linux/drivers/mmc/host/omap_hsmmc.c
Yangtao Li b76028c767 mmc: omap_hsmmc: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Yangtao Li <frank.li@vivo.com>
Link: https://lore.kernel.org/r/20230727070051.17778-11-frank.li@vivo.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2023-08-15 12:45:04 +02:00

2138 lines
53 KiB
C

/*
* drivers/mmc/host/omap_hsmmc.c
*
* Driver for OMAP2430/3430 MMC controller.
*
* Copyright (C) 2007 Texas Instruments.
*
* Authors:
* Syed Mohammed Khasim <x0khasim@ti.com>
* Madhusudhan <madhu.cr@ti.com>
* Mohit Jalori <mjalori@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/seq_file.h>
#include <linux/sizes.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/mmc/host.h>
#include <linux/mmc/core.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/regulator/consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeirq.h>
#include <linux/platform_data/hsmmc-omap.h>
/* OMAP HSMMC Host Controller Registers */
#define OMAP_HSMMC_SYSSTATUS 0x0014
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_SDMASA 0x0100
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_PSTATE 0x0124
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_AC12 0x013C
#define OMAP_HSMMC_CAPA 0x0140
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define HSS (1 << 21)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVS33 (0x7 << 9)
#define SDVS_MASK 0x00000E00
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xe
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
#define CLKD_MASK 0x0000FFC0
#define CLKD_SHIFT 6
#define DTO_MASK 0x000F0000
#define DTO_SHIFT 16
#define INIT_STREAM (1 << 1)
#define ACEN_ACMD23 (2 << 2)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMAE 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define FOUR_BIT (1 << 1)
#define HSPE (1 << 2)
#define IWE (1 << 24)
#define DDR (1 << 19)
#define CLKEXTFREE (1 << 16)
#define CTPL (1 << 11)
#define DW8 (1 << 5)
#define OD 0x1
#define STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define DUAL_VOLT_OCR_BIT 7
#define SRC (1 << 25)
#define SRD (1 << 26)
#define SOFTRESET (1 << 1)
/* PSTATE */
#define DLEV_DAT(x) (1 << (20 + (x)))
/* Interrupt masks for IE and ISE register */
#define CC_EN (1 << 0)
#define TC_EN (1 << 1)
#define BWR_EN (1 << 4)
#define BRR_EN (1 << 5)
#define CIRQ_EN (1 << 8)
#define ERR_EN (1 << 15)
#define CTO_EN (1 << 16)
#define CCRC_EN (1 << 17)
#define CEB_EN (1 << 18)
#define CIE_EN (1 << 19)
#define DTO_EN (1 << 20)
#define DCRC_EN (1 << 21)
#define DEB_EN (1 << 22)
#define ACE_EN (1 << 24)
#define CERR_EN (1 << 28)
#define BADA_EN (1 << 29)
#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
BRR_EN | BWR_EN | TC_EN | CC_EN)
#define CNI (1 << 7)
#define ACIE (1 << 4)
#define ACEB (1 << 3)
#define ACCE (1 << 2)
#define ACTO (1 << 1)
#define ACNE (1 << 0)
#define MMC_AUTOSUSPEND_DELAY 100
#define MMC_TIMEOUT_MS 20 /* 20 mSec */
#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
#define OMAP_MMC_MIN_CLOCK 400000
#define OMAP_MMC_MAX_CLOCK 52000000
#define DRIVER_NAME "omap_hsmmc"
/*
* One controller can have multiple slots, like on some omap boards using
* omap.c controller driver. Luckily this is not currently done on any known
* omap_hsmmc.c device.
*/
#define mmc_pdata(host) host->pdata
/*
* MMC Host controller read/write API's
*/
#define OMAP_HSMMC_READ(base, reg) \
__raw_readl((base) + OMAP_HSMMC_##reg)
#define OMAP_HSMMC_WRITE(base, reg, val) \
__raw_writel((val), (base) + OMAP_HSMMC_##reg)
struct omap_hsmmc_next {
unsigned int dma_len;
s32 cookie;
};
struct omap_hsmmc_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct clk *fclk;
struct clk *dbclk;
struct regulator *pbias;
bool pbias_enabled;
void __iomem *base;
bool vqmmc_enabled;
resource_size_t mapbase;
spinlock_t irq_lock; /* Prevent races with irq handler */
unsigned int dma_len;
unsigned int dma_sg_idx;
unsigned char bus_mode;
unsigned char power_mode;
int suspended;
u32 con;
u32 hctl;
u32 sysctl;
u32 capa;
int irq;
int wake_irq;
int use_dma, dma_ch;
struct dma_chan *tx_chan;
struct dma_chan *rx_chan;
int response_busy;
int context_loss;
int reqs_blocked;
int req_in_progress;
unsigned long clk_rate;
unsigned int flags;
#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
struct omap_hsmmc_next next_data;
struct omap_hsmmc_platform_data *pdata;
};
struct omap_mmc_of_data {
u32 reg_offset;
u8 controller_flags;
};
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
{
int ret;
struct omap_hsmmc_host *host = mmc_priv(mmc);
struct mmc_ios *ios = &mmc->ios;
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
if (ret)
return ret;
}
/* Enable interface voltage rail, if needed */
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret) {
dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
goto err_vqmmc;
}
host->vqmmc_enabled = true;
}
return 0;
err_vqmmc:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return ret;
}
static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
{
int ret;
int status;
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
ret = regulator_disable(mmc->supply.vqmmc);
if (ret) {
dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
return ret;
}
host->vqmmc_enabled = false;
}
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (ret)
goto err_set_ocr;
}
return 0;
err_set_ocr:
if (!IS_ERR(mmc->supply.vqmmc)) {
status = regulator_enable(mmc->supply.vqmmc);
if (status)
dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
}
return ret;
}
static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
{
int ret;
if (IS_ERR(host->pbias))
return 0;
if (power_on) {
if (!host->pbias_enabled) {
ret = regulator_enable(host->pbias);
if (ret) {
dev_err(host->dev, "pbias reg enable fail\n");
return ret;
}
host->pbias_enabled = true;
}
} else {
if (host->pbias_enabled) {
ret = regulator_disable(host->pbias);
if (ret) {
dev_err(host->dev, "pbias reg disable fail\n");
return ret;
}
host->pbias_enabled = false;
}
}
return 0;
}
static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
/*
* If we don't see a Vcc regulator, assume it's a fixed
* voltage always-on regulator.
*/
if (IS_ERR(mmc->supply.vmmc))
return 0;
ret = omap_hsmmc_set_pbias(host, false);
if (ret)
return ret;
/*
* Assume Vcc regulator is used only to power the card ... OMAP
* VDDS is used to power the pins, optionally with a transceiver to
* support cards using voltages other than VDDS (1.8V nominal). When a
* transceiver is used, DAT3..7 are muxed as transceiver control pins.
*
* In some cases this regulator won't support enable/disable;
* e.g. it's a fixed rail for a WLAN chip.
*
* In other cases vcc_aux switches interface power. Example, for
* eMMC cards it represents VccQ. Sometimes transceivers or SDIO
* chips/cards need an interface voltage rail too.
*/
if (power_on) {
ret = omap_hsmmc_enable_supply(mmc);
if (ret)
return ret;
ret = omap_hsmmc_set_pbias(host, true);
if (ret)
goto err_set_voltage;
} else {
ret = omap_hsmmc_disable_supply(mmc);
if (ret)
return ret;
}
return 0;
err_set_voltage:
omap_hsmmc_disable_supply(mmc);
return ret;
}
static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
{
int ret;
if (IS_ERR(reg))
return 0;
if (regulator_is_enabled(reg)) {
ret = regulator_enable(reg);
if (ret)
return ret;
ret = regulator_disable(reg);
if (ret)
return ret;
}
return 0;
}
static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret;
/*
* disable regulators enabled during boot and get the usecount
* right so that regulators can be enabled/disabled by checking
* the return value of regulator_is_enabled
*/
ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
if (ret) {
dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
return ret;
}
ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
if (ret) {
dev_err(host->dev,
"fail to disable boot enabled vmmc_aux reg\n");
return ret;
}
ret = omap_hsmmc_disable_boot_regulator(host->pbias);
if (ret) {
dev_err(host->dev,
"failed to disable boot enabled pbias reg\n");
return ret;
}
return 0;
}
static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
int ret;
struct mmc_host *mmc = host->mmc;
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
/* Allow an aux regulator */
if (IS_ERR(mmc->supply.vqmmc)) {
mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
"vmmc_aux");
if (IS_ERR(mmc->supply.vqmmc)) {
ret = PTR_ERR(mmc->supply.vqmmc);
if ((ret != -ENODEV) && host->dev->of_node)
return ret;
dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
PTR_ERR(mmc->supply.vqmmc));
}
}
host->pbias = devm_regulator_get_optional(host->dev, "pbias");
if (IS_ERR(host->pbias)) {
ret = PTR_ERR(host->pbias);
if ((ret != -ENODEV) && host->dev->of_node) {
dev_err(host->dev,
"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
return ret;
}
dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
PTR_ERR(host->pbias));
}
/* For eMMC do not power off when not in sleep state */
if (mmc_pdata(host)->no_regulator_off_init)
return 0;
ret = omap_hsmmc_disable_boot_regulators(host);
if (ret)
return ret;
return 0;
}
/*
* Start clock to the card
*/
static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
}
/*
* Stop clock to the card
*/
static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
}
static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
struct mmc_command *cmd)
{
u32 irq_mask = INT_EN_MASK;
unsigned long flags;
if (host->use_dma)
irq_mask &= ~(BRR_EN | BWR_EN);
/* Disable timeout for erases */
if (cmd->opcode == MMC_ERASE)
irq_mask &= ~DTO_EN;
spin_lock_irqsave(&host->irq_lock, flags);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
/* latch pending CIRQ, but don't signal MMC core */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
{
u32 irq_mask = 0;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
/* no transfer running but need to keep cirq if enabled */
if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
irq_mask |= CIRQ_EN;
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
/* Calculate divisor for the given clock frequency */
static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
{
u16 dsor = 0;
if (ios->clock) {
dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
if (dsor > CLKD_MAX)
dsor = CLKD_MAX;
}
return dsor;
}
static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
unsigned long regval;
unsigned long timeout;
unsigned long clkdiv;
dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
omap_hsmmc_stop_clock(host);
regval = OMAP_HSMMC_READ(host->base, SYSCTL);
regval = regval & ~(CLKD_MASK | DTO_MASK);
clkdiv = calc_divisor(host, ios);
regval = regval | (clkdiv << 6) | (DTO << 16);
OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
/* Wait till the ICS bit is set */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
&& time_before(jiffies, timeout))
cpu_relax();
/*
* Enable High-Speed Support
* Pre-Requisites
* - Controller should support High-Speed-Enable Bit
* - Controller should not be using DDR Mode
* - Controller should advertise that it supports High Speed
* in capabilities register
* - MMC/SD clock coming out of controller > 25MHz
*/
if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
(ios->timing != MMC_TIMING_MMC_DDR52) &&
(ios->timing != MMC_TIMING_UHS_DDR50) &&
((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
regval = OMAP_HSMMC_READ(host->base, HCTL);
if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
regval |= HSPE;
else
regval &= ~HSPE;
OMAP_HSMMC_WRITE(host->base, HCTL, regval);
}
omap_hsmmc_start_clock(host);
}
static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50)
con |= DDR; /* configure in DDR mode */
else
con &= ~DDR;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
break;
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
}
static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 con;
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON, con | OD);
else
OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
}
#ifdef CONFIG_PM
/*
* Restore the MMC host context, if it was lost as result of a
* power state change.
*/
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
u32 hctl, capa;
unsigned long timeout;
if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
host->capa == OMAP_HSMMC_READ(host->base, CAPA))
return 0;
host->context_loss++;
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
if (host->power_mode != MMC_POWER_OFF &&
(1 << ios->vdd) <= MMC_VDD_23_24)
hctl = SDVS18;
else
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
hctl |= IWE;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | hctl);
OMAP_HSMMC_WRITE(host->base, CAPA,
OMAP_HSMMC_READ(host->base, CAPA) | capa);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
&& time_before(jiffies, timeout))
;
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
/* Do not initialize card-specific things if the power is off */
if (host->power_mode == MMC_POWER_OFF)
goto out;
omap_hsmmc_set_bus_width(host);
omap_hsmmc_set_clock(host);
omap_hsmmc_set_bus_mode(host);
out:
dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
host->context_loss);
return 0;
}
/*
* Save the MMC host context (store the number of power state changes so far).
*/
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
host->con = OMAP_HSMMC_READ(host->base, CON);
host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
host->capa = OMAP_HSMMC_READ(host->base, CAPA);
}
#else
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
}
#endif
/*
* Send init stream sequence to card
* before sending IDLE command
*/
static void send_init_stream(struct omap_hsmmc_host *host)
{
int reg = 0;
unsigned long timeout;
disable_irq(host->irq);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((reg != CC_EN) && time_before(jiffies, timeout))
reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_READ(host->base, STAT);
enable_irq(host->irq);
}
static ssize_t
omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_pdata(host)->name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
/*
* Configure the response type and send the cmd.
*/
static void
omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
int cmdreg = 0, resptype = 0, cmdtype = 0;
dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
host->cmd = cmd;
omap_hsmmc_enable_irq(host, cmd);
host->response_busy = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
resptype = 1;
else if (cmd->flags & MMC_RSP_BUSY) {
resptype = 3;
host->response_busy = 1;
} else
resptype = 2;
}
/*
* Unlike OMAP1 controller, the cmdtype does not seem to be based on
* ac, bc, adtc, bcr. Only commands ending an open ended transfer need
* a val of 0x3, rest 0x0.
*/
if (cmd == host->mrq->stop)
cmdtype = 0x3;
cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
host->mrq->sbc) {
cmdreg |= ACEN_ACMD23;
OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
}
if (data) {
cmdreg |= DP_SELECT | MSBS | BCE;
if (data->flags & MMC_DATA_READ)
cmdreg |= DDIR;
else
cmdreg &= ~(DDIR);
}
if (host->use_dma)
cmdreg |= DMAE;
host->req_in_progress = 1;
OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}
static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
struct mmc_data *data)
{
return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}
static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
{
int dma_ch;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
host->req_in_progress = 0;
dma_ch = host->dma_ch;
spin_unlock_irqrestore(&host->irq_lock, flags);
omap_hsmmc_disable_irq(host);
/* Do not complete the request if DMA is still in progress */
if (mrq->data && host->use_dma && dma_ch != -1)
return;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/*
* Notify the transfer complete to MMC core
*/
static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (!data) {
struct mmc_request *mrq = host->mrq;
/* TC before CC from CMD6 - don't know why, but it happens */
if (host->cmd && host->cmd->opcode == 6 &&
host->response_busy) {
host->response_busy = 0;
return;
}
omap_hsmmc_request_done(host, mrq);
return;
}
host->data = NULL;
if (!data->error)
data->bytes_xfered += data->blocks * (data->blksz);
else
data->bytes_xfered = 0;
if (data->stop && (data->error || !host->mrq->sbc))
omap_hsmmc_start_command(host, data->stop, NULL);
else
omap_hsmmc_request_done(host, data->mrq);
}
/*
* Notify the core about command completion
*/
static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
{
if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
!host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
host->cmd = NULL;
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, host->mrq->cmd,
host->mrq->data);
return;
}
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
}
}
if ((host->data == NULL && !host->response_busy) || cmd->error)
omap_hsmmc_request_done(host, host->mrq);
}
/*
* DMA clean up for command errors
*/
static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
{
int dma_ch;
unsigned long flags;
host->data->error = errno;
spin_lock_irqsave(&host->irq_lock, flags);
dma_ch = host->dma_ch;
host->dma_ch = -1;
spin_unlock_irqrestore(&host->irq_lock, flags);
if (host->use_dma && dma_ch != -1) {
struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
dmaengine_terminate_all(chan);
dma_unmap_sg(chan->device->dev,
host->data->sg, host->data->sg_len,
mmc_get_dma_dir(host->data));
host->data->host_cookie = 0;
}
host->data = NULL;
}
/*
* Readable error output
*/
#ifdef CONFIG_MMC_DEBUG
static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
{
/* --- means reserved bit without definition at documentation */
static const char *omap_hsmmc_status_bits[] = {
"CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
"CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
};
char res[256];
char *buf = res;
int len, i;
len = sprintf(buf, "MMC IRQ 0x%x :", status);
buf += len;
for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
if (status & (1 << i)) {
len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
buf += len;
}
dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
}
#else
static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
u32 status)
{
}
#endif /* CONFIG_MMC_DEBUG */
/*
* MMC controller internal state machines reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
* Can be called from interrupt context
*/
static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
unsigned long bit)
{
unsigned long i = 0;
unsigned long limit = MMC_TIMEOUT_US;
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
/*
* OMAP4 ES2 and greater has an updated reset logic.
* Monitor a 0->1 transition first
*/
if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
&& (i++ < limit))
udelay(1);
}
i = 0;
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
(i++ < limit))
udelay(1);
if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
dev_err(mmc_dev(host->mmc),
"Timeout waiting on controller reset in %s\n",
__func__);
}
static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
int err, int end_cmd)
{
if (end_cmd) {
omap_hsmmc_reset_controller_fsm(host, SRC);
if (host->cmd)
host->cmd->error = err;
}
if (host->data) {
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_dma_cleanup(host, err);
} else if (host->mrq && host->mrq->cmd)
host->mrq->cmd->error = err;
}
static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
{
struct mmc_data *data;
int end_cmd = 0, end_trans = 0;
int error = 0;
data = host->data;
dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
if (status & ERR_EN) {
omap_hsmmc_dbg_report_irq(host, status);
if (status & (CTO_EN | CCRC_EN | CEB_EN))
end_cmd = 1;
if (host->data || host->response_busy) {
end_trans = !end_cmd;
host->response_busy = 0;
}
if (status & (CTO_EN | DTO_EN))
hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
BADA_EN))
hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
if (status & ACE_EN) {
u32 ac12;
ac12 = OMAP_HSMMC_READ(host->base, AC12);
if (!(ac12 & ACNE) && host->mrq->sbc) {
end_cmd = 1;
if (ac12 & ACTO)
error = -ETIMEDOUT;
else if (ac12 & (ACCE | ACEB | ACIE))
error = -EILSEQ;
host->mrq->sbc->error = error;
hsmmc_command_incomplete(host, error, end_cmd);
}
dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
}
}
OMAP_HSMMC_WRITE(host->base, STAT, status);
if (end_cmd || ((status & CC_EN) && host->cmd))
omap_hsmmc_cmd_done(host, host->cmd);
if ((end_trans || (status & TC_EN)) && host->mrq)
omap_hsmmc_xfer_done(host, data);
}
/*
* MMC controller IRQ handler
*/
static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
int status;
status = OMAP_HSMMC_READ(host->base, STAT);
while (status & (INT_EN_MASK | CIRQ_EN)) {
if (host->req_in_progress)
omap_hsmmc_do_irq(host, status);
if (status & CIRQ_EN)
mmc_signal_sdio_irq(host->mmc);
/* Flush posted write */
status = OMAP_HSMMC_READ(host->base, STAT);
}
return IRQ_HANDLED;
}
static void set_sd_bus_power(struct omap_hsmmc_host *host)
{
unsigned long i;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
for (i = 0; i < loops_per_jiffy; i++) {
if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
break;
cpu_relax();
}
}
/*
* Switch MMC interface voltage ... only relevant for MMC1.
*
* MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
* The MMC2 transceiver controls are used instead of DAT4..DAT7.
* Some chips, like eMMC ones, use internal transceivers.
*/
static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
{
u32 reg_val = 0;
int ret;
/* Disable the clocks */
clk_disable_unprepare(host->dbclk);
/* Turn the power off */
ret = omap_hsmmc_set_power(host, 0);
/* Turn the power ON with given VDD 1.8 or 3.0v */
if (!ret)
ret = omap_hsmmc_set_power(host, 1);
clk_prepare_enable(host->dbclk);
if (ret != 0)
goto err;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
reg_val = OMAP_HSMMC_READ(host->base, HCTL);
/*
* If a MMC dual voltage card is detected, the set_ios fn calls
* this fn with VDD bit set for 1.8V. Upon card removal from the
* slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
*
* Cope with a bit of slop in the range ... per data sheets:
* - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
* but recommended values are 1.71V to 1.89V
* - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
* but recommended values are 2.7V to 3.3V
*
* Board setup code shouldn't permit anything very out-of-range.
* TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
* middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
*/
if ((1 << vdd) <= MMC_VDD_23_24)
reg_val |= SDVS18;
else
reg_val |= SDVS30;
OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
set_sd_bus_power(host);
return 0;
err:
dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
return ret;
}
static void omap_hsmmc_dma_callback(void *param)
{
struct omap_hsmmc_host *host = param;
struct dma_chan *chan;
struct mmc_data *data;
int req_in_progress;
spin_lock_irq(&host->irq_lock);
if (host->dma_ch < 0) {
spin_unlock_irq(&host->irq_lock);
return;
}
data = host->mrq->data;
chan = omap_hsmmc_get_dma_chan(host, data);
if (!data->host_cookie)
dma_unmap_sg(chan->device->dev,
data->sg, data->sg_len,
mmc_get_dma_dir(data));
req_in_progress = host->req_in_progress;
host->dma_ch = -1;
spin_unlock_irq(&host->irq_lock);
/* If DMA has finished after TC, complete the request */
if (!req_in_progress) {
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
}
static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_data *data,
struct omap_hsmmc_next *next,
struct dma_chan *chan)
{
int dma_len;
if (!next && data->host_cookie &&
data->host_cookie != host->next_data.cookie) {
dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
" host->next_data.cookie %d\n",
__func__, data->host_cookie, host->next_data.cookie);
data->host_cookie = 0;
}
/* Check if next job is already prepared */
if (next || data->host_cookie != host->next_data.cookie) {
dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
} else {
dma_len = host->next_data.dma_len;
host->next_data.dma_len = 0;
}
if (dma_len == 0)
return -EINVAL;
if (next) {
next->dma_len = dma_len;
data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
} else
host->dma_len = dma_len;
return 0;
}
/*
* Routine to configure and start DMA for the MMC card
*/
static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_request *req)
{
struct dma_async_tx_descriptor *tx;
int ret = 0, i;
struct mmc_data *data = req->data;
struct dma_chan *chan;
struct dma_slave_config cfg = {
.src_addr = host->mapbase + OMAP_HSMMC_DATA,
.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = data->blksz / 4,
.dst_maxburst = data->blksz / 4,
};
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
struct scatterlist *sgl;
sgl = data->sg + i;
if (sgl->length % data->blksz)
return -EINVAL;
}
if ((data->blksz % 4) != 0)
/* REVISIT: The MMC buffer increments only when MSB is written.
* Return error for blksz which is non multiple of four.
*/
return -EINVAL;
BUG_ON(host->dma_ch != -1);
chan = omap_hsmmc_get_dma_chan(host, data);
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ret;
ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
if (ret)
return ret;
tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
/* FIXME: cleanup */
return -1;
}
tx->callback = omap_hsmmc_dma_callback;
tx->callback_param = host;
/* Does not fail */
dmaengine_submit(tx);
host->dma_ch = 1;
return 0;
}
static void set_data_timeout(struct omap_hsmmc_host *host,
unsigned long long timeout_ns,
unsigned int timeout_clks)
{
unsigned long long timeout = timeout_ns;
unsigned int cycle_ns;
uint32_t reg, clkd, dto = 0;
reg = OMAP_HSMMC_READ(host->base, SYSCTL);
clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
if (clkd == 0)
clkd = 1;
cycle_ns = 1000000000 / (host->clk_rate / clkd);
do_div(timeout, cycle_ns);
timeout += timeout_clks;
if (timeout) {
while ((timeout & 0x80000000) == 0) {
dto += 1;
timeout <<= 1;
}
dto = 31 - dto;
timeout <<= 1;
if (timeout && dto)
dto += 1;
if (dto >= 13)
dto -= 13;
else
dto = 0;
if (dto > 14)
dto = 14;
}
reg &= ~DTO_MASK;
reg |= dto << DTO_SHIFT;
OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}
static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
{
struct mmc_request *req = host->mrq;
struct dma_chan *chan;
if (!req->data)
return;
OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
| (req->data->blocks << 16));
set_data_timeout(host, req->data->timeout_ns,
req->data->timeout_clks);
chan = omap_hsmmc_get_dma_chan(host, req->data);
dma_async_issue_pending(chan);
}
/*
* Configure block length for MMC/SD cards and initiate the transfer.
*/
static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
{
int ret;
unsigned long long timeout;
host->data = req->data;
if (req->data == NULL) {
OMAP_HSMMC_WRITE(host->base, BLK, 0);
if (req->cmd->flags & MMC_RSP_BUSY) {
timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
/*
* Set an arbitrary 100ms data timeout for commands with
* busy signal and no indication of busy_timeout.
*/
if (!timeout)
timeout = 100000000U;
set_data_timeout(host, timeout, 0);
}
return 0;
}
if (host->use_dma) {
ret = omap_hsmmc_setup_dma_transfer(host, req);
if (ret != 0) {
dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
return ret;
}
}
return 0;
}
static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (host->use_dma && data->host_cookie) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = 0;
}
}
static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (mrq->data->host_cookie) {
mrq->data->host_cookie = 0;
return ;
}
if (host->use_dma) {
struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
&host->next_data, c))
mrq->data->host_cookie = 0;
}
}
/*
* Request function. for read/write operation
*/
static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int err;
BUG_ON(host->req_in_progress);
BUG_ON(host->dma_ch != -1);
if (host->reqs_blocked)
host->reqs_blocked = 0;
WARN_ON(host->mrq != NULL);
host->mrq = req;
host->clk_rate = clk_get_rate(host->fclk);
err = omap_hsmmc_prepare_data(host, req);
if (err) {
req->cmd->error = err;
if (req->data)
req->data->error = err;
host->mrq = NULL;
mmc_request_done(mmc, req);
return;
}
if (req->sbc && !(host->flags & AUTO_CMD23)) {
omap_hsmmc_start_command(host, req->sbc, NULL);
return;
}
omap_hsmmc_start_dma_transfer(host);
omap_hsmmc_start_command(host, req->cmd, req->data);
}
/* Routine to configure clock values. Exposed API to core */
static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int do_send_init_stream = 0;
if (ios->power_mode != host->power_mode) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
omap_hsmmc_set_power(host, 0);
break;
case MMC_POWER_UP:
omap_hsmmc_set_power(host, 1);
break;
case MMC_POWER_ON:
do_send_init_stream = 1;
break;
}
host->power_mode = ios->power_mode;
}
/* FIXME: set registers based only on changes to ios */
omap_hsmmc_set_bus_width(host);
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
/* Only MMC1 can interface at 3V without some flavor
* of external transceiver; but they all handle 1.8V.
*/
if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
(ios->vdd == DUAL_VOLT_OCR_BIT)) {
/*
* The mmc_select_voltage fn of the core does
* not seem to set the power_mode to
* MMC_POWER_UP upon recalculating the voltage.
* vdd 1.8v.
*/
if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
dev_dbg(mmc_dev(host->mmc),
"Switch operation failed\n");
}
}
omap_hsmmc_set_clock(host);
if (do_send_init_stream)
send_init_stream(host);
omap_hsmmc_set_bus_mode(host);
}
static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
u32 irq_mask, con;
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
con = OMAP_HSMMC_READ(host->base, CON);
irq_mask = OMAP_HSMMC_READ(host->base, ISE);
if (enable) {
host->flags |= HSMMC_SDIO_IRQ_ENABLED;
irq_mask |= CIRQ_EN;
con |= CTPL | CLKEXTFREE;
} else {
host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
irq_mask &= ~CIRQ_EN;
con &= ~(CTPL | CLKEXTFREE);
}
OMAP_HSMMC_WRITE(host->base, CON, con);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
/*
* if enable, piggy back detection on current request
* but always disable immediately
*/
if (!host->req_in_progress || !enable)
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
/* flush posted write */
OMAP_HSMMC_READ(host->base, IE);
spin_unlock_irqrestore(&host->irq_lock, flags);
}
static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
{
int ret;
/*
* For omaps with wake-up path, wakeirq will be irq from pinctrl and
* for other omaps, wakeirq will be from GPIO (dat line remuxed to
* gpio). wakeirq is needed to detect sdio irq in runtime suspend state
* with functional clock disabled.
*/
if (!host->dev->of_node || !host->wake_irq)
return -ENODEV;
ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
goto err;
}
/*
* Some omaps don't have wake-up path from deeper idle states
* and need to remux SDIO DAT1 to GPIO for wake-up from idle.
*/
if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
struct pinctrl *p = devm_pinctrl_get(host->dev);
if (IS_ERR(p)) {
ret = PTR_ERR(p);
goto err_free_irq;
}
if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
dev_info(host->dev, "missing idle pinctrl state\n");
devm_pinctrl_put(p);
ret = -EINVAL;
goto err_free_irq;
}
devm_pinctrl_put(p);
}
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | IWE);
return 0;
err_free_irq:
dev_pm_clear_wake_irq(host->dev);
err:
dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
host->wake_irq = 0;
return ret;
}
static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
{
u32 hctl, capa, value;
/* Only MMC1 supports 3.0V */
if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
value = OMAP_HSMMC_READ(host->base, CAPA);
OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
/* Set SD bus power bit */
set_sd_bus_power(host);
}
static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
unsigned int direction, int blk_size)
{
/* This controller can't do multiblock reads due to hw bugs */
if (direction == MMC_DATA_READ)
return 1;
return blk_size;
}
static struct mmc_host_ops omap_hsmmc_ops = {
.post_req = omap_hsmmc_post_req,
.pre_req = omap_hsmmc_pre_req,
.request = omap_hsmmc_request,
.set_ios = omap_hsmmc_set_ios,
.get_cd = mmc_gpio_get_cd,
.get_ro = mmc_gpio_get_ro,
.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
};
#ifdef CONFIG_DEBUG_FS
static int mmc_regs_show(struct seq_file *s, void *data)
{
struct mmc_host *mmc = s->private;
struct omap_hsmmc_host *host = mmc_priv(mmc);
seq_printf(s, "mmc%d:\n", mmc->index);
seq_printf(s, "sdio irq mode\t%s\n",
(mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
seq_printf(s, "sdio irq \t%s\n",
(host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
: "disabled");
}
seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
pm_runtime_get_sync(host->dev);
seq_puts(s, "\nregs:\n");
seq_printf(s, "CON:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CON));
seq_printf(s, "PSTATE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, PSTATE));
seq_printf(s, "HCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, HCTL));
seq_printf(s, "SYSCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, SYSCTL));
seq_printf(s, "IE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, IE));
seq_printf(s, "ISE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, ISE));
seq_printf(s, "CAPA:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CAPA));
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mmc_regs);
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
if (mmc->debugfs_root)
debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
mmc, &mmc_regs_fops);
}
#else
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
}
#endif
#ifdef CONFIG_OF
static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
/* See 35xx errata 2.1.1.128 in SPRZ278F */
.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
};
static const struct omap_mmc_of_data omap4_mmc_of_data = {
.reg_offset = 0x100,
};
static const struct omap_mmc_of_data am33xx_mmc_of_data = {
.reg_offset = 0x100,
.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
};
static const struct of_device_id omap_mmc_of_match[] = {
{
.compatible = "ti,omap2-hsmmc",
},
{
.compatible = "ti,omap3-pre-es3-hsmmc",
.data = &omap3_pre_es3_mmc_of_data,
},
{
.compatible = "ti,omap3-hsmmc",
},
{
.compatible = "ti,omap4-hsmmc",
.data = &omap4_mmc_of_data,
},
{
.compatible = "ti,am33xx-hsmmc",
.data = &am33xx_mmc_of_data,
},
{},
};
MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
{
struct omap_hsmmc_platform_data *pdata, *legacy;
struct device_node *np = dev->of_node;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM); /* out of memory */
legacy = dev_get_platdata(dev);
if (legacy && legacy->name)
pdata->name = legacy->name;
if (of_property_read_bool(np, "ti,dual-volt"))
pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
if (of_property_read_bool(np, "ti,non-removable")) {
pdata->nonremovable = true;
pdata->no_regulator_off_init = true;
}
if (of_property_read_bool(np, "ti,needs-special-reset"))
pdata->features |= HSMMC_HAS_UPDATED_RESET;
if (of_property_read_bool(np, "ti,needs-special-hs-handling"))
pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
return pdata;
}
#else
static inline struct omap_hsmmc_platform_data
*of_get_hsmmc_pdata(struct device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int omap_hsmmc_probe(struct platform_device *pdev)
{
struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_host *mmc;
struct omap_hsmmc_host *host = NULL;
struct resource *res;
int ret, irq;
const struct of_device_id *match;
const struct omap_mmc_of_data *data;
void __iomem *base;
match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
if (match) {
pdata = of_get_hsmmc_pdata(&pdev->dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
if (match->data) {
data = match->data;
pdata->reg_offset = data->reg_offset;
pdata->controller_flags |= data->controller_flags;
}
}
if (pdata == NULL) {
dev_err(&pdev->dev, "Platform Data is missing\n");
return -ENXIO;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err;
}
ret = mmc_of_parse(mmc);
if (ret)
goto err1;
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdata;
host->dev = &pdev->dev;
host->use_dma = 1;
host->dma_ch = -1;
host->irq = irq;
host->mapbase = res->start + pdata->reg_offset;
host->base = base + pdata->reg_offset;
host->power_mode = MMC_POWER_OFF;
host->next_data.cookie = 1;
host->pbias_enabled = false;
host->vqmmc_enabled = false;
platform_set_drvdata(pdev, host);
if (pdev->dev.of_node)
host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
mmc->ops = &omap_hsmmc_ops;
mmc->f_min = OMAP_MMC_MIN_CLOCK;
if (pdata->max_freq > 0)
mmc->f_max = pdata->max_freq;
else if (mmc->f_max == 0)
mmc->f_max = OMAP_MMC_MAX_CLOCK;
spin_lock_init(&host->irq_lock);
host->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
host->fclk = NULL;
goto err1;
}
if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
}
device_init_wakeup(&pdev->dev, true);
pm_runtime_enable(host->dev);
pm_runtime_get_sync(host->dev);
pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(host->dev);
omap_hsmmc_context_save(host);
host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
/*
* MMC can still work without debounce clock.
*/
if (IS_ERR(host->dbclk)) {
host->dbclk = NULL;
} else if (clk_prepare_enable(host->dbclk) != 0) {
dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
host->dbclk = NULL;
}
/* Set this to a value that allows allocating an entire descriptor
* list within a page (zero order allocation). */
mmc->max_segs = 64;
mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
mmc->caps |= mmc_pdata(host)->caps;
if (mmc->caps & MMC_CAP_8_BIT_DATA)
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (mmc_pdata(host)->nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
mmc->pm_caps |= mmc_pdata(host)->pm_caps;
omap_hsmmc_conf_bus_power(host);
host->rx_chan = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR(host->rx_chan)) {
dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
ret = PTR_ERR(host->rx_chan);
goto err_irq;
}
host->tx_chan = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(host->tx_chan)) {
dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
ret = PTR_ERR(host->tx_chan);
goto err_irq;
}
/*
* Limit the maximum segment size to the lower of the request size
* and the DMA engine device segment size limits. In reality, with
* 32-bit transfers, the DMA engine can do longer segments than this
* but there is no way to represent that in the DMA model - if we
* increase this figure here, we get warnings from the DMA API debug.
*/
mmc->max_seg_size = min3(mmc->max_req_size,
dma_get_max_seg_size(host->rx_chan->device->dev),
dma_get_max_seg_size(host->tx_chan->device->dev));
/* Request IRQ for MMC operations */
ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
mmc_hostname(mmc), host);
if (ret) {
dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
goto err_irq;
}
ret = omap_hsmmc_reg_get(host);
if (ret)
goto err_irq;
if (!mmc->ocr_avail)
mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
omap_hsmmc_disable_irq(host);
/*
* For now, only support SDIO interrupt if we have a separate
* wake-up interrupt configured from device tree. This is because
* the wake-up interrupt is needed for idle state and some
* platforms need special quirks. And we don't want to add new
* legacy mux platform init code callbacks any longer as we
* are moving to DT based booting anyways.
*/
ret = omap_hsmmc_configure_wake_irq(host);
if (!ret)
mmc->caps |= MMC_CAP_SDIO_IRQ;
ret = mmc_add_host(mmc);
if (ret)
goto err_irq;
if (mmc_pdata(host)->name != NULL) {
ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
if (ret < 0)
goto err_slot_name;
}
omap_hsmmc_debugfs(mmc);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
err_slot_name:
mmc_remove_host(mmc);
err_irq:
device_init_wakeup(&pdev->dev, false);
if (!IS_ERR_OR_NULL(host->tx_chan))
dma_release_channel(host->tx_chan);
if (!IS_ERR_OR_NULL(host->rx_chan))
dma_release_channel(host->rx_chan);
pm_runtime_dont_use_autosuspend(host->dev);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
clk_disable_unprepare(host->dbclk);
err1:
mmc_free_host(mmc);
err:
return ret;
}
static void omap_hsmmc_remove(struct platform_device *pdev)
{
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
pm_runtime_get_sync(host->dev);
mmc_remove_host(host->mmc);
dma_release_channel(host->tx_chan);
dma_release_channel(host->rx_chan);
dev_pm_clear_wake_irq(host->dev);
pm_runtime_dont_use_autosuspend(host->dev);
pm_runtime_put_sync(host->dev);
pm_runtime_disable(host->dev);
device_init_wakeup(&pdev->dev, false);
clk_disable_unprepare(host->dbclk);
mmc_free_host(host->mmc);
}
#ifdef CONFIG_PM_SLEEP
static int omap_hsmmc_suspend(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
}
clk_disable_unprepare(host->dbclk);
pm_runtime_put_sync(host->dev);
return 0;
}
/* Routine to resume the MMC device */
static int omap_hsmmc_resume(struct device *dev)
{
struct omap_hsmmc_host *host = dev_get_drvdata(dev);
if (!host)
return 0;
pm_runtime_get_sync(host->dev);
clk_prepare_enable(host->dbclk);
if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
omap_hsmmc_conf_bus_power(host);
pm_runtime_mark_last_busy(host->dev);
pm_runtime_put_autosuspend(host->dev);
return 0;
}
#endif
#ifdef CONFIG_PM
static int omap_hsmmc_runtime_suspend(struct device *dev)
{
struct omap_hsmmc_host *host;
unsigned long flags;
int ret = 0;
host = dev_get_drvdata(dev);
omap_hsmmc_context_save(host);
dev_dbg(dev, "disabled\n");
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
/* disable sdio irq handling to prevent race */
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
/*
* dat1 line low, pending sdio irq
* race condition: possible irq handler running on
* multi-core, abort
*/
dev_dbg(dev, "pending sdio irq, abort suspend\n");
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
pm_runtime_mark_last_busy(dev);
ret = -EBUSY;
goto abort;
}
pinctrl_pm_select_idle_state(dev);
} else {
pinctrl_pm_select_idle_state(dev);
}
abort:
spin_unlock_irqrestore(&host->irq_lock, flags);
return ret;
}
static int omap_hsmmc_runtime_resume(struct device *dev)
{
struct omap_hsmmc_host *host;
unsigned long flags;
host = dev_get_drvdata(dev);
omap_hsmmc_context_restore(host);
dev_dbg(dev, "enabled\n");
spin_lock_irqsave(&host->irq_lock, flags);
if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
(host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
pinctrl_select_default_state(host->dev);
/* irq lost, if pinmux incorrect */
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
} else {
pinctrl_select_default_state(host->dev);
}
spin_unlock_irqrestore(&host->irq_lock, flags);
return 0;
}
#endif
static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
};
static struct platform_driver omap_hsmmc_driver = {
.probe = omap_hsmmc_probe,
.remove_new = omap_hsmmc_remove,
.driver = {
.name = DRIVER_NAME,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.pm = &omap_hsmmc_dev_pm_ops,
.of_match_table = of_match_ptr(omap_mmc_of_match),
},
};
module_platform_driver(omap_hsmmc_driver);
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");