mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 22:54:05 +08:00
1751e8a6cb
This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
417 lines
10 KiB
C
417 lines
10 KiB
C
/*
|
|
* fs/kernfs/mount.c - kernfs mount implementation
|
|
*
|
|
* Copyright (c) 2001-3 Patrick Mochel
|
|
* Copyright (c) 2007 SUSE Linux Products GmbH
|
|
* Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/init.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/exportfs.h>
|
|
|
|
#include "kernfs-internal.h"
|
|
|
|
struct kmem_cache *kernfs_node_cache;
|
|
|
|
static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
struct kernfs_root *root = kernfs_info(sb)->root;
|
|
struct kernfs_syscall_ops *scops = root->syscall_ops;
|
|
|
|
if (scops && scops->remount_fs)
|
|
return scops->remount_fs(root, flags, data);
|
|
return 0;
|
|
}
|
|
|
|
static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
|
|
{
|
|
struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
|
|
struct kernfs_syscall_ops *scops = root->syscall_ops;
|
|
|
|
if (scops && scops->show_options)
|
|
return scops->show_options(sf, root);
|
|
return 0;
|
|
}
|
|
|
|
static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
|
|
{
|
|
struct kernfs_node *node = kernfs_dentry_node(dentry);
|
|
struct kernfs_root *root = kernfs_root(node);
|
|
struct kernfs_syscall_ops *scops = root->syscall_ops;
|
|
|
|
if (scops && scops->show_path)
|
|
return scops->show_path(sf, node, root);
|
|
|
|
seq_dentry(sf, dentry, " \t\n\\");
|
|
return 0;
|
|
}
|
|
|
|
const struct super_operations kernfs_sops = {
|
|
.statfs = simple_statfs,
|
|
.drop_inode = generic_delete_inode,
|
|
.evict_inode = kernfs_evict_inode,
|
|
|
|
.remount_fs = kernfs_sop_remount_fs,
|
|
.show_options = kernfs_sop_show_options,
|
|
.show_path = kernfs_sop_show_path,
|
|
};
|
|
|
|
/*
|
|
* Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
|
|
* number and generation
|
|
*/
|
|
struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
|
|
const union kernfs_node_id *id)
|
|
{
|
|
struct kernfs_node *kn;
|
|
|
|
kn = kernfs_find_and_get_node_by_ino(root, id->ino);
|
|
if (!kn)
|
|
return NULL;
|
|
if (kn->id.generation != id->generation) {
|
|
kernfs_put(kn);
|
|
return NULL;
|
|
}
|
|
return kn;
|
|
}
|
|
|
|
static struct inode *kernfs_fh_get_inode(struct super_block *sb,
|
|
u64 ino, u32 generation)
|
|
{
|
|
struct kernfs_super_info *info = kernfs_info(sb);
|
|
struct inode *inode;
|
|
struct kernfs_node *kn;
|
|
|
|
if (ino == 0)
|
|
return ERR_PTR(-ESTALE);
|
|
|
|
kn = kernfs_find_and_get_node_by_ino(info->root, ino);
|
|
if (!kn)
|
|
return ERR_PTR(-ESTALE);
|
|
inode = kernfs_get_inode(sb, kn);
|
|
kernfs_put(kn);
|
|
if (!inode)
|
|
return ERR_PTR(-ESTALE);
|
|
|
|
if (generation && inode->i_generation != generation) {
|
|
/* we didn't find the right inode.. */
|
|
iput(inode);
|
|
return ERR_PTR(-ESTALE);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
|
|
kernfs_fh_get_inode);
|
|
}
|
|
|
|
static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
|
|
int fh_len, int fh_type)
|
|
{
|
|
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
|
|
kernfs_fh_get_inode);
|
|
}
|
|
|
|
static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
|
|
{
|
|
struct kernfs_node *kn = kernfs_dentry_node(child);
|
|
|
|
return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
|
|
}
|
|
|
|
static const struct export_operations kernfs_export_ops = {
|
|
.fh_to_dentry = kernfs_fh_to_dentry,
|
|
.fh_to_parent = kernfs_fh_to_parent,
|
|
.get_parent = kernfs_get_parent_dentry,
|
|
};
|
|
|
|
/**
|
|
* kernfs_root_from_sb - determine kernfs_root associated with a super_block
|
|
* @sb: the super_block in question
|
|
*
|
|
* Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
|
|
* %NULL is returned.
|
|
*/
|
|
struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
|
|
{
|
|
if (sb->s_op == &kernfs_sops)
|
|
return kernfs_info(sb)->root;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find the next ancestor in the path down to @child, where @parent was the
|
|
* ancestor whose descendant we want to find.
|
|
*
|
|
* Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
|
|
* node. If @parent is b, then we return the node for c.
|
|
* Passing in d as @parent is not ok.
|
|
*/
|
|
static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
|
|
struct kernfs_node *parent)
|
|
{
|
|
if (child == parent) {
|
|
pr_crit_once("BUG in find_next_ancestor: called with parent == child");
|
|
return NULL;
|
|
}
|
|
|
|
while (child->parent != parent) {
|
|
if (!child->parent)
|
|
return NULL;
|
|
child = child->parent;
|
|
}
|
|
|
|
return child;
|
|
}
|
|
|
|
/**
|
|
* kernfs_node_dentry - get a dentry for the given kernfs_node
|
|
* @kn: kernfs_node for which a dentry is needed
|
|
* @sb: the kernfs super_block
|
|
*/
|
|
struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
|
|
struct super_block *sb)
|
|
{
|
|
struct dentry *dentry;
|
|
struct kernfs_node *knparent = NULL;
|
|
|
|
BUG_ON(sb->s_op != &kernfs_sops);
|
|
|
|
dentry = dget(sb->s_root);
|
|
|
|
/* Check if this is the root kernfs_node */
|
|
if (!kn->parent)
|
|
return dentry;
|
|
|
|
knparent = find_next_ancestor(kn, NULL);
|
|
if (WARN_ON(!knparent))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
do {
|
|
struct dentry *dtmp;
|
|
struct kernfs_node *kntmp;
|
|
|
|
if (kn == knparent)
|
|
return dentry;
|
|
kntmp = find_next_ancestor(kn, knparent);
|
|
if (WARN_ON(!kntmp))
|
|
return ERR_PTR(-EINVAL);
|
|
dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
|
|
strlen(kntmp->name));
|
|
dput(dentry);
|
|
if (IS_ERR(dtmp))
|
|
return dtmp;
|
|
knparent = kntmp;
|
|
dentry = dtmp;
|
|
} while (true);
|
|
}
|
|
|
|
static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
|
|
{
|
|
struct kernfs_super_info *info = kernfs_info(sb);
|
|
struct inode *inode;
|
|
struct dentry *root;
|
|
|
|
info->sb = sb;
|
|
/* Userspace would break if executables or devices appear on sysfs */
|
|
sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
|
|
sb->s_blocksize = PAGE_SIZE;
|
|
sb->s_blocksize_bits = PAGE_SHIFT;
|
|
sb->s_magic = magic;
|
|
sb->s_op = &kernfs_sops;
|
|
sb->s_xattr = kernfs_xattr_handlers;
|
|
if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
|
|
sb->s_export_op = &kernfs_export_ops;
|
|
sb->s_time_gran = 1;
|
|
|
|
/* get root inode, initialize and unlock it */
|
|
mutex_lock(&kernfs_mutex);
|
|
inode = kernfs_get_inode(sb, info->root->kn);
|
|
mutex_unlock(&kernfs_mutex);
|
|
if (!inode) {
|
|
pr_debug("kernfs: could not get root inode\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* instantiate and link root dentry */
|
|
root = d_make_root(inode);
|
|
if (!root) {
|
|
pr_debug("%s: could not get root dentry!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
sb->s_root = root;
|
|
sb->s_d_op = &kernfs_dops;
|
|
return 0;
|
|
}
|
|
|
|
static int kernfs_test_super(struct super_block *sb, void *data)
|
|
{
|
|
struct kernfs_super_info *sb_info = kernfs_info(sb);
|
|
struct kernfs_super_info *info = data;
|
|
|
|
return sb_info->root == info->root && sb_info->ns == info->ns;
|
|
}
|
|
|
|
static int kernfs_set_super(struct super_block *sb, void *data)
|
|
{
|
|
int error;
|
|
error = set_anon_super(sb, data);
|
|
if (!error)
|
|
sb->s_fs_info = data;
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* kernfs_super_ns - determine the namespace tag of a kernfs super_block
|
|
* @sb: super_block of interest
|
|
*
|
|
* Return the namespace tag associated with kernfs super_block @sb.
|
|
*/
|
|
const void *kernfs_super_ns(struct super_block *sb)
|
|
{
|
|
struct kernfs_super_info *info = kernfs_info(sb);
|
|
|
|
return info->ns;
|
|
}
|
|
|
|
/**
|
|
* kernfs_mount_ns - kernfs mount helper
|
|
* @fs_type: file_system_type of the fs being mounted
|
|
* @flags: mount flags specified for the mount
|
|
* @root: kernfs_root of the hierarchy being mounted
|
|
* @magic: file system specific magic number
|
|
* @new_sb_created: tell the caller if we allocated a new superblock
|
|
* @ns: optional namespace tag of the mount
|
|
*
|
|
* This is to be called from each kernfs user's file_system_type->mount()
|
|
* implementation, which should pass through the specified @fs_type and
|
|
* @flags, and specify the hierarchy and namespace tag to mount via @root
|
|
* and @ns, respectively.
|
|
*
|
|
* The return value can be passed to the vfs layer verbatim.
|
|
*/
|
|
struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
|
|
struct kernfs_root *root, unsigned long magic,
|
|
bool *new_sb_created, const void *ns)
|
|
{
|
|
struct super_block *sb;
|
|
struct kernfs_super_info *info;
|
|
int error;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
info->root = root;
|
|
info->ns = ns;
|
|
|
|
sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
|
|
&init_user_ns, info);
|
|
if (IS_ERR(sb) || sb->s_fs_info != info)
|
|
kfree(info);
|
|
if (IS_ERR(sb))
|
|
return ERR_CAST(sb);
|
|
|
|
if (new_sb_created)
|
|
*new_sb_created = !sb->s_root;
|
|
|
|
if (!sb->s_root) {
|
|
struct kernfs_super_info *info = kernfs_info(sb);
|
|
|
|
error = kernfs_fill_super(sb, magic);
|
|
if (error) {
|
|
deactivate_locked_super(sb);
|
|
return ERR_PTR(error);
|
|
}
|
|
sb->s_flags |= SB_ACTIVE;
|
|
|
|
mutex_lock(&kernfs_mutex);
|
|
list_add(&info->node, &root->supers);
|
|
mutex_unlock(&kernfs_mutex);
|
|
}
|
|
|
|
return dget(sb->s_root);
|
|
}
|
|
|
|
/**
|
|
* kernfs_kill_sb - kill_sb for kernfs
|
|
* @sb: super_block being killed
|
|
*
|
|
* This can be used directly for file_system_type->kill_sb(). If a kernfs
|
|
* user needs extra cleanup, it can implement its own kill_sb() and call
|
|
* this function at the end.
|
|
*/
|
|
void kernfs_kill_sb(struct super_block *sb)
|
|
{
|
|
struct kernfs_super_info *info = kernfs_info(sb);
|
|
|
|
mutex_lock(&kernfs_mutex);
|
|
list_del(&info->node);
|
|
mutex_unlock(&kernfs_mutex);
|
|
|
|
/*
|
|
* Remove the superblock from fs_supers/s_instances
|
|
* so we can't find it, before freeing kernfs_super_info.
|
|
*/
|
|
kill_anon_super(sb);
|
|
kfree(info);
|
|
}
|
|
|
|
/**
|
|
* kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
|
|
* @kernfs_root: the kernfs_root in question
|
|
* @ns: the namespace tag
|
|
*
|
|
* Pin the superblock so the superblock won't be destroyed in subsequent
|
|
* operations. This can be used to block ->kill_sb() which may be useful
|
|
* for kernfs users which dynamically manage superblocks.
|
|
*
|
|
* Returns NULL if there's no superblock associated to this kernfs_root, or
|
|
* -EINVAL if the superblock is being freed.
|
|
*/
|
|
struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
|
|
{
|
|
struct kernfs_super_info *info;
|
|
struct super_block *sb = NULL;
|
|
|
|
mutex_lock(&kernfs_mutex);
|
|
list_for_each_entry(info, &root->supers, node) {
|
|
if (info->ns == ns) {
|
|
sb = info->sb;
|
|
if (!atomic_inc_not_zero(&info->sb->s_active))
|
|
sb = ERR_PTR(-EINVAL);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&kernfs_mutex);
|
|
return sb;
|
|
}
|
|
|
|
void __init kernfs_init(void)
|
|
{
|
|
|
|
/*
|
|
* the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
|
|
* can access the slab lock free. This could introduce stale nodes,
|
|
* please see how kernfs_find_and_get_node_by_ino filters out stale
|
|
* nodes.
|
|
*/
|
|
kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
|
|
sizeof(struct kernfs_node),
|
|
0,
|
|
SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
|
|
NULL);
|
|
}
|