|
|
},
|
|
{
|
|
.compatible = "renesas,scif-r9a07g044",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
|
|
},
|
|
{
|
|
.compatible = "renesas,scif-r9a09g057",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZV2H_SCIF_REGTYPE),
|
|
},
|
|
/* Family-specific types */
|
|
{
|
|
.compatible = "renesas,rcar-gen1-scif",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,rcar-gen2-scif",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,rcar-gen3-scif",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,rcar-gen4-scif",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
|
|
},
|
|
/* Generic types */
|
|
{
|
|
.compatible = "renesas,scif",
|
|
.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,scifa",
|
|
.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,scifb",
|
|
.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,hscif",
|
|
.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
|
|
}, {
|
|
.compatible = "renesas,sci",
|
|
.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
|
|
}, {
|
|
/* Terminator */
|
|
},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, of_sci_match);
|
|
|
|
static void sci_reset_control_assert(void *data)
|
|
{
|
|
reset_control_assert(data);
|
|
}
|
|
|
|
static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
|
|
unsigned int *dev_id)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct reset_control *rstc;
|
|
struct plat_sci_port *p;
|
|
struct sci_port *sp;
|
|
const void *data;
|
|
int id, ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF) || !np)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
data = of_device_get_match_data(&pdev->dev);
|
|
|
|
rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
|
|
if (IS_ERR(rstc))
|
|
return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
|
|
"failed to get reset ctrl\n"));
|
|
|
|
ret = reset_control_deassert(rstc);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
|
|
ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
|
|
if (!p)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* Get the line number from the aliases node. */
|
|
id = of_alias_get_id(np, "serial");
|
|
if (id < 0 && ~sci_ports_in_use)
|
|
id = ffz(sci_ports_in_use);
|
|
if (id < 0) {
|
|
dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
if (id >= ARRAY_SIZE(sci_ports)) {
|
|
dev_err(&pdev->dev, "serial%d out of range\n", id);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
sp = &sci_ports[id];
|
|
*dev_id = id;
|
|
|
|
p->type = SCI_OF_TYPE(data);
|
|
p->regtype = SCI_OF_REGTYPE(data);
|
|
|
|
sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
|
|
|
|
return p;
|
|
}
|
|
|
|
static int sci_probe_single(struct platform_device *dev,
|
|
unsigned int index,
|
|
struct plat_sci_port *p,
|
|
struct sci_port *sciport)
|
|
{
|
|
int ret;
|
|
|
|
/* Sanity check */
|
|
if (unlikely(index >= SCI_NPORTS)) {
|
|
dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
|
|
index+1, SCI_NPORTS);
|
|
dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
|
|
return -EINVAL;
|
|
}
|
|
BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
|
|
if (sci_ports_in_use & BIT(index))
|
|
return -EBUSY;
|
|
|
|
mutex_lock(&sci_uart_registration_lock);
|
|
if (!sci_uart_driver.state) {
|
|
ret = uart_register_driver(&sci_uart_driver);
|
|
if (ret) {
|
|
mutex_unlock(&sci_uart_registration_lock);
|
|
return ret;
|
|
}
|
|
}
|
|
mutex_unlock(&sci_uart_registration_lock);
|
|
|
|
ret = sci_init_single(dev, sciport, index, p, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
|
|
if (IS_ERR(sciport->gpios))
|
|
return PTR_ERR(sciport->gpios);
|
|
|
|
if (sciport->has_rtscts) {
|
|
if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
|
|
mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
|
|
dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
|
|
return -EINVAL;
|
|
}
|
|
sciport->port.flags |= UPF_HARD_FLOW;
|
|
}
|
|
|
|
ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
|
|
if (ret) {
|
|
sci_cleanup_single(sciport);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sci_probe(struct platform_device *dev)
|
|
{
|
|
struct plat_sci_port *p;
|
|
struct sci_port *sp;
|
|
unsigned int dev_id;
|
|
int ret;
|
|
|
|
/*
|
|
* If we've come here via earlyprintk initialization, head off to
|
|
* the special early probe. We don't have sufficient device state
|
|
* to make it beyond this yet.
|
|
*/
|
|
#ifdef CONFIG_SUPERH
|
|
if (is_sh_early_platform_device(dev))
|
|
return sci_probe_earlyprintk(dev);
|
|
#endif
|
|
|
|
if (dev->dev.of_node) {
|
|
p = sci_parse_dt(dev, &dev_id);
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
} else {
|
|
p = dev->dev.platform_data;
|
|
if (p == NULL) {
|
|
dev_err(&dev->dev, "no platform data supplied\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_id = dev->id;
|
|
}
|
|
|
|
sp = &sci_ports[dev_id];
|
|
platform_set_drvdata(dev, sp);
|
|
|
|
ret = sci_probe_single(dev, dev_id, p, sp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sp->port.fifosize > 1) {
|
|
ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
|
|
sp->port.type == PORT_HSCIF) {
|
|
ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
|
|
if (ret) {
|
|
if (sp->port.fifosize > 1) {
|
|
device_remove_file(&dev->dev,
|
|
&dev_attr_rx_fifo_trigger);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SH_STANDARD_BIOS
|
|
sh_bios_gdb_detach();
|
|
#endif
|
|
|
|
sci_ports_in_use |= BIT(dev_id);
|
|
return 0;
|
|
}
|
|
|
|
static __maybe_unused int sci_suspend(struct device *dev)
|
|
{
|
|
struct sci_port *sport = dev_get_drvdata(dev);
|
|
|
|
if (sport)
|
|
uart_suspend_port(&sci_uart_driver, &sport->port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __maybe_unused int sci_resume(struct device *dev)
|
|
{
|
|
struct sci_port *sport = dev_get_drvdata(dev);
|
|
|
|
if (sport)
|
|
uart_resume_port(&sci_uart_driver, &sport->port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
|
|
|
|
static struct platform_driver sci_driver = {
|
|
.probe = sci_probe,
|
|
.remove_new = sci_remove,
|
|
.driver = {
|
|
.name = "sh-sci",
|
|
.pm = &sci_dev_pm_ops,
|
|
.of_match_table = of_match_ptr(of_sci_match),
|
|
},
|
|
};
|
|
|
|
static int __init sci_init(void)
|
|
{
|
|
pr_info("%s\n", banner);
|
|
|
|
return platform_driver_register(&sci_driver);
|
|
}
|
|
|
|
static void __exit sci_exit(void)
|
|
{
|
|
platform_driver_unregister(&sci_driver);
|
|
|
|
if (sci_uart_driver.state)
|
|
uart_unregister_driver(&sci_uart_driver);
|
|
}
|
|
|
|
#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
|
|
sh_early_platform_init_buffer("earlyprintk", &sci_driver,
|
|
early_serial_buf, ARRAY_SIZE(early_serial_buf));
|
|
#endif
|
|
#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
|
|
static struct plat_sci_port port_cfg __initdata;
|
|
|
|
static int __init early_console_setup(struct earlycon_device *device,
|
|
int type)
|
|
{
|
|
if (!device->port.membase)
|
|
return -ENODEV;
|
|
|
|
device->port.type = type;
|
|
memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
|
|
port_cfg.type = type;
|
|
sci_ports[0].cfg = &port_cfg;
|
|
sci_ports[0].params = sci_probe_regmap(&port_cfg);
|
|
port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
|
|
sci_serial_out(&sci_ports[0].port, SCSCR,
|
|
SCSCR_RE | SCSCR_TE | port_cfg.scscr);
|
|
|
|
device->con->write = serial_console_write;
|
|
return 0;
|
|
}
|
|
static int __init sci_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
return early_console_setup(device, PORT_SCI);
|
|
}
|
|
static int __init scif_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
return early_console_setup(device, PORT_SCIF);
|
|
}
|
|
static int __init rzscifa_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
|
|
return early_console_setup(device, PORT_SCIF);
|
|
}
|
|
|
|
static int __init rzv2hscif_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
port_cfg.regtype = SCIx_RZV2H_SCIF_REGTYPE;
|
|
return early_console_setup(device, PORT_SCIF);
|
|
}
|
|
|
|
static int __init scifa_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
return early_console_setup(device, PORT_SCIFA);
|
|
}
|
|
static int __init scifb_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
return early_console_setup(device, PORT_SCIFB);
|
|
}
|
|
static int __init hscif_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
return early_console_setup(device, PORT_HSCIF);
|
|
}
|
|
|
|
OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a09g057", rzv2hscif_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
|
|
OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
|
|
OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
|
|
#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
|
|
|
|
module_init(sci_init);
|
|
module_exit(sci_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:sh-sci");
|
|
MODULE_AUTHOR("Paul Mundt");
|
|
MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
|