linux/drivers/spi/spi-fsl-dspi.c
Vladimir Oltean 4da9d4e740 spi: fsl-dspi: avoid SCK glitches with continuous transfers
[ Upstream commit c5c31fb71f ]

The DSPI controller has configurable timing for

(a) tCSC: the interval between the assertion of the chip select and the
    first clock edge

(b) tASC: the interval between the last clock edge and the deassertion
    of the chip select

What is a bit surprising, but is documented in the figure "Example of
continuous transfer (CPHA=1, CONT=1)" in the datasheet, is that when the
chip select stays asserted between multiple TX FIFO writes, the tCSC and
tASC times still apply. With CONT=1, chip select remains asserted, but
SCK takes a break and goes to the idle state for tASC + tCSC ns.

In other words, the default values (of 0 and 0 ns) result in SCK
glitches where the SCK transition to the idle state, as well as the SCK
transition from the idle state, will have no delay in between, and it
may appear that a SCK cycle has simply gone missing. The resulting
timing violation might cause data corruption in many peripherals, as
their chip select is asserted.

The driver has device tree bindings for tCSC ("fsl,spi-cs-sck-delay")
and tASC ("fsl,spi-sck-cs-delay"), but these are only specified to apply
when the chip select toggles in the first place, and this timing
characteristic depends on each peripheral. Many peripherals do not have
explicit timing requirements, so many device trees do not have these
properties present at all.

Nonetheless, the lack of SCK glitches is a common sense requirement, and
since the SCK stays in the idle state during transfers for tCSC+tASC ns,
and that in itself should look like half a cycle, then let's ensure that
tCSC and tASC are at least a quarter of a SCK period, such that their
sum is at least half of one.

Fixes: 95bf15f386 ("spi: fsl-dspi: Add ~50ns delay between cs and sck")
Reported-by: Lisa Chen (陈敏捷) <minjie.chen@geekplus.com>
Debugged-by: Lisa Chen (陈敏捷) <minjie.chen@geekplus.com>
Tested-by: Lisa Chen (陈敏捷) <minjie.chen@geekplus.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20230529223402.1199503-1-vladimir.oltean@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-21 15:59:16 +02:00

1454 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Copyright 2013 Freescale Semiconductor, Inc.
// Copyright 2020 NXP
//
// Freescale DSPI driver
// This file contains a driver for the Freescale DSPI
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-fsl-dspi.h>
#define DRIVER_NAME "fsl-dspi"
#define SPI_MCR 0x00
#define SPI_MCR_MASTER BIT(31)
#define SPI_MCR_PCSIS(x) ((x) << 16)
#define SPI_MCR_CLR_TXF BIT(11)
#define SPI_MCR_CLR_RXF BIT(10)
#define SPI_MCR_XSPI BIT(3)
#define SPI_MCR_DIS_TXF BIT(13)
#define SPI_MCR_DIS_RXF BIT(12)
#define SPI_MCR_HALT BIT(0)
#define SPI_TCR 0x08
#define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
#define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
#define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
#define SPI_CTAR_CPOL BIT(26)
#define SPI_CTAR_CPHA BIT(25)
#define SPI_CTAR_LSBFE BIT(24)
#define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
#define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
#define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
#define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
#define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
#define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
#define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
#define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
#define SPI_CTAR_SCALE_BITS 0xf
#define SPI_CTAR0_SLAVE 0x0c
#define SPI_SR 0x2c
#define SPI_SR_TCFQF BIT(31)
#define SPI_SR_TFUF BIT(27)
#define SPI_SR_TFFF BIT(25)
#define SPI_SR_CMDTCF BIT(23)
#define SPI_SR_SPEF BIT(21)
#define SPI_SR_RFOF BIT(19)
#define SPI_SR_TFIWF BIT(18)
#define SPI_SR_RFDF BIT(17)
#define SPI_SR_CMDFFF BIT(16)
#define SPI_SR_CLEAR (SPI_SR_TCFQF | \
SPI_SR_TFUF | SPI_SR_TFFF | \
SPI_SR_CMDTCF | SPI_SR_SPEF | \
SPI_SR_RFOF | SPI_SR_TFIWF | \
SPI_SR_RFDF | SPI_SR_CMDFFF)
#define SPI_RSER_TFFFE BIT(25)
#define SPI_RSER_TFFFD BIT(24)
#define SPI_RSER_RFDFE BIT(17)
#define SPI_RSER_RFDFD BIT(16)
#define SPI_RSER 0x30
#define SPI_RSER_TCFQE BIT(31)
#define SPI_RSER_CMDTCFE BIT(23)
#define SPI_PUSHR 0x34
#define SPI_PUSHR_CMD_CONT BIT(15)
#define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
#define SPI_PUSHR_CMD_EOQ BIT(11)
#define SPI_PUSHR_CMD_CTCNT BIT(10)
#define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
#define SPI_PUSHR_SLAVE 0x34
#define SPI_POPR 0x38
#define SPI_TXFR0 0x3c
#define SPI_TXFR1 0x40
#define SPI_TXFR2 0x44
#define SPI_TXFR3 0x48
#define SPI_RXFR0 0x7c
#define SPI_RXFR1 0x80
#define SPI_RXFR2 0x84
#define SPI_RXFR3 0x88
#define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
#define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
#define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
#define SPI_SREX 0x13c
#define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
#define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
#define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
struct chip_data {
u32 ctar_val;
};
enum dspi_trans_mode {
DSPI_XSPI_MODE,
DSPI_DMA_MODE,
};
struct fsl_dspi_devtype_data {
enum dspi_trans_mode trans_mode;
u8 max_clock_factor;
int fifo_size;
};
enum {
LS1021A,
LS1012A,
LS1028A,
LS1043A,
LS1046A,
LS2080A,
LS2085A,
LX2160A,
MCF5441X,
VF610,
};
static const struct fsl_dspi_devtype_data devtype_data[] = {
[VF610] = {
.trans_mode = DSPI_DMA_MODE,
.max_clock_factor = 2,
.fifo_size = 4,
},
[LS1021A] = {
/* Has A-011218 DMA erratum */
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 4,
},
[LS1012A] = {
/* Has A-011218 DMA erratum */
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 16,
},
[LS1028A] = {
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 4,
},
[LS1043A] = {
/* Has A-011218 DMA erratum */
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 16,
},
[LS1046A] = {
/* Has A-011218 DMA erratum */
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 16,
},
[LS2080A] = {
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 4,
},
[LS2085A] = {
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 4,
},
[LX2160A] = {
.trans_mode = DSPI_XSPI_MODE,
.max_clock_factor = 8,
.fifo_size = 4,
},
[MCF5441X] = {
.trans_mode = DSPI_DMA_MODE,
.max_clock_factor = 8,
.fifo_size = 16,
},
};
struct fsl_dspi_dma {
u32 *tx_dma_buf;
struct dma_chan *chan_tx;
dma_addr_t tx_dma_phys;
struct completion cmd_tx_complete;
struct dma_async_tx_descriptor *tx_desc;
u32 *rx_dma_buf;
struct dma_chan *chan_rx;
dma_addr_t rx_dma_phys;
struct completion cmd_rx_complete;
struct dma_async_tx_descriptor *rx_desc;
};
struct fsl_dspi {
struct spi_controller *ctlr;
struct platform_device *pdev;
struct regmap *regmap;
struct regmap *regmap_pushr;
int irq;
struct clk *clk;
struct spi_transfer *cur_transfer;
struct spi_message *cur_msg;
struct chip_data *cur_chip;
size_t progress;
size_t len;
const void *tx;
void *rx;
u16 tx_cmd;
const struct fsl_dspi_devtype_data *devtype_data;
struct completion xfer_done;
struct fsl_dspi_dma *dma;
int oper_word_size;
int oper_bits_per_word;
int words_in_flight;
/*
* Offsets for CMD and TXDATA within SPI_PUSHR when accessed
* individually (in XSPI mode)
*/
int pushr_cmd;
int pushr_tx;
void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
};
static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
{
switch (dspi->oper_word_size) {
case 1:
*txdata = *(u8 *)dspi->tx;
break;
case 2:
*txdata = *(u16 *)dspi->tx;
break;
case 4:
*txdata = *(u32 *)dspi->tx;
break;
}
dspi->tx += dspi->oper_word_size;
}
static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
{
switch (dspi->oper_word_size) {
case 1:
*(u8 *)dspi->rx = rxdata;
break;
case 2:
*(u16 *)dspi->rx = rxdata;
break;
case 4:
*(u32 *)dspi->rx = rxdata;
break;
}
dspi->rx += dspi->oper_word_size;
}
static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
{
*txdata = cpu_to_be32(*(u32 *)dspi->tx);
dspi->tx += sizeof(u32);
}
static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
{
*(u32 *)dspi->rx = be32_to_cpu(rxdata);
dspi->rx += sizeof(u32);
}
static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
{
*txdata = cpu_to_be16(*(u16 *)dspi->tx);
dspi->tx += sizeof(u16);
}
static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
{
*(u16 *)dspi->rx = be16_to_cpu(rxdata);
dspi->rx += sizeof(u16);
}
static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
{
u16 hi = *(u16 *)dspi->tx;
u16 lo = *(u16 *)(dspi->tx + 2);
*txdata = (u32)hi << 16 | lo;
dspi->tx += sizeof(u32);
}
static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
{
u16 hi = rxdata & 0xffff;
u16 lo = rxdata >> 16;
*(u16 *)dspi->rx = lo;
*(u16 *)(dspi->rx + 2) = hi;
dspi->rx += sizeof(u32);
}
/*
* Pop one word from the TX buffer for pushing into the
* PUSHR register (TX FIFO)
*/
static u32 dspi_pop_tx(struct fsl_dspi *dspi)
{
u32 txdata = 0;
if (dspi->tx)
dspi->host_to_dev(dspi, &txdata);
dspi->len -= dspi->oper_word_size;
return txdata;
}
/* Prepare one TX FIFO entry (txdata plus cmd) */
static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
{
u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
if (spi_controller_is_slave(dspi->ctlr))
return data;
if (dspi->len > 0)
cmd |= SPI_PUSHR_CMD_CONT;
return cmd << 16 | data;
}
/* Push one word to the RX buffer from the POPR register (RX FIFO) */
static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
{
if (!dspi->rx)
return;
dspi->dev_to_host(dspi, rxdata);
}
static void dspi_tx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
complete(&dma->cmd_tx_complete);
}
static void dspi_rx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
int i;
if (dspi->rx) {
for (i = 0; i < dspi->words_in_flight; i++)
dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
}
complete(&dma->cmd_rx_complete);
}
static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
{
struct device *dev = &dspi->pdev->dev;
struct fsl_dspi_dma *dma = dspi->dma;
int time_left;
int i;
for (i = 0; i < dspi->words_in_flight; i++)
dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
dma->tx_dma_phys,
dspi->words_in_flight *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->tx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->tx_desc->callback = dspi_tx_dma_callback;
dma->tx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
dma->rx_dma_phys,
dspi->words_in_flight *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->rx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->rx_desc->callback = dspi_rx_dma_callback;
dma->rx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
reinit_completion(&dspi->dma->cmd_rx_complete);
reinit_completion(&dspi->dma->cmd_tx_complete);
dma_async_issue_pending(dma->chan_rx);
dma_async_issue_pending(dma->chan_tx);
if (spi_controller_is_slave(dspi->ctlr)) {
wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
return 0;
}
time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA tx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA rx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
return 0;
}
static void dspi_setup_accel(struct fsl_dspi *dspi);
static int dspi_dma_xfer(struct fsl_dspi *dspi)
{
struct spi_message *message = dspi->cur_msg;
struct device *dev = &dspi->pdev->dev;
int ret = 0;
/*
* dspi->len gets decremented by dspi_pop_tx_pushr in
* dspi_next_xfer_dma_submit
*/
while (dspi->len) {
/* Figure out operational bits-per-word for this chunk */
dspi_setup_accel(dspi);
dspi->words_in_flight = dspi->len / dspi->oper_word_size;
if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
dspi->words_in_flight = dspi->devtype_data->fifo_size;
message->actual_length += dspi->words_in_flight *
dspi->oper_word_size;
ret = dspi_next_xfer_dma_submit(dspi);
if (ret) {
dev_err(dev, "DMA transfer failed\n");
break;
}
}
return ret;
}
static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
{
int dma_bufsize = dspi->devtype_data->fifo_size * 2;
struct device *dev = &dspi->pdev->dev;
struct dma_slave_config cfg;
struct fsl_dspi_dma *dma;
int ret;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->chan_rx = dma_request_chan(dev, "rx");
if (IS_ERR(dma->chan_rx)) {
dev_err(dev, "rx dma channel not available\n");
ret = PTR_ERR(dma->chan_rx);
return ret;
}
dma->chan_tx = dma_request_chan(dev, "tx");
if (IS_ERR(dma->chan_tx)) {
dev_err(dev, "tx dma channel not available\n");
ret = PTR_ERR(dma->chan_tx);
goto err_tx_channel;
}
dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
dma_bufsize, &dma->tx_dma_phys,
GFP_KERNEL);
if (!dma->tx_dma_buf) {
ret = -ENOMEM;
goto err_tx_dma_buf;
}
dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
dma_bufsize, &dma->rx_dma_phys,
GFP_KERNEL);
if (!dma->rx_dma_buf) {
ret = -ENOMEM;
goto err_rx_dma_buf;
}
memset(&cfg, 0, sizeof(cfg));
cfg.src_addr = phy_addr + SPI_POPR;
cfg.dst_addr = phy_addr + SPI_PUSHR;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 1;
cfg.dst_maxburst = 1;
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &cfg);
if (ret) {
dev_err(dev, "can't configure rx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &cfg);
if (ret) {
dev_err(dev, "can't configure tx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
dspi->dma = dma;
init_completion(&dma->cmd_tx_complete);
init_completion(&dma->cmd_rx_complete);
return 0;
err_slave_config:
dma_free_coherent(dma->chan_rx->device->dev,
dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
err_rx_dma_buf:
dma_free_coherent(dma->chan_tx->device->dev,
dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
err_tx_dma_buf:
dma_release_channel(dma->chan_tx);
err_tx_channel:
dma_release_channel(dma->chan_rx);
devm_kfree(dev, dma);
dspi->dma = NULL;
return ret;
}
static void dspi_release_dma(struct fsl_dspi *dspi)
{
int dma_bufsize = dspi->devtype_data->fifo_size * 2;
struct fsl_dspi_dma *dma = dspi->dma;
if (!dma)
return;
if (dma->chan_tx) {
dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
dma->tx_dma_buf, dma->tx_dma_phys);
dma_release_channel(dma->chan_tx);
}
if (dma->chan_rx) {
dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
dma->rx_dma_buf, dma->rx_dma_phys);
dma_release_channel(dma->chan_rx);
}
}
static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
unsigned long clkrate)
{
/* Valid baud rate pre-scaler values */
int pbr_tbl[4] = {2, 3, 5, 7};
int brs[16] = { 2, 4, 6, 8,
16, 32, 64, 128,
256, 512, 1024, 2048,
4096, 8192, 16384, 32768 };
int scale_needed, scale, minscale = INT_MAX;
int i, j;
scale_needed = clkrate / speed_hz;
if (clkrate % speed_hz)
scale_needed++;
for (i = 0; i < ARRAY_SIZE(brs); i++)
for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
scale = brs[i] * pbr_tbl[j];
if (scale >= scale_needed) {
if (scale < minscale) {
minscale = scale;
*br = i;
*pbr = j;
}
break;
}
}
if (minscale == INT_MAX) {
pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
speed_hz, clkrate);
*pbr = ARRAY_SIZE(pbr_tbl) - 1;
*br = ARRAY_SIZE(brs) - 1;
}
}
static void ns_delay_scale(char *psc, char *sc, int delay_ns,
unsigned long clkrate)
{
int scale_needed, scale, minscale = INT_MAX;
int pscale_tbl[4] = {1, 3, 5, 7};
u32 remainder;
int i, j;
scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
&remainder);
if (remainder)
scale_needed++;
for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
scale = pscale_tbl[i] * (2 << j);
if (scale >= scale_needed) {
if (scale < minscale) {
minscale = scale;
*psc = i;
*sc = j;
}
break;
}
}
if (minscale == INT_MAX) {
pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
delay_ns, clkrate);
*psc = ARRAY_SIZE(pscale_tbl) - 1;
*sc = SPI_CTAR_SCALE_BITS;
}
}
static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
{
/*
* The only time when the PCS doesn't need continuation after this word
* is when it's last. We need to look ahead, because we actually call
* dspi_pop_tx (the function that decrements dspi->len) _after_
* dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
* word is enough. If there's more to transmit than that,
* dspi_xspi_write will know to split the FIFO writes in 2, and
* generate a new PUSHR command with the final word that will have PCS
* deasserted (not continued) here.
*/
if (dspi->len > dspi->oper_word_size)
cmd |= SPI_PUSHR_CMD_CONT;
regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
}
static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
{
regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
}
static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
{
int num_bytes = num_words * dspi->oper_word_size;
u16 tx_cmd = dspi->tx_cmd;
/*
* If the PCS needs to de-assert (i.e. we're at the end of the buffer
* and cs_change does not want the PCS to stay on), then we need a new
* PUSHR command, since this one (for the body of the buffer)
* necessarily has the CONT bit set.
* So send one word less during this go, to force a split and a command
* with a single word next time, when CONT will be unset.
*/
if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
tx_cmd |= SPI_PUSHR_CMD_EOQ;
/* Update CTARE */
regmap_write(dspi->regmap, SPI_CTARE(0),
SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
SPI_CTARE_DTCP(num_words));
/*
* Write the CMD FIFO entry first, and then the two
* corresponding TX FIFO entries (or one...).
*/
dspi_pushr_cmd_write(dspi, tx_cmd);
/* Fill TX FIFO with as many transfers as possible */
while (num_words--) {
u32 data = dspi_pop_tx(dspi);
dspi_pushr_txdata_write(dspi, data & 0xFFFF);
if (dspi->oper_bits_per_word > 16)
dspi_pushr_txdata_write(dspi, data >> 16);
}
}
static u32 dspi_popr_read(struct fsl_dspi *dspi)
{
u32 rxdata = 0;
regmap_read(dspi->regmap, SPI_POPR, &rxdata);
return rxdata;
}
static void dspi_fifo_read(struct fsl_dspi *dspi)
{
int num_fifo_entries = dspi->words_in_flight;
/* Read one FIFO entry and push to rx buffer */
while (num_fifo_entries--)
dspi_push_rx(dspi, dspi_popr_read(dspi));
}
static void dspi_setup_accel(struct fsl_dspi *dspi)
{
struct spi_transfer *xfer = dspi->cur_transfer;
bool odd = !!(dspi->len & 1);
/* No accel for frames not multiple of 8 bits at the moment */
if (xfer->bits_per_word % 8)
goto no_accel;
if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
dspi->oper_bits_per_word = 16;
} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
dspi->oper_bits_per_word = 8;
} else {
/* Start off with maximum supported by hardware */
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
dspi->oper_bits_per_word = 32;
else
dspi->oper_bits_per_word = 16;
/*
* And go down only if the buffer can't be sent with
* words this big
*/
do {
if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
break;
dspi->oper_bits_per_word /= 2;
} while (dspi->oper_bits_per_word > 8);
}
if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
dspi->dev_to_host = dspi_8on32_dev_to_host;
dspi->host_to_dev = dspi_8on32_host_to_dev;
} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
dspi->dev_to_host = dspi_8on16_dev_to_host;
dspi->host_to_dev = dspi_8on16_host_to_dev;
} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
dspi->dev_to_host = dspi_16on32_dev_to_host;
dspi->host_to_dev = dspi_16on32_host_to_dev;
} else {
no_accel:
dspi->dev_to_host = dspi_native_dev_to_host;
dspi->host_to_dev = dspi_native_host_to_dev;
dspi->oper_bits_per_word = xfer->bits_per_word;
}
dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
/*
* Update CTAR here (code is common for XSPI and DMA modes).
* We will update CTARE in the portion specific to XSPI, when we
* also know the preload value (DTCP).
*/
regmap_write(dspi->regmap, SPI_CTAR(0),
dspi->cur_chip->ctar_val |
SPI_FRAME_BITS(dspi->oper_bits_per_word));
}
static void dspi_fifo_write(struct fsl_dspi *dspi)
{
int num_fifo_entries = dspi->devtype_data->fifo_size;
struct spi_transfer *xfer = dspi->cur_transfer;
struct spi_message *msg = dspi->cur_msg;
int num_words, num_bytes;
dspi_setup_accel(dspi);
/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
if (dspi->oper_word_size == 4)
num_fifo_entries /= 2;
/*
* Integer division intentionally trims off odd (or non-multiple of 4)
* numbers of bytes at the end of the buffer, which will be sent next
* time using a smaller oper_word_size.
*/
num_words = dspi->len / dspi->oper_word_size;
if (num_words > num_fifo_entries)
num_words = num_fifo_entries;
/* Update total number of bytes that were transferred */
num_bytes = num_words * dspi->oper_word_size;
msg->actual_length += num_bytes;
dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
/*
* Update shared variable for use in the next interrupt (both in
* dspi_fifo_read and in dspi_fifo_write).
*/
dspi->words_in_flight = num_words;
spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
dspi_xspi_fifo_write(dspi, num_words);
/*
* Everything after this point is in a potential race with the next
* interrupt, so we must never use dspi->words_in_flight again since it
* might already be modified by the next dspi_fifo_write.
*/
spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
dspi->progress, !dspi->irq);
}
static int dspi_rxtx(struct fsl_dspi *dspi)
{
dspi_fifo_read(dspi);
if (!dspi->len)
/* Success! */
return 0;
dspi_fifo_write(dspi);
return -EINPROGRESS;
}
static int dspi_poll(struct fsl_dspi *dspi)
{
int tries = 1000;
u32 spi_sr;
do {
regmap_read(dspi->regmap, SPI_SR, &spi_sr);
regmap_write(dspi->regmap, SPI_SR, spi_sr);
if (spi_sr & SPI_SR_CMDTCF)
break;
} while (--tries);
if (!tries)
return -ETIMEDOUT;
return dspi_rxtx(dspi);
}
static irqreturn_t dspi_interrupt(int irq, void *dev_id)
{
struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
u32 spi_sr;
regmap_read(dspi->regmap, SPI_SR, &spi_sr);
regmap_write(dspi->regmap, SPI_SR, spi_sr);
if (!(spi_sr & SPI_SR_CMDTCF))
return IRQ_NONE;
if (dspi_rxtx(dspi) == 0)
complete(&dspi->xfer_done);
return IRQ_HANDLED;
}
static int dspi_transfer_one_message(struct spi_controller *ctlr,
struct spi_message *message)
{
struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
struct spi_device *spi = message->spi;
struct spi_transfer *transfer;
int status = 0;
message->actual_length = 0;
list_for_each_entry(transfer, &message->transfers, transfer_list) {
dspi->cur_transfer = transfer;
dspi->cur_msg = message;
dspi->cur_chip = spi_get_ctldata(spi);
/* Prepare command word for CMD FIFO */
dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
SPI_PUSHR_CMD_PCS(spi->chip_select);
if (list_is_last(&dspi->cur_transfer->transfer_list,
&dspi->cur_msg->transfers)) {
/* Leave PCS activated after last transfer when
* cs_change is set.
*/
if (transfer->cs_change)
dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
} else {
/* Keep PCS active between transfers in same message
* when cs_change is not set, and de-activate PCS
* between transfers in the same message when
* cs_change is set.
*/
if (!transfer->cs_change)
dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
}
dspi->tx = transfer->tx_buf;
dspi->rx = transfer->rx_buf;
dspi->len = transfer->len;
dspi->progress = 0;
regmap_update_bits(dspi->regmap, SPI_MCR,
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
dspi->progress, !dspi->irq);
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
status = dspi_dma_xfer(dspi);
} else {
dspi_fifo_write(dspi);
if (dspi->irq) {
wait_for_completion(&dspi->xfer_done);
reinit_completion(&dspi->xfer_done);
} else {
do {
status = dspi_poll(dspi);
} while (status == -EINPROGRESS);
}
}
if (status)
break;
spi_transfer_delay_exec(transfer);
}
message->status = status;
spi_finalize_current_message(ctlr);
return status;
}
static int dspi_setup(struct spi_device *spi)
{
struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
u32 cs_sck_delay = 0, sck_cs_delay = 0;
struct fsl_dspi_platform_data *pdata;
unsigned char pasc = 0, asc = 0;
struct chip_data *chip;
unsigned long clkrate;
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (chip == NULL) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip)
return -ENOMEM;
}
pdata = dev_get_platdata(&dspi->pdev->dev);
if (!pdata) {
of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
&cs_sck_delay);
of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
&sck_cs_delay);
} else {
cs_sck_delay = pdata->cs_sck_delay;
sck_cs_delay = pdata->sck_cs_delay;
}
/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
* glitches of half a cycle by never allowing tCSC + tASC to go below
* half a SCK period.
*/
if (cs_sck_delay < quarter_period_ns)
cs_sck_delay = quarter_period_ns;
if (sck_cs_delay < quarter_period_ns)
sck_cs_delay = quarter_period_ns;
dev_dbg(&spi->dev,
"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
cs_sck_delay, sck_cs_delay);
clkrate = clk_get_rate(dspi->clk);
hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
/* Set PCS to SCK delay scale values */
ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
/* Set After SCK delay scale values */
ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
chip->ctar_val = 0;
if (spi->mode & SPI_CPOL)
chip->ctar_val |= SPI_CTAR_CPOL;
if (spi->mode & SPI_CPHA)
chip->ctar_val |= SPI_CTAR_CPHA;
if (!spi_controller_is_slave(dspi->ctlr)) {
chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
SPI_CTAR_CSSCK(cssck) |
SPI_CTAR_PASC(pasc) |
SPI_CTAR_ASC(asc) |
SPI_CTAR_PBR(pbr) |
SPI_CTAR_BR(br);
if (spi->mode & SPI_LSB_FIRST)
chip->ctar_val |= SPI_CTAR_LSBFE;
}
spi_set_ctldata(spi, chip);
return 0;
}
static void dspi_cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
spi->controller->bus_num, spi->chip_select);
kfree(chip);
}
static const struct of_device_id fsl_dspi_dt_ids[] = {
{
.compatible = "fsl,vf610-dspi",
.data = &devtype_data[VF610],
}, {
.compatible = "fsl,ls1021a-v1.0-dspi",
.data = &devtype_data[LS1021A],
}, {
.compatible = "fsl,ls1012a-dspi",
.data = &devtype_data[LS1012A],
}, {
.compatible = "fsl,ls1028a-dspi",
.data = &devtype_data[LS1028A],
}, {
.compatible = "fsl,ls1043a-dspi",
.data = &devtype_data[LS1043A],
}, {
.compatible = "fsl,ls1046a-dspi",
.data = &devtype_data[LS1046A],
}, {
.compatible = "fsl,ls2080a-dspi",
.data = &devtype_data[LS2080A],
}, {
.compatible = "fsl,ls2085a-dspi",
.data = &devtype_data[LS2085A],
}, {
.compatible = "fsl,lx2160a-dspi",
.data = &devtype_data[LX2160A],
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
#ifdef CONFIG_PM_SLEEP
static int dspi_suspend(struct device *dev)
{
struct fsl_dspi *dspi = dev_get_drvdata(dev);
if (dspi->irq)
disable_irq(dspi->irq);
spi_controller_suspend(dspi->ctlr);
clk_disable_unprepare(dspi->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int dspi_resume(struct device *dev)
{
struct fsl_dspi *dspi = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
ret = clk_prepare_enable(dspi->clk);
if (ret)
return ret;
spi_controller_resume(dspi->ctlr);
if (dspi->irq)
enable_irq(dspi->irq);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
static const struct regmap_range dspi_volatile_ranges[] = {
regmap_reg_range(SPI_MCR, SPI_TCR),
regmap_reg_range(SPI_SR, SPI_SR),
regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
};
static const struct regmap_access_table dspi_volatile_table = {
.yes_ranges = dspi_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
};
static const struct regmap_config dspi_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x88,
.volatile_table = &dspi_volatile_table,
};
static const struct regmap_range dspi_xspi_volatile_ranges[] = {
regmap_reg_range(SPI_MCR, SPI_TCR),
regmap_reg_range(SPI_SR, SPI_SR),
regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
regmap_reg_range(SPI_SREX, SPI_SREX),
};
static const struct regmap_access_table dspi_xspi_volatile_table = {
.yes_ranges = dspi_xspi_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
};
static const struct regmap_config dspi_xspi_regmap_config[] = {
{
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x13c,
.volatile_table = &dspi_xspi_volatile_table,
},
{
.name = "pushr",
.reg_bits = 16,
.val_bits = 16,
.reg_stride = 2,
.max_register = 0x2,
},
};
static int dspi_init(struct fsl_dspi *dspi)
{
unsigned int mcr;
/* Set idle states for all chip select signals to high */
mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
mcr |= SPI_MCR_XSPI;
if (!spi_controller_is_slave(dspi->ctlr))
mcr |= SPI_MCR_MASTER;
regmap_write(dspi->regmap, SPI_MCR, mcr);
regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
switch (dspi->devtype_data->trans_mode) {
case DSPI_XSPI_MODE:
regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
break;
case DSPI_DMA_MODE:
regmap_write(dspi->regmap, SPI_RSER,
SPI_RSER_TFFFE | SPI_RSER_TFFFD |
SPI_RSER_RFDFE | SPI_RSER_RFDFD);
break;
default:
dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
dspi->devtype_data->trans_mode);
return -EINVAL;
}
return 0;
}
static int dspi_slave_abort(struct spi_master *master)
{
struct fsl_dspi *dspi = spi_master_get_devdata(master);
/*
* Terminate all pending DMA transactions for the SPI working
* in SLAVE mode.
*/
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
dmaengine_terminate_sync(dspi->dma->chan_rx);
dmaengine_terminate_sync(dspi->dma->chan_tx);
}
/* Clear the internal DSPI RX and TX FIFO buffers */
regmap_update_bits(dspi->regmap, SPI_MCR,
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
return 0;
}
static int dspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct regmap_config *regmap_config;
struct fsl_dspi_platform_data *pdata;
struct spi_controller *ctlr;
int ret, cs_num, bus_num = -1;
struct fsl_dspi *dspi;
struct resource *res;
void __iomem *base;
bool big_endian;
dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
if (!dspi)
return -ENOMEM;
ctlr = spi_alloc_master(&pdev->dev, 0);
if (!ctlr)
return -ENOMEM;
spi_controller_set_devdata(ctlr, dspi);
platform_set_drvdata(pdev, dspi);
dspi->pdev = pdev;
dspi->ctlr = ctlr;
ctlr->setup = dspi_setup;
ctlr->transfer_one_message = dspi_transfer_one_message;
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->cleanup = dspi_cleanup;
ctlr->slave_abort = dspi_slave_abort;
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
pdata = dev_get_platdata(&pdev->dev);
if (pdata) {
ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
ctlr->bus_num = pdata->bus_num;
/* Only Coldfire uses platform data */
dspi->devtype_data = &devtype_data[MCF5441X];
big_endian = true;
} else {
ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
if (ret < 0) {
dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
goto out_ctlr_put;
}
ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
of_property_read_u32(np, "bus-num", &bus_num);
ctlr->bus_num = bus_num;
if (of_property_read_bool(np, "spi-slave"))
ctlr->slave = true;
dspi->devtype_data = of_device_get_match_data(&pdev->dev);
if (!dspi->devtype_data) {
dev_err(&pdev->dev, "can't get devtype_data\n");
ret = -EFAULT;
goto out_ctlr_put;
}
big_endian = of_device_is_big_endian(np);
}
if (big_endian) {
dspi->pushr_cmd = 0;
dspi->pushr_tx = 2;
} else {
dspi->pushr_cmd = 2;
dspi->pushr_tx = 0;
}
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
else
ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base)) {
ret = PTR_ERR(base);
goto out_ctlr_put;
}
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
regmap_config = &dspi_xspi_regmap_config[0];
else
regmap_config = &dspi_regmap_config;
dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
if (IS_ERR(dspi->regmap)) {
dev_err(&pdev->dev, "failed to init regmap: %ld\n",
PTR_ERR(dspi->regmap));
ret = PTR_ERR(dspi->regmap);
goto out_ctlr_put;
}
if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
dspi->regmap_pushr = devm_regmap_init_mmio(
&pdev->dev, base + SPI_PUSHR,
&dspi_xspi_regmap_config[1]);
if (IS_ERR(dspi->regmap_pushr)) {
dev_err(&pdev->dev,
"failed to init pushr regmap: %ld\n",
PTR_ERR(dspi->regmap_pushr));
ret = PTR_ERR(dspi->regmap_pushr);
goto out_ctlr_put;
}
}
dspi->clk = devm_clk_get(&pdev->dev, "dspi");
if (IS_ERR(dspi->clk)) {
ret = PTR_ERR(dspi->clk);
dev_err(&pdev->dev, "unable to get clock\n");
goto out_ctlr_put;
}
ret = clk_prepare_enable(dspi->clk);
if (ret)
goto out_ctlr_put;
ret = dspi_init(dspi);
if (ret)
goto out_clk_put;
dspi->irq = platform_get_irq(pdev, 0);
if (dspi->irq <= 0) {
dev_info(&pdev->dev,
"can't get platform irq, using poll mode\n");
dspi->irq = 0;
goto poll_mode;
}
init_completion(&dspi->xfer_done);
ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
IRQF_SHARED, pdev->name, dspi);
if (ret < 0) {
dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
goto out_clk_put;
}
poll_mode:
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
ret = dspi_request_dma(dspi, res->start);
if (ret < 0) {
dev_err(&pdev->dev, "can't get dma channels\n");
goto out_free_irq;
}
}
ctlr->max_speed_hz =
clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
ctlr->ptp_sts_supported = true;
ret = spi_register_controller(ctlr);
if (ret != 0) {
dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
goto out_release_dma;
}
return ret;
out_release_dma:
dspi_release_dma(dspi);
out_free_irq:
if (dspi->irq)
free_irq(dspi->irq, dspi);
out_clk_put:
clk_disable_unprepare(dspi->clk);
out_ctlr_put:
spi_controller_put(ctlr);
return ret;
}
static int dspi_remove(struct platform_device *pdev)
{
struct fsl_dspi *dspi = platform_get_drvdata(pdev);
/* Disconnect from the SPI framework */
spi_unregister_controller(dspi->ctlr);
/* Disable RX and TX */
regmap_update_bits(dspi->regmap, SPI_MCR,
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
/* Stop Running */
regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
dspi_release_dma(dspi);
if (dspi->irq)
free_irq(dspi->irq, dspi);
clk_disable_unprepare(dspi->clk);
return 0;
}
static void dspi_shutdown(struct platform_device *pdev)
{
dspi_remove(pdev);
}
static struct platform_driver fsl_dspi_driver = {
.driver.name = DRIVER_NAME,
.driver.of_match_table = fsl_dspi_dt_ids,
.driver.owner = THIS_MODULE,
.driver.pm = &dspi_pm,
.probe = dspi_probe,
.remove = dspi_remove,
.shutdown = dspi_shutdown,
};
module_platform_driver(fsl_dspi_driver);
MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);