mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 20:54:10 +08:00
c7c556f1e8
Refactor the logic for changing SELinux policy booleans in a similar manner to the refactoring of policy load, thereby reducing the size of the critical section when the policy write-lock is held and making it easier to convert the policy rwlock to RCU in the future. Instead of directly modifying the policydb in place, modify a copy and then swap it into place through a single pointer update. Only fully copy the portions of the policydb that are affected by boolean changes to avoid the full cost of a deep policydb copy. Introduce another level of indirection for the sidtab since changing booleans does not require updating the sidtab, unlike policy load. While we are here, create a common helper for notifying other kernel components and userspace of a policy change and call it from both security_set_bools() and selinux_policy_commit(). Based on an old (2004) patch by Kaigai Kohei [1] to convert the policy rwlock to RCU that was deferred at the time since it did not significantly improve performance and introduced complexity. Peter Enderborg later submitted a patch series to convert to RCU [2] that would have made changing booleans a much more expensive operation by requiring a full policydb_write();policydb_read(); sequence to deep copy the entire policydb and also had concerns regarding atomic allocations. This change is now simplified by the earlier work to encapsulate policy state in the selinux_policy struct and to refactor policy load. After this change, the last major obstacle to converting the policy rwlock to RCU is likely the sidtab live convert support. [1] https://lore.kernel.org/selinux/6e2f9128-e191-ebb3-0e87-74bfccb0767f@tycho.nsa.gov/ [2] https://lore.kernel.org/selinux/20180530141104.28569-1-peter.enderborg@sony.com/ Signed-off-by: Stephen Smalley <stephen.smalley.work@gmail.com> Signed-off-by: Paul Moore <paul@paul-moore.com>
149 lines
3.6 KiB
C
149 lines
3.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* A hash table (hashtab) maintains associations between
|
|
* key values and datum values. The type of the key values
|
|
* and the type of the datum values is arbitrary. The
|
|
* functions for hash computation and key comparison are
|
|
* provided by the creator of the table.
|
|
*
|
|
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
|
|
*/
|
|
#ifndef _SS_HASHTAB_H_
|
|
#define _SS_HASHTAB_H_
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
|
|
#define HASHTAB_MAX_NODES U32_MAX
|
|
|
|
struct hashtab_key_params {
|
|
u32 (*hash)(const void *key); /* hash function */
|
|
int (*cmp)(const void *key1, const void *key2);
|
|
/* key comparison function */
|
|
};
|
|
|
|
struct hashtab_node {
|
|
void *key;
|
|
void *datum;
|
|
struct hashtab_node *next;
|
|
};
|
|
|
|
struct hashtab {
|
|
struct hashtab_node **htable; /* hash table */
|
|
u32 size; /* number of slots in hash table */
|
|
u32 nel; /* number of elements in hash table */
|
|
};
|
|
|
|
struct hashtab_info {
|
|
u32 slots_used;
|
|
u32 max_chain_len;
|
|
};
|
|
|
|
/*
|
|
* Initializes a new hash table with the specified characteristics.
|
|
*
|
|
* Returns -ENOMEM if insufficient space is available or 0 otherwise.
|
|
*/
|
|
int hashtab_init(struct hashtab *h, u32 nel_hint);
|
|
|
|
int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
|
|
void *key, void *datum);
|
|
|
|
/*
|
|
* Inserts the specified (key, datum) pair into the specified hash table.
|
|
*
|
|
* Returns -ENOMEM on memory allocation error,
|
|
* -EEXIST if there is already an entry with the same key,
|
|
* -EINVAL for general errors or
|
|
0 otherwise.
|
|
*/
|
|
static inline int hashtab_insert(struct hashtab *h, void *key, void *datum,
|
|
struct hashtab_key_params key_params)
|
|
{
|
|
u32 hvalue;
|
|
struct hashtab_node *prev, *cur;
|
|
|
|
cond_resched();
|
|
|
|
if (!h->size || h->nel == HASHTAB_MAX_NODES)
|
|
return -EINVAL;
|
|
|
|
hvalue = key_params.hash(key) & (h->size - 1);
|
|
prev = NULL;
|
|
cur = h->htable[hvalue];
|
|
while (cur) {
|
|
int cmp = key_params.cmp(key, cur->key);
|
|
|
|
if (cmp == 0)
|
|
return -EEXIST;
|
|
if (cmp < 0)
|
|
break;
|
|
prev = cur;
|
|
cur = cur->next;
|
|
}
|
|
|
|
return __hashtab_insert(h, prev ? &prev->next : &h->htable[hvalue],
|
|
key, datum);
|
|
}
|
|
|
|
/*
|
|
* Searches for the entry with the specified key in the hash table.
|
|
*
|
|
* Returns NULL if no entry has the specified key or
|
|
* the datum of the entry otherwise.
|
|
*/
|
|
static inline void *hashtab_search(struct hashtab *h, const void *key,
|
|
struct hashtab_key_params key_params)
|
|
{
|
|
u32 hvalue;
|
|
struct hashtab_node *cur;
|
|
|
|
if (!h->size)
|
|
return NULL;
|
|
|
|
hvalue = key_params.hash(key) & (h->size - 1);
|
|
cur = h->htable[hvalue];
|
|
while (cur) {
|
|
int cmp = key_params.cmp(key, cur->key);
|
|
|
|
if (cmp == 0)
|
|
return cur->datum;
|
|
if (cmp < 0)
|
|
break;
|
|
cur = cur->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Destroys the specified hash table.
|
|
*/
|
|
void hashtab_destroy(struct hashtab *h);
|
|
|
|
/*
|
|
* Applies the specified apply function to (key,datum,args)
|
|
* for each entry in the specified hash table.
|
|
*
|
|
* The order in which the function is applied to the entries
|
|
* is dependent upon the internal structure of the hash table.
|
|
*
|
|
* If apply returns a non-zero status, then hashtab_map will cease
|
|
* iterating through the hash table and will propagate the error
|
|
* return to its caller.
|
|
*/
|
|
int hashtab_map(struct hashtab *h,
|
|
int (*apply)(void *k, void *d, void *args),
|
|
void *args);
|
|
|
|
int hashtab_duplicate(struct hashtab *new, struct hashtab *orig,
|
|
int (*copy)(struct hashtab_node *new,
|
|
struct hashtab_node *orig, void *args),
|
|
int (*destroy)(void *k, void *d, void *args),
|
|
void *args);
|
|
|
|
/* Fill info with some hash table statistics */
|
|
void hashtab_stat(struct hashtab *h, struct hashtab_info *info);
|
|
|
|
#endif /* _SS_HASHTAB_H */
|