mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 15:04:27 +08:00
16ed141677
When changing a partition table entry on POWER9, we do a particular form of the tlbie instruction which flushes all TLBs and caches of the partition table for a given logical partition ID (LPID). This instruction has a field in the instruction word, labelled R (radix), which should be 1 if the partition was previously a radix partition and 0 if it was a HPT partition. This implements that logic. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
478 lines
12 KiB
C
478 lines
12 KiB
C
/*
|
|
* This file contains ioremap and related functions for 64-bit machines.
|
|
*
|
|
* Derived from arch/ppc64/mm/init.c
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
|
|
#error TASK_SIZE_USER64 exceeds user VSID range
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* partition table and process table for ISA 3.0
|
|
*/
|
|
struct prtb_entry *process_tb;
|
|
struct patb_entry *partition_tb;
|
|
/*
|
|
* page table size
|
|
*/
|
|
unsigned long __pte_index_size;
|
|
EXPORT_SYMBOL(__pte_index_size);
|
|
unsigned long __pmd_index_size;
|
|
EXPORT_SYMBOL(__pmd_index_size);
|
|
unsigned long __pud_index_size;
|
|
EXPORT_SYMBOL(__pud_index_size);
|
|
unsigned long __pgd_index_size;
|
|
EXPORT_SYMBOL(__pgd_index_size);
|
|
unsigned long __pmd_cache_index;
|
|
EXPORT_SYMBOL(__pmd_cache_index);
|
|
unsigned long __pte_table_size;
|
|
EXPORT_SYMBOL(__pte_table_size);
|
|
unsigned long __pmd_table_size;
|
|
EXPORT_SYMBOL(__pmd_table_size);
|
|
unsigned long __pud_table_size;
|
|
EXPORT_SYMBOL(__pud_table_size);
|
|
unsigned long __pgd_table_size;
|
|
EXPORT_SYMBOL(__pgd_table_size);
|
|
unsigned long __pmd_val_bits;
|
|
EXPORT_SYMBOL(__pmd_val_bits);
|
|
unsigned long __pud_val_bits;
|
|
EXPORT_SYMBOL(__pud_val_bits);
|
|
unsigned long __pgd_val_bits;
|
|
EXPORT_SYMBOL(__pgd_val_bits);
|
|
unsigned long __kernel_virt_start;
|
|
EXPORT_SYMBOL(__kernel_virt_start);
|
|
unsigned long __kernel_virt_size;
|
|
EXPORT_SYMBOL(__kernel_virt_size);
|
|
unsigned long __vmalloc_start;
|
|
EXPORT_SYMBOL(__vmalloc_start);
|
|
unsigned long __vmalloc_end;
|
|
EXPORT_SYMBOL(__vmalloc_end);
|
|
struct page *vmemmap;
|
|
EXPORT_SYMBOL(vmemmap);
|
|
unsigned long __pte_frag_nr;
|
|
EXPORT_SYMBOL(__pte_frag_nr);
|
|
unsigned long __pte_frag_size_shift;
|
|
EXPORT_SYMBOL(__pte_frag_size_shift);
|
|
unsigned long ioremap_bot;
|
|
#else /* !CONFIG_PPC_BOOK3S_64 */
|
|
unsigned long ioremap_bot = IOREMAP_BASE;
|
|
#endif
|
|
|
|
/**
|
|
* __ioremap_at - Low level function to establish the page tables
|
|
* for an IO mapping
|
|
*/
|
|
void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long i;
|
|
|
|
/* Make sure we have the base flags */
|
|
if ((flags & _PAGE_PRESENT) == 0)
|
|
flags |= pgprot_val(PAGE_KERNEL);
|
|
|
|
/* We don't support the 4K PFN hack with ioremap */
|
|
if (flags & H_PAGE_4K_PFN)
|
|
return NULL;
|
|
|
|
WARN_ON(pa & ~PAGE_MASK);
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
for (i = 0; i < size; i += PAGE_SIZE)
|
|
if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
|
|
return NULL;
|
|
|
|
return (void __iomem *)ea;
|
|
}
|
|
|
|
/**
|
|
* __iounmap_from - Low level function to tear down the page tables
|
|
* for an IO mapping. This is used for mappings that
|
|
* are manipulated manually, like partial unmapping of
|
|
* PCI IOs or ISA space.
|
|
*/
|
|
void __iounmap_at(void *ea, unsigned long size)
|
|
{
|
|
WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
|
|
WARN_ON(size & ~PAGE_MASK);
|
|
|
|
unmap_kernel_range((unsigned long)ea, size);
|
|
}
|
|
|
|
void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags, void *caller)
|
|
{
|
|
phys_addr_t paligned;
|
|
void __iomem *ret;
|
|
|
|
/*
|
|
* Choose an address to map it to.
|
|
* Once the imalloc system is running, we use it.
|
|
* Before that, we map using addresses going
|
|
* up from ioremap_bot. imalloc will use
|
|
* the addresses from ioremap_bot through
|
|
* IMALLOC_END
|
|
*
|
|
*/
|
|
paligned = addr & PAGE_MASK;
|
|
size = PAGE_ALIGN(addr + size) - paligned;
|
|
|
|
if ((size == 0) || (paligned == 0))
|
|
return NULL;
|
|
|
|
if (slab_is_available()) {
|
|
struct vm_struct *area;
|
|
|
|
area = __get_vm_area_caller(size, VM_IOREMAP,
|
|
ioremap_bot, IOREMAP_END,
|
|
caller);
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
area->phys_addr = paligned;
|
|
ret = __ioremap_at(paligned, area->addr, size, flags);
|
|
if (!ret)
|
|
vunmap(area->addr);
|
|
} else {
|
|
ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
|
|
if (ret)
|
|
ioremap_bot += size;
|
|
}
|
|
|
|
if (ret)
|
|
ret += addr & ~PAGE_MASK;
|
|
return ret;
|
|
}
|
|
|
|
void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
|
|
}
|
|
|
|
void __iomem * ioremap(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
|
|
{
|
|
unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
/* writeable implies dirty for kernel addresses */
|
|
if (flags & _PAGE_WRITE)
|
|
flags |= _PAGE_DIRTY;
|
|
|
|
/* we don't want to let _PAGE_EXEC leak out */
|
|
flags &= ~_PAGE_EXEC;
|
|
/*
|
|
* Force kernel mapping.
|
|
*/
|
|
#if defined(CONFIG_PPC_BOOK3S_64)
|
|
flags |= _PAGE_PRIVILEGED;
|
|
#else
|
|
flags &= ~_PAGE_USER;
|
|
#endif
|
|
|
|
|
|
#ifdef _PAGE_BAP_SR
|
|
/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
|
|
* which means that we just cleared supervisor access... oops ;-) This
|
|
* restores it
|
|
*/
|
|
flags |= _PAGE_BAP_SR;
|
|
#endif
|
|
|
|
if (ppc_md.ioremap)
|
|
return ppc_md.ioremap(addr, size, flags, caller);
|
|
return __ioremap_caller(addr, size, flags, caller);
|
|
}
|
|
|
|
|
|
/*
|
|
* Unmap an IO region and remove it from imalloc'd list.
|
|
* Access to IO memory should be serialized by driver.
|
|
*/
|
|
void __iounmap(volatile void __iomem *token)
|
|
{
|
|
void *addr;
|
|
|
|
if (!slab_is_available())
|
|
return;
|
|
|
|
addr = (void *) ((unsigned long __force)
|
|
PCI_FIX_ADDR(token) & PAGE_MASK);
|
|
if ((unsigned long)addr < ioremap_bot) {
|
|
printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
|
|
" at 0x%p\n", addr);
|
|
return;
|
|
}
|
|
vunmap(addr);
|
|
}
|
|
|
|
void iounmap(volatile void __iomem *token)
|
|
{
|
|
if (ppc_md.iounmap)
|
|
ppc_md.iounmap(token);
|
|
else
|
|
__iounmap(token);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ioremap);
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
EXPORT_SYMBOL(__ioremap);
|
|
EXPORT_SYMBOL(__ioremap_at);
|
|
EXPORT_SYMBOL(iounmap);
|
|
EXPORT_SYMBOL(__iounmap);
|
|
EXPORT_SYMBOL(__iounmap_at);
|
|
|
|
#ifndef __PAGETABLE_PUD_FOLDED
|
|
/* 4 level page table */
|
|
struct page *pgd_page(pgd_t pgd)
|
|
{
|
|
if (pgd_huge(pgd))
|
|
return pte_page(pgd_pte(pgd));
|
|
return virt_to_page(pgd_page_vaddr(pgd));
|
|
}
|
|
#endif
|
|
|
|
struct page *pud_page(pud_t pud)
|
|
{
|
|
if (pud_huge(pud))
|
|
return pte_page(pud_pte(pud));
|
|
return virt_to_page(pud_page_vaddr(pud));
|
|
}
|
|
|
|
/*
|
|
* For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
|
|
* For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
|
|
*/
|
|
struct page *pmd_page(pmd_t pmd)
|
|
{
|
|
if (pmd_trans_huge(pmd) || pmd_huge(pmd))
|
|
return pte_page(pmd_pte(pmd));
|
|
return virt_to_page(pmd_page_vaddr(pmd));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
static pte_t *get_from_cache(struct mm_struct *mm)
|
|
{
|
|
void *pte_frag, *ret;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
ret = mm->context.pte_frag;
|
|
if (ret) {
|
|
pte_frag = ret + PTE_FRAG_SIZE;
|
|
/*
|
|
* If we have taken up all the fragments mark PTE page NULL
|
|
*/
|
|
if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
|
|
pte_frag = NULL;
|
|
mm->context.pte_frag = pte_frag;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
|
|
{
|
|
void *ret = NULL;
|
|
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
|
|
if (!page)
|
|
return NULL;
|
|
if (!kernel && !pgtable_page_ctor(page)) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
ret = page_address(page);
|
|
spin_lock(&mm->page_table_lock);
|
|
/*
|
|
* If we find pgtable_page set, we return
|
|
* the allocated page with single fragement
|
|
* count.
|
|
*/
|
|
if (likely(!mm->context.pte_frag)) {
|
|
set_page_count(page, PTE_FRAG_NR);
|
|
mm->context.pte_frag = ret + PTE_FRAG_SIZE;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
return (pte_t *)ret;
|
|
}
|
|
|
|
pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = get_from_cache(mm);
|
|
if (pte)
|
|
return pte;
|
|
|
|
return __alloc_for_cache(mm, kernel);
|
|
}
|
|
#endif /* CONFIG_PPC_64K_PAGES */
|
|
|
|
void pte_fragment_free(unsigned long *table, int kernel)
|
|
{
|
|
struct page *page = virt_to_page(table);
|
|
if (put_page_testzero(page)) {
|
|
if (!kernel)
|
|
pgtable_page_dtor(page);
|
|
free_hot_cold_page(page, 0);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
unsigned long pgf = (unsigned long)table;
|
|
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
pgf |= shift;
|
|
tlb_remove_table(tlb, (void *)pgf);
|
|
}
|
|
|
|
void __tlb_remove_table(void *_table)
|
|
{
|
|
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
|
|
unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
|
|
|
|
if (!shift)
|
|
/* PTE page needs special handling */
|
|
pte_fragment_free(table, 0);
|
|
else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#else
|
|
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
|
|
{
|
|
if (!shift) {
|
|
/* PTE page needs special handling */
|
|
pte_fragment_free(table, 0);
|
|
} else {
|
|
BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
|
|
kmem_cache_free(PGT_CACHE(shift), table);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
void __init mmu_partition_table_init(void)
|
|
{
|
|
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
|
|
|
|
BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
|
|
partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
|
|
MEMBLOCK_ALLOC_ANYWHERE));
|
|
|
|
/* Initialize the Partition Table with no entries */
|
|
memset((void *)partition_tb, 0, patb_size);
|
|
|
|
/*
|
|
* update partition table control register,
|
|
* 64 K size.
|
|
*/
|
|
mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
|
|
}
|
|
|
|
void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
|
|
unsigned long dw1)
|
|
{
|
|
unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
|
|
|
|
partition_tb[lpid].patb0 = cpu_to_be64(dw0);
|
|
partition_tb[lpid].patb1 = cpu_to_be64(dw1);
|
|
|
|
/*
|
|
* Global flush of TLBs and partition table caches for this lpid.
|
|
* The type of flush (hash or radix) depends on what the previous
|
|
* use of this partition ID was, not the new use.
|
|
*/
|
|
asm volatile("ptesync" : : : "memory");
|
|
if (old & PATB_HR)
|
|
asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
|
|
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
|
|
else
|
|
asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
|
|
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
|
|
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|