mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 07:44:23 +08:00
ed3b7923a8
- Scheduler SMP load-balancer improvements: - Avoid unnecessary migrations within SMT domains on hybrid systems. Problem: On hybrid CPU systems, (processors with a mixture of higher-frequency SMT cores and lower-frequency non-SMT cores), under the old code lower-priority CPUs pulled tasks from the higher-priority cores if more than one SMT sibling was busy - resulting in many unnecessary task migrations. Solution: The new code improves the load balancer to recognize SMT cores with more than one busy sibling and allows lower-priority CPUs to pull tasks, which avoids superfluous migrations and lets lower-priority cores inspect all SMT siblings for the busiest queue. - Implement the 'runnable boosting' feature in the EAS balancer: consider CPU contention in frequency, EAS max util & load-balance busiest CPU selection. This improves CPU utilization for certain workloads, while leaves other key workloads unchanged. - Scheduler infrastructure improvements: - Rewrite the scheduler topology setup code by consolidating it into the build_sched_topology() helper function and building it dynamically on the fly. - Resolve the local_clock() vs. noinstr complications by rewriting the code: provide separate sched_clock_noinstr() and local_clock_noinstr() functions to be used in instrumentation code, and make sure it is all instrumentation-safe. - Fixes: - Fix a kthread_park() race with wait_woken() - Fix misc wait_task_inactive() bugs unearthed by the -rt merge: - Fix UP PREEMPT bug by unifying the SMP and UP implementations. - Fix task_struct::saved_state handling. - Fix various rq clock update bugs, unearthed by turning on the rq clock debugging code. - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by creating enough cgroups, by removing the warnign and restricting window size triggers to PSI file write-permission or CAP_SYS_RESOURCE. - Propagate SMT flags in the topology when removing degenerate domain - Fix grub_reclaim() calculation bug in the deadline scheduler code - Avoid resetting the min update period when it is unnecessary, in psi_trigger_destroy(). - Don't balance a task to its current running CPU in load_balance(), which was possible on certain NUMA topologies with overlapping groups. - Fix the sched-debug printing of rq->nr_uninterruptible - Cleanups: - Address various -Wmissing-prototype warnings, as a preparation to (maybe) enable this warning in the future. - Remove unused code - Mark more functions __init - Fix shadow-variable warnings Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo 9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr 4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N PiDbtX760ic= =EWQA -----END PGP SIGNATURE----- Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Scheduler SMP load-balancer improvements: - Avoid unnecessary migrations within SMT domains on hybrid systems. Problem: On hybrid CPU systems, (processors with a mixture of higher-frequency SMT cores and lower-frequency non-SMT cores), under the old code lower-priority CPUs pulled tasks from the higher-priority cores if more than one SMT sibling was busy - resulting in many unnecessary task migrations. Solution: The new code improves the load balancer to recognize SMT cores with more than one busy sibling and allows lower-priority CPUs to pull tasks, which avoids superfluous migrations and lets lower-priority cores inspect all SMT siblings for the busiest queue. - Implement the 'runnable boosting' feature in the EAS balancer: consider CPU contention in frequency, EAS max util & load-balance busiest CPU selection. This improves CPU utilization for certain workloads, while leaves other key workloads unchanged. Scheduler infrastructure improvements: - Rewrite the scheduler topology setup code by consolidating it into the build_sched_topology() helper function and building it dynamically on the fly. - Resolve the local_clock() vs. noinstr complications by rewriting the code: provide separate sched_clock_noinstr() and local_clock_noinstr() functions to be used in instrumentation code, and make sure it is all instrumentation-safe. Fixes: - Fix a kthread_park() race with wait_woken() - Fix misc wait_task_inactive() bugs unearthed by the -rt merge: - Fix UP PREEMPT bug by unifying the SMP and UP implementations - Fix task_struct::saved_state handling - Fix various rq clock update bugs, unearthed by turning on the rq clock debugging code. - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by creating enough cgroups, by removing the warnign and restricting window size triggers to PSI file write-permission or CAP_SYS_RESOURCE. - Propagate SMT flags in the topology when removing degenerate domain - Fix grub_reclaim() calculation bug in the deadline scheduler code - Avoid resetting the min update period when it is unnecessary, in psi_trigger_destroy(). - Don't balance a task to its current running CPU in load_balance(), which was possible on certain NUMA topologies with overlapping groups. - Fix the sched-debug printing of rq->nr_uninterruptible Cleanups: - Address various -Wmissing-prototype warnings, as a preparation to (maybe) enable this warning in the future. - Remove unused code - Mark more functions __init - Fix shadow-variable warnings" * tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits) sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle() sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop() sched/core: Fixed missing rq clock update before calling set_rq_offline() sched/deadline: Update GRUB description in the documentation sched/deadline: Fix bandwidth reclaim equation in GRUB sched/wait: Fix a kthread_park race with wait_woken() sched/topology: Mark set_sched_topology() __init sched/fair: Rename variable cpu_util eff_util arm64/arch_timer: Fix MMIO byteswap sched/fair, cpufreq: Introduce 'runnable boosting' sched/fair: Refactor CPU utilization functions cpuidle: Use local_clock_noinstr() sched/clock: Provide local_clock_noinstr() x86/tsc: Provide sched_clock_noinstr() clocksource: hyper-v: Provide noinstr sched_clock() clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX x86/vdso: Fix gettimeofday masking math64: Always inline u128 version of mul_u64_u64_shr() s390/time: Provide sched_clock_noinstr() loongarch: Provide noinstr sched_clock_read() ...
615 lines
16 KiB
C
615 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Clocksource driver for the synthetic counter and timers
|
|
* provided by the Hyper-V hypervisor to guest VMs, as described
|
|
* in the Hyper-V Top Level Functional Spec (TLFS). This driver
|
|
* is instruction set architecture independent.
|
|
*
|
|
* Copyright (C) 2019, Microsoft, Inc.
|
|
*
|
|
* Author: Michael Kelley <mikelley@microsoft.com>
|
|
*/
|
|
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/hyperv.h>
|
|
#include <clocksource/hyperv_timer.h>
|
|
#include <asm/hyperv-tlfs.h>
|
|
#include <asm/mshyperv.h>
|
|
|
|
static struct clock_event_device __percpu *hv_clock_event;
|
|
static u64 hv_sched_clock_offset __ro_after_init;
|
|
|
|
/*
|
|
* If false, we're using the old mechanism for stimer0 interrupts
|
|
* where it sends a VMbus message when it expires. The old
|
|
* mechanism is used when running on older versions of Hyper-V
|
|
* that don't support Direct Mode. While Hyper-V provides
|
|
* four stimer's per CPU, Linux uses only stimer0.
|
|
*
|
|
* Because Direct Mode does not require processing a VMbus
|
|
* message, stimer interrupts can be enabled earlier in the
|
|
* process of booting a CPU, and consistent with when timer
|
|
* interrupts are enabled for other clocksource drivers.
|
|
* However, for legacy versions of Hyper-V when Direct Mode
|
|
* is not enabled, setting up stimer interrupts must be
|
|
* delayed until VMbus is initialized and can process the
|
|
* interrupt message.
|
|
*/
|
|
static bool direct_mode_enabled;
|
|
|
|
static int stimer0_irq = -1;
|
|
static int stimer0_message_sint;
|
|
static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
|
|
|
|
/*
|
|
* Common code for stimer0 interrupts coming via Direct Mode or
|
|
* as a VMbus message.
|
|
*/
|
|
void hv_stimer0_isr(void)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
ce = this_cpu_ptr(hv_clock_event);
|
|
ce->event_handler(ce);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer0_isr);
|
|
|
|
/*
|
|
* stimer0 interrupt handler for architectures that support
|
|
* per-cpu interrupts, which also implies Direct Mode.
|
|
*/
|
|
static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
|
|
{
|
|
hv_stimer0_isr();
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int hv_ce_set_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
u64 current_tick;
|
|
|
|
current_tick = hv_read_reference_counter();
|
|
current_tick += delta;
|
|
hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_shutdown(struct clock_event_device *evt)
|
|
{
|
|
hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
|
|
hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
|
|
if (direct_mode_enabled && stimer0_irq >= 0)
|
|
disable_percpu_irq(stimer0_irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hv_ce_set_oneshot(struct clock_event_device *evt)
|
|
{
|
|
union hv_stimer_config timer_cfg;
|
|
|
|
timer_cfg.as_uint64 = 0;
|
|
timer_cfg.enable = 1;
|
|
timer_cfg.auto_enable = 1;
|
|
if (direct_mode_enabled) {
|
|
/*
|
|
* When it expires, the timer will directly interrupt
|
|
* on the specified hardware vector/IRQ.
|
|
*/
|
|
timer_cfg.direct_mode = 1;
|
|
timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
|
|
if (stimer0_irq >= 0)
|
|
enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
|
|
} else {
|
|
/*
|
|
* When it expires, the timer will generate a VMbus message,
|
|
* to be handled by the normal VMbus interrupt handler.
|
|
*/
|
|
timer_cfg.direct_mode = 0;
|
|
timer_cfg.sintx = stimer0_message_sint;
|
|
}
|
|
hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_stimer_init - Per-cpu initialization of the clockevent
|
|
*/
|
|
static int hv_stimer_init(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
if (!hv_clock_event)
|
|
return 0;
|
|
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
ce->name = "Hyper-V clockevent";
|
|
ce->features = CLOCK_EVT_FEAT_ONESHOT;
|
|
ce->cpumask = cpumask_of(cpu);
|
|
ce->rating = 1000;
|
|
ce->set_state_shutdown = hv_ce_shutdown;
|
|
ce->set_state_oneshot = hv_ce_set_oneshot;
|
|
ce->set_next_event = hv_ce_set_next_event;
|
|
|
|
clockevents_config_and_register(ce,
|
|
HV_CLOCK_HZ,
|
|
HV_MIN_DELTA_TICKS,
|
|
HV_MAX_MAX_DELTA_TICKS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hv_stimer_cleanup - Per-cpu cleanup of the clockevent
|
|
*/
|
|
int hv_stimer_cleanup(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce;
|
|
|
|
if (!hv_clock_event)
|
|
return 0;
|
|
|
|
/*
|
|
* In the legacy case where Direct Mode is not enabled
|
|
* (which can only be on x86/64), stimer cleanup happens
|
|
* relatively early in the CPU offlining process. We
|
|
* must unbind the stimer-based clockevent device so
|
|
* that the LAPIC timer can take over until clockevents
|
|
* are no longer needed in the offlining process. Note
|
|
* that clockevents_unbind_device() eventually calls
|
|
* hv_ce_shutdown().
|
|
*
|
|
* The unbind should not be done when Direct Mode is
|
|
* enabled because we may be on an architecture where
|
|
* there are no other clockevent devices to fallback to.
|
|
*/
|
|
ce = per_cpu_ptr(hv_clock_event, cpu);
|
|
if (direct_mode_enabled)
|
|
hv_ce_shutdown(ce);
|
|
else
|
|
clockevents_unbind_device(ce, cpu);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
|
|
|
|
/*
|
|
* These placeholders are overridden by arch specific code on
|
|
* architectures that need special setup of the stimer0 IRQ because
|
|
* they don't support per-cpu IRQs (such as x86/x64).
|
|
*/
|
|
void __weak hv_setup_stimer0_handler(void (*handler)(void))
|
|
{
|
|
};
|
|
|
|
void __weak hv_remove_stimer0_handler(void)
|
|
{
|
|
};
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
|
|
static int hv_setup_stimer0_irq(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
|
|
ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
|
|
if (ret < 0) {
|
|
pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
|
|
return ret;
|
|
}
|
|
stimer0_irq = ret;
|
|
|
|
ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
|
|
"Hyper-V stimer0", &stimer0_evt);
|
|
if (ret) {
|
|
pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
|
|
stimer0_irq, ret);
|
|
acpi_unregister_gsi(stimer0_irq);
|
|
stimer0_irq = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void hv_remove_stimer0_irq(void)
|
|
{
|
|
if (stimer0_irq == -1) {
|
|
hv_remove_stimer0_handler();
|
|
} else {
|
|
free_percpu_irq(stimer0_irq, &stimer0_evt);
|
|
acpi_unregister_gsi(stimer0_irq);
|
|
stimer0_irq = -1;
|
|
}
|
|
}
|
|
#else
|
|
static int hv_setup_stimer0_irq(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void hv_remove_stimer0_irq(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
|
|
int hv_stimer_alloc(bool have_percpu_irqs)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Synthetic timers are always available except on old versions of
|
|
* Hyper-V on x86. In that case, return as error as Linux will use a
|
|
* clockevent based on emulated LAPIC timer hardware.
|
|
*/
|
|
if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
|
|
return -EINVAL;
|
|
|
|
hv_clock_event = alloc_percpu(struct clock_event_device);
|
|
if (!hv_clock_event)
|
|
return -ENOMEM;
|
|
|
|
direct_mode_enabled = ms_hyperv.misc_features &
|
|
HV_STIMER_DIRECT_MODE_AVAILABLE;
|
|
|
|
/*
|
|
* If Direct Mode isn't enabled, the remainder of the initialization
|
|
* is done later by hv_stimer_legacy_init()
|
|
*/
|
|
if (!direct_mode_enabled)
|
|
return 0;
|
|
|
|
if (have_percpu_irqs) {
|
|
ret = hv_setup_stimer0_irq();
|
|
if (ret)
|
|
goto free_clock_event;
|
|
} else {
|
|
hv_setup_stimer0_handler(hv_stimer0_isr);
|
|
}
|
|
|
|
/*
|
|
* Since we are in Direct Mode, stimer initialization
|
|
* can be done now with a CPUHP value in the same range
|
|
* as other clockevent devices.
|
|
*/
|
|
ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
|
|
"clockevents/hyperv/stimer:starting",
|
|
hv_stimer_init, hv_stimer_cleanup);
|
|
if (ret < 0) {
|
|
hv_remove_stimer0_irq();
|
|
goto free_clock_event;
|
|
}
|
|
return ret;
|
|
|
|
free_clock_event:
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_alloc);
|
|
|
|
/*
|
|
* hv_stimer_legacy_init -- Called from the VMbus driver to handle
|
|
* the case when Direct Mode is not enabled, and the stimer
|
|
* must be initialized late in the CPU onlining process.
|
|
*
|
|
*/
|
|
void hv_stimer_legacy_init(unsigned int cpu, int sint)
|
|
{
|
|
if (direct_mode_enabled)
|
|
return;
|
|
|
|
/*
|
|
* This function gets called by each vCPU, so setting the
|
|
* global stimer_message_sint value each time is conceptually
|
|
* not ideal, but the value passed in is always the same and
|
|
* it avoids introducing yet another interface into this
|
|
* clocksource driver just to set the sint in the legacy case.
|
|
*/
|
|
stimer0_message_sint = sint;
|
|
(void)hv_stimer_init(cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
|
|
|
|
/*
|
|
* hv_stimer_legacy_cleanup -- Called from the VMbus driver to
|
|
* handle the case when Direct Mode is not enabled, and the
|
|
* stimer must be cleaned up early in the CPU offlining
|
|
* process.
|
|
*/
|
|
void hv_stimer_legacy_cleanup(unsigned int cpu)
|
|
{
|
|
if (direct_mode_enabled)
|
|
return;
|
|
(void)hv_stimer_cleanup(cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
|
|
|
|
/*
|
|
* Do a global cleanup of clockevents for the cases of kexec and
|
|
* vmbus exit
|
|
*/
|
|
void hv_stimer_global_cleanup(void)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* hv_stime_legacy_cleanup() will stop the stimer if Direct
|
|
* Mode is not enabled, and fallback to the LAPIC timer.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
hv_stimer_legacy_cleanup(cpu);
|
|
}
|
|
|
|
if (!hv_clock_event)
|
|
return;
|
|
|
|
if (direct_mode_enabled) {
|
|
cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
|
|
hv_remove_stimer0_irq();
|
|
stimer0_irq = -1;
|
|
}
|
|
free_percpu(hv_clock_event);
|
|
hv_clock_event = NULL;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
|
|
|
|
static __always_inline u64 read_hv_clock_msr(void)
|
|
{
|
|
/*
|
|
* Read the partition counter to get the current tick count. This count
|
|
* is set to 0 when the partition is created and is incremented in 100
|
|
* nanosecond units.
|
|
*
|
|
* Use hv_raw_get_register() because this function is used from
|
|
* noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic
|
|
* register it doesn't need the GHCB path.
|
|
*/
|
|
return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT);
|
|
}
|
|
|
|
/*
|
|
* Code and definitions for the Hyper-V clocksources. Two
|
|
* clocksources are defined: one that reads the Hyper-V defined MSR, and
|
|
* the other that uses the TSC reference page feature as defined in the
|
|
* TLFS. The MSR version is for compatibility with old versions of
|
|
* Hyper-V and 32-bit x86. The TSC reference page version is preferred.
|
|
*/
|
|
|
|
static union {
|
|
struct ms_hyperv_tsc_page page;
|
|
u8 reserved[PAGE_SIZE];
|
|
} tsc_pg __aligned(PAGE_SIZE);
|
|
|
|
static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
|
|
static unsigned long tsc_pfn;
|
|
|
|
unsigned long hv_get_tsc_pfn(void)
|
|
{
|
|
return tsc_pfn;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
|
|
|
|
struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
|
|
{
|
|
return tsc_page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hv_get_tsc_page);
|
|
|
|
static __always_inline u64 read_hv_clock_tsc(void)
|
|
{
|
|
u64 cur_tsc, time;
|
|
|
|
/*
|
|
* The Hyper-V Top-Level Function Spec (TLFS), section Timers,
|
|
* subsection Refererence Counter, guarantees that the TSC and MSR
|
|
* times are in sync and monotonic. Therefore we can fall back
|
|
* to the MSR in case the TSC page indicates unavailability.
|
|
*/
|
|
if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
|
|
time = read_hv_clock_msr();
|
|
|
|
return time;
|
|
}
|
|
|
|
static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
|
|
{
|
|
return read_hv_clock_tsc();
|
|
}
|
|
|
|
static u64 noinstr read_hv_sched_clock_tsc(void)
|
|
{
|
|
return (read_hv_clock_tsc() - hv_sched_clock_offset) *
|
|
(NSEC_PER_SEC / HV_CLOCK_HZ);
|
|
}
|
|
|
|
static void suspend_hv_clock_tsc(struct clocksource *arg)
|
|
{
|
|
union hv_reference_tsc_msr tsc_msr;
|
|
|
|
/* Disable the TSC page */
|
|
tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
tsc_msr.enable = 0;
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
|
|
}
|
|
|
|
|
|
static void resume_hv_clock_tsc(struct clocksource *arg)
|
|
{
|
|
union hv_reference_tsc_msr tsc_msr;
|
|
|
|
/* Re-enable the TSC page */
|
|
tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
tsc_msr.enable = 1;
|
|
tsc_msr.pfn = tsc_pfn;
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
|
|
}
|
|
|
|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
|
|
static int hv_cs_enable(struct clocksource *cs)
|
|
{
|
|
vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct clocksource hyperv_cs_tsc = {
|
|
.name = "hyperv_clocksource_tsc_page",
|
|
.rating = 500,
|
|
.read = read_hv_clock_tsc_cs,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
.suspend= suspend_hv_clock_tsc,
|
|
.resume = resume_hv_clock_tsc,
|
|
#ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
|
|
.enable = hv_cs_enable,
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
|
|
#else
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
|
|
#endif
|
|
};
|
|
|
|
static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
|
|
{
|
|
return read_hv_clock_msr();
|
|
}
|
|
|
|
static struct clocksource hyperv_cs_msr = {
|
|
.name = "hyperv_clocksource_msr",
|
|
.rating = 495,
|
|
.read = read_hv_clock_msr_cs,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
/*
|
|
* Reference to pv_ops must be inline so objtool
|
|
* detection of noinstr violations can work correctly.
|
|
*/
|
|
#ifdef CONFIG_GENERIC_SCHED_CLOCK
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
|
|
{
|
|
/*
|
|
* We're on an architecture with generic sched clock (not x86/x64).
|
|
* The Hyper-V sched clock read function returns nanoseconds, not
|
|
* the normal 100ns units of the Hyper-V synthetic clock.
|
|
*/
|
|
sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
|
|
}
|
|
#elif defined CONFIG_PARAVIRT
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock)
|
|
{
|
|
/* We're on x86/x64 *and* using PV ops */
|
|
paravirt_set_sched_clock(sched_clock);
|
|
}
|
|
#else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
|
|
static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
|
|
#endif /* CONFIG_GENERIC_SCHED_CLOCK */
|
|
|
|
static void __init hv_init_tsc_clocksource(void)
|
|
{
|
|
union hv_reference_tsc_msr tsc_msr;
|
|
|
|
/*
|
|
* If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
|
|
* handles frequency and offset changes due to live migration,
|
|
* pause/resume, and other VM management operations. So lower the
|
|
* Hyper-V Reference TSC rating, causing the generic TSC to be used.
|
|
* TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
|
|
* TSC will be preferred over the virtualized ARM64 arch counter.
|
|
*/
|
|
if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
|
|
hyperv_cs_tsc.rating = 250;
|
|
hyperv_cs_msr.rating = 245;
|
|
}
|
|
|
|
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
|
|
return;
|
|
|
|
hv_read_reference_counter = read_hv_clock_tsc;
|
|
|
|
/*
|
|
* TSC page mapping works differently in root compared to guest.
|
|
* - In guest partition the guest PFN has to be passed to the
|
|
* hypervisor.
|
|
* - In root partition it's other way around: it has to map the PFN
|
|
* provided by the hypervisor.
|
|
* But it can't be mapped right here as it's too early and MMU isn't
|
|
* ready yet. So, we only set the enable bit here and will remap the
|
|
* page later in hv_remap_tsc_clocksource().
|
|
*
|
|
* It worth mentioning, that TSC clocksource read function
|
|
* (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
|
|
* TSC page is zeroed (which is the case until the PFN is remapped) and
|
|
* thus TSC clocksource will work even without the real TSC page
|
|
* mapped.
|
|
*/
|
|
tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
|
|
if (hv_root_partition)
|
|
tsc_pfn = tsc_msr.pfn;
|
|
else
|
|
tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
|
|
tsc_msr.enable = 1;
|
|
tsc_msr.pfn = tsc_pfn;
|
|
hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
|
|
|
|
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
|
|
|
|
/*
|
|
* If TSC is invariant, then let it stay as the sched clock since it
|
|
* will be faster than reading the TSC page. But if not invariant, use
|
|
* the TSC page so that live migrations across hosts with different
|
|
* frequencies is handled correctly.
|
|
*/
|
|
if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
|
|
hv_sched_clock_offset = hv_read_reference_counter();
|
|
hv_setup_sched_clock(read_hv_sched_clock_tsc);
|
|
}
|
|
}
|
|
|
|
void __init hv_init_clocksource(void)
|
|
{
|
|
/*
|
|
* Try to set up the TSC page clocksource, then the MSR clocksource.
|
|
* At least one of these will always be available except on very old
|
|
* versions of Hyper-V on x86. In that case we won't have a Hyper-V
|
|
* clocksource, but Linux will still run with a clocksource based
|
|
* on the emulated PIT or LAPIC timer.
|
|
*
|
|
* Never use the MSR clocksource as sched clock. It's too slow.
|
|
* Better to use the native sched clock as the fallback.
|
|
*/
|
|
hv_init_tsc_clocksource();
|
|
|
|
if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
|
|
clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
|
|
}
|
|
|
|
void __init hv_remap_tsc_clocksource(void)
|
|
{
|
|
if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
|
|
return;
|
|
|
|
if (!hv_root_partition) {
|
|
WARN(1, "%s: attempt to remap TSC page in guest partition\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
|
|
MEMREMAP_WB);
|
|
if (!tsc_page)
|
|
pr_err("Failed to remap Hyper-V TSC page.\n");
|
|
}
|