linux/drivers/phy/tegra/xusb.c
JC Kuo c545a90567 phy: tegra: xusb: Add sleepwalk and suspend/resume
This commit adds sleepwalk/wake and suspend/resume interfaces
to Tegra XUSB PHY driver.

Tegra XUSB host controller driver makes use of sleepwalk functions
to enable/disable sleepwalk circuit which is in always-on partition
and can respond to USB resume signals when controller is not powered.
Sleepwalk can be enabled/disabled for any USB UPHY individually.

  - tegra_xusb_padctl_enable_phy_sleepwalk()
  - tegra_xusb_padctl_disable_phy_sleepwalk()

Tegra XUSB host controller driver makes use of wake functions to
enable/disable/query wake circuit which is in always-on partition
can wake system up when USB resume happens.
Wake circuit can be enabled/disabled for any USB PHY individually.

  - tegra_xusb_padctl_enable_phy_wake()
  - tegra_xusb_padctl_disable_phy_wake()
  - tegra_xusb_padctl_remote_wake_detected()

This commit also adds two system suspend stubs that can be used to
save and restore XUSB PADCTL context during system suspend and
resume.
  - tegra_xusb_padctl_suspend_noirq()
  - tegra_xusb_padctl_resume_noirq()

Signed-off-by: JC Kuo <jckuo@nvidia.com>
Acked-By: Vinod Koul <vkoul@kernel.org>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2021-06-03 14:49:34 +02:00

1485 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/tegra/xusb.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <soc/tegra/fuse.h>
#include "xusb.h"
static struct phy *tegra_xusb_pad_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct tegra_xusb_pad *pad = dev_get_drvdata(dev);
struct phy *phy = NULL;
unsigned int i;
if (args->args_count != 0)
return ERR_PTR(-EINVAL);
for (i = 0; i < pad->soc->num_lanes; i++) {
if (!pad->lanes[i])
continue;
if (pad->lanes[i]->dev.of_node == args->np) {
phy = pad->lanes[i];
break;
}
}
if (phy == NULL)
phy = ERR_PTR(-ENODEV);
return phy;
}
static const struct of_device_id tegra_xusb_padctl_of_match[] = {
#if defined(CONFIG_ARCH_TEGRA_124_SOC) || defined(CONFIG_ARCH_TEGRA_132_SOC)
{
.compatible = "nvidia,tegra124-xusb-padctl",
.data = &tegra124_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{
.compatible = "nvidia,tegra210-xusb-padctl",
.data = &tegra210_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_186_SOC)
{
.compatible = "nvidia,tegra186-xusb-padctl",
.data = &tegra186_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_194_SOC)
{
.compatible = "nvidia,tegra194-xusb-padctl",
.data = &tegra194_xusb_padctl_soc,
},
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_xusb_padctl_of_match);
static struct device_node *
tegra_xusb_find_pad_node(struct tegra_xusb_padctl *padctl, const char *name)
{
struct device_node *pads, *np;
pads = of_get_child_by_name(padctl->dev->of_node, "pads");
if (!pads)
return NULL;
np = of_get_child_by_name(pads, name);
of_node_put(pads);
return np;
}
static struct device_node *
tegra_xusb_pad_find_phy_node(struct tegra_xusb_pad *pad, unsigned int index)
{
struct device_node *np, *lanes;
lanes = of_get_child_by_name(pad->dev.of_node, "lanes");
if (!lanes)
return NULL;
np = of_get_child_by_name(lanes, pad->soc->lanes[index].name);
of_node_put(lanes);
return np;
}
int tegra_xusb_lane_parse_dt(struct tegra_xusb_lane *lane,
struct device_node *np)
{
struct device *dev = &lane->pad->dev;
const char *function;
int err;
err = of_property_read_string(np, "nvidia,function", &function);
if (err < 0)
return err;
err = match_string(lane->soc->funcs, lane->soc->num_funcs, function);
if (err < 0) {
dev_err(dev, "invalid function \"%s\" for lane \"%pOFn\"\n",
function, np);
return err;
}
lane->function = err;
return 0;
}
static void tegra_xusb_lane_destroy(struct phy *phy)
{
if (phy) {
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
lane->pad->ops->remove(lane);
phy_destroy(phy);
}
}
static void tegra_xusb_pad_release(struct device *dev)
{
struct tegra_xusb_pad *pad = to_tegra_xusb_pad(dev);
pad->soc->ops->remove(pad);
}
static const struct device_type tegra_xusb_pad_type = {
.release = tegra_xusb_pad_release,
};
int tegra_xusb_pad_init(struct tegra_xusb_pad *pad,
struct tegra_xusb_padctl *padctl,
struct device_node *np)
{
int err;
device_initialize(&pad->dev);
INIT_LIST_HEAD(&pad->list);
pad->dev.parent = padctl->dev;
pad->dev.type = &tegra_xusb_pad_type;
pad->dev.of_node = np;
pad->padctl = padctl;
err = dev_set_name(&pad->dev, "%s", pad->soc->name);
if (err < 0)
goto unregister;
err = device_add(&pad->dev);
if (err < 0)
goto unregister;
return 0;
unregister:
device_unregister(&pad->dev);
return err;
}
int tegra_xusb_pad_register(struct tegra_xusb_pad *pad,
const struct phy_ops *ops)
{
struct device_node *children;
struct phy *lane;
unsigned int i;
int err;
children = of_get_child_by_name(pad->dev.of_node, "lanes");
if (!children)
return -ENODEV;
pad->lanes = devm_kcalloc(&pad->dev, pad->soc->num_lanes, sizeof(lane),
GFP_KERNEL);
if (!pad->lanes) {
of_node_put(children);
return -ENOMEM;
}
for (i = 0; i < pad->soc->num_lanes; i++) {
struct device_node *np = tegra_xusb_pad_find_phy_node(pad, i);
struct tegra_xusb_lane *lane;
/* skip disabled lanes */
if (!np || !of_device_is_available(np)) {
of_node_put(np);
continue;
}
pad->lanes[i] = phy_create(&pad->dev, np, ops);
if (IS_ERR(pad->lanes[i])) {
err = PTR_ERR(pad->lanes[i]);
of_node_put(np);
goto remove;
}
lane = pad->ops->probe(pad, np, i);
if (IS_ERR(lane)) {
phy_destroy(pad->lanes[i]);
err = PTR_ERR(lane);
goto remove;
}
list_add_tail(&lane->list, &pad->padctl->lanes);
phy_set_drvdata(pad->lanes[i], lane);
}
pad->provider = of_phy_provider_register_full(&pad->dev, children,
tegra_xusb_pad_of_xlate);
if (IS_ERR(pad->provider)) {
err = PTR_ERR(pad->provider);
goto remove;
}
return 0;
remove:
while (i--)
tegra_xusb_lane_destroy(pad->lanes[i]);
of_node_put(children);
return err;
}
void tegra_xusb_pad_unregister(struct tegra_xusb_pad *pad)
{
unsigned int i = pad->soc->num_lanes;
of_phy_provider_unregister(pad->provider);
while (i--)
tegra_xusb_lane_destroy(pad->lanes[i]);
device_unregister(&pad->dev);
}
static struct tegra_xusb_pad *
tegra_xusb_pad_create(struct tegra_xusb_padctl *padctl,
const struct tegra_xusb_pad_soc *soc)
{
struct tegra_xusb_pad *pad;
struct device_node *np;
int err;
np = tegra_xusb_find_pad_node(padctl, soc->name);
if (!np || !of_device_is_available(np))
return NULL;
pad = soc->ops->probe(padctl, soc, np);
if (IS_ERR(pad)) {
err = PTR_ERR(pad);
dev_err(padctl->dev, "failed to create pad %s: %d\n",
soc->name, err);
return ERR_PTR(err);
}
/* XXX move this into ->probe() to avoid string comparison */
if (strcmp(soc->name, "pcie") == 0)
padctl->pcie = pad;
if (strcmp(soc->name, "sata") == 0)
padctl->sata = pad;
if (strcmp(soc->name, "usb2") == 0)
padctl->usb2 = pad;
if (strcmp(soc->name, "ulpi") == 0)
padctl->ulpi = pad;
if (strcmp(soc->name, "hsic") == 0)
padctl->hsic = pad;
return pad;
}
static void __tegra_xusb_remove_pads(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_pad *pad, *tmp;
list_for_each_entry_safe_reverse(pad, tmp, &padctl->pads, list) {
list_del(&pad->list);
tegra_xusb_pad_unregister(pad);
}
}
static void tegra_xusb_remove_pads(struct tegra_xusb_padctl *padctl)
{
mutex_lock(&padctl->lock);
__tegra_xusb_remove_pads(padctl);
mutex_unlock(&padctl->lock);
}
static void tegra_xusb_lane_program(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
const struct tegra_xusb_lane_soc *soc = lane->soc;
u32 value;
/* skip single function lanes */
if (soc->num_funcs < 2)
return;
if (lane->pad->ops->iddq_enable)
lane->pad->ops->iddq_enable(lane);
/* choose function */
value = padctl_readl(padctl, soc->offset);
value &= ~(soc->mask << soc->shift);
value |= lane->function << soc->shift;
padctl_writel(padctl, value, soc->offset);
if (lane->pad->ops->iddq_disable)
lane->pad->ops->iddq_disable(lane);
}
static void tegra_xusb_pad_program(struct tegra_xusb_pad *pad)
{
unsigned int i;
for (i = 0; i < pad->soc->num_lanes; i++) {
struct tegra_xusb_lane *lane;
if (pad->lanes[i]) {
lane = phy_get_drvdata(pad->lanes[i]);
tegra_xusb_lane_program(lane);
}
}
}
static int tegra_xusb_setup_pads(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_pad *pad;
unsigned int i;
mutex_lock(&padctl->lock);
for (i = 0; i < padctl->soc->num_pads; i++) {
const struct tegra_xusb_pad_soc *soc = padctl->soc->pads[i];
int err;
pad = tegra_xusb_pad_create(padctl, soc);
if (IS_ERR(pad)) {
err = PTR_ERR(pad);
dev_err(padctl->dev, "failed to create pad %s: %d\n",
soc->name, err);
__tegra_xusb_remove_pads(padctl);
mutex_unlock(&padctl->lock);
return err;
}
if (!pad)
continue;
list_add_tail(&pad->list, &padctl->pads);
}
list_for_each_entry(pad, &padctl->pads, list)
tegra_xusb_pad_program(pad);
mutex_unlock(&padctl->lock);
return 0;
}
bool tegra_xusb_lane_check(struct tegra_xusb_lane *lane,
const char *function)
{
const char *func = lane->soc->funcs[lane->function];
return strcmp(function, func) == 0;
}
struct tegra_xusb_lane *tegra_xusb_find_lane(struct tegra_xusb_padctl *padctl,
const char *type,
unsigned int index)
{
struct tegra_xusb_lane *lane, *hit = ERR_PTR(-ENODEV);
char *name;
name = kasprintf(GFP_KERNEL, "%s-%u", type, index);
if (!name)
return ERR_PTR(-ENOMEM);
list_for_each_entry(lane, &padctl->lanes, list) {
if (strcmp(lane->soc->name, name) == 0) {
hit = lane;
break;
}
}
kfree(name);
return hit;
}
struct tegra_xusb_lane *
tegra_xusb_port_find_lane(struct tegra_xusb_port *port,
const struct tegra_xusb_lane_map *map,
const char *function)
{
struct tegra_xusb_lane *lane, *match = ERR_PTR(-ENODEV);
for (; map->type; map++) {
if (port->index != map->port)
continue;
lane = tegra_xusb_find_lane(port->padctl, map->type,
map->index);
if (IS_ERR(lane))
continue;
if (!tegra_xusb_lane_check(lane, function))
continue;
if (!IS_ERR(match))
dev_err(&port->dev, "conflicting match: %s-%u / %s\n",
map->type, map->index, match->soc->name);
else
match = lane;
}
return match;
}
static struct device_node *
tegra_xusb_find_port_node(struct tegra_xusb_padctl *padctl, const char *type,
unsigned int index)
{
struct device_node *ports, *np;
char *name;
ports = of_get_child_by_name(padctl->dev->of_node, "ports");
if (!ports)
return NULL;
name = kasprintf(GFP_KERNEL, "%s-%u", type, index);
if (!name) {
of_node_put(ports);
return ERR_PTR(-ENOMEM);
}
np = of_get_child_by_name(ports, name);
kfree(name);
of_node_put(ports);
return np;
}
struct tegra_xusb_port *
tegra_xusb_find_port(struct tegra_xusb_padctl *padctl, const char *type,
unsigned int index)
{
struct tegra_xusb_port *port;
struct device_node *np;
np = tegra_xusb_find_port_node(padctl, type, index);
if (!np)
return NULL;
list_for_each_entry(port, &padctl->ports, list) {
if (np == port->dev.of_node) {
of_node_put(np);
return port;
}
}
of_node_put(np);
return NULL;
}
struct tegra_xusb_usb2_port *
tegra_xusb_find_usb2_port(struct tegra_xusb_padctl *padctl, unsigned int index)
{
struct tegra_xusb_port *port;
port = tegra_xusb_find_port(padctl, "usb2", index);
if (port)
return to_usb2_port(port);
return NULL;
}
struct tegra_xusb_usb3_port *
tegra_xusb_find_usb3_port(struct tegra_xusb_padctl *padctl, unsigned int index)
{
struct tegra_xusb_port *port;
port = tegra_xusb_find_port(padctl, "usb3", index);
if (port)
return to_usb3_port(port);
return NULL;
}
static void tegra_xusb_port_release(struct device *dev)
{
struct tegra_xusb_port *port = to_tegra_xusb_port(dev);
if (port->ops->release)
port->ops->release(port);
}
static const struct device_type tegra_xusb_port_type = {
.release = tegra_xusb_port_release,
};
static int tegra_xusb_port_init(struct tegra_xusb_port *port,
struct tegra_xusb_padctl *padctl,
struct device_node *np,
const char *name,
unsigned int index)
{
int err;
INIT_LIST_HEAD(&port->list);
port->padctl = padctl;
port->index = index;
device_initialize(&port->dev);
port->dev.type = &tegra_xusb_port_type;
port->dev.of_node = of_node_get(np);
port->dev.parent = padctl->dev;
err = dev_set_name(&port->dev, "%s-%u", name, index);
if (err < 0)
goto unregister;
err = device_add(&port->dev);
if (err < 0)
goto unregister;
return 0;
unregister:
device_unregister(&port->dev);
return err;
}
static void tegra_xusb_port_unregister(struct tegra_xusb_port *port)
{
if (!IS_ERR_OR_NULL(port->usb_role_sw)) {
of_platform_depopulate(&port->dev);
usb_role_switch_unregister(port->usb_role_sw);
cancel_work_sync(&port->usb_phy_work);
usb_remove_phy(&port->usb_phy);
}
if (port->ops->remove)
port->ops->remove(port);
device_unregister(&port->dev);
}
static const char *const modes[] = {
[USB_DR_MODE_UNKNOWN] = "",
[USB_DR_MODE_HOST] = "host",
[USB_DR_MODE_PERIPHERAL] = "peripheral",
[USB_DR_MODE_OTG] = "otg",
};
static const char * const usb_roles[] = {
[USB_ROLE_NONE] = "none",
[USB_ROLE_HOST] = "host",
[USB_ROLE_DEVICE] = "device",
};
static enum usb_phy_events to_usb_phy_event(enum usb_role role)
{
switch (role) {
case USB_ROLE_DEVICE:
return USB_EVENT_VBUS;
case USB_ROLE_HOST:
return USB_EVENT_ID;
default:
return USB_EVENT_NONE;
}
}
static void tegra_xusb_usb_phy_work(struct work_struct *work)
{
struct tegra_xusb_port *port = container_of(work,
struct tegra_xusb_port,
usb_phy_work);
enum usb_role role = usb_role_switch_get_role(port->usb_role_sw);
usb_phy_set_event(&port->usb_phy, to_usb_phy_event(role));
dev_dbg(&port->dev, "%s(): calling notifier for role %s\n", __func__,
usb_roles[role]);
atomic_notifier_call_chain(&port->usb_phy.notifier, 0, &port->usb_phy);
}
static int tegra_xusb_role_sw_set(struct usb_role_switch *sw,
enum usb_role role)
{
struct tegra_xusb_port *port = usb_role_switch_get_drvdata(sw);
dev_dbg(&port->dev, "%s(): role %s\n", __func__, usb_roles[role]);
schedule_work(&port->usb_phy_work);
return 0;
}
static int tegra_xusb_set_peripheral(struct usb_otg *otg,
struct usb_gadget *gadget)
{
struct tegra_xusb_port *port = container_of(otg->usb_phy,
struct tegra_xusb_port,
usb_phy);
if (gadget != NULL)
schedule_work(&port->usb_phy_work);
return 0;
}
static int tegra_xusb_set_host(struct usb_otg *otg, struct usb_bus *host)
{
struct tegra_xusb_port *port = container_of(otg->usb_phy,
struct tegra_xusb_port,
usb_phy);
if (host != NULL)
schedule_work(&port->usb_phy_work);
return 0;
}
static int tegra_xusb_setup_usb_role_switch(struct tegra_xusb_port *port)
{
struct tegra_xusb_lane *lane;
struct usb_role_switch_desc role_sx_desc = {
.fwnode = dev_fwnode(&port->dev),
.set = tegra_xusb_role_sw_set,
};
int err = 0;
/*
* USB role switch driver needs parent driver owner info. This is a
* suboptimal solution. TODO: Need to revisit this in a follow-up patch
* where an optimal solution is possible with changes to USB role
* switch driver.
*/
port->dev.driver = devm_kzalloc(&port->dev,
sizeof(struct device_driver),
GFP_KERNEL);
port->dev.driver->owner = THIS_MODULE;
port->usb_role_sw = usb_role_switch_register(&port->dev,
&role_sx_desc);
if (IS_ERR(port->usb_role_sw)) {
err = PTR_ERR(port->usb_role_sw);
dev_err(&port->dev, "failed to register USB role switch: %d",
err);
return err;
}
INIT_WORK(&port->usb_phy_work, tegra_xusb_usb_phy_work);
usb_role_switch_set_drvdata(port->usb_role_sw, port);
port->usb_phy.otg = devm_kzalloc(&port->dev, sizeof(struct usb_otg),
GFP_KERNEL);
if (!port->usb_phy.otg)
return -ENOMEM;
lane = tegra_xusb_find_lane(port->padctl, "usb2", port->index);
/*
* Assign phy dev to usb-phy dev. Host/device drivers can use phy
* reference to retrieve usb-phy details.
*/
port->usb_phy.dev = &lane->pad->lanes[port->index]->dev;
port->usb_phy.dev->driver = port->dev.driver;
port->usb_phy.otg->usb_phy = &port->usb_phy;
port->usb_phy.otg->set_peripheral = tegra_xusb_set_peripheral;
port->usb_phy.otg->set_host = tegra_xusb_set_host;
err = usb_add_phy_dev(&port->usb_phy);
if (err < 0) {
dev_err(&port->dev, "Failed to add USB PHY: %d\n", err);
return err;
}
/* populate connector entry */
of_platform_populate(port->dev.of_node, NULL, NULL, &port->dev);
return err;
}
static int tegra_xusb_usb2_port_parse_dt(struct tegra_xusb_usb2_port *usb2)
{
struct tegra_xusb_port *port = &usb2->base;
struct device_node *np = port->dev.of_node;
const char *mode;
int err;
usb2->internal = of_property_read_bool(np, "nvidia,internal");
if (!of_property_read_string(np, "mode", &mode)) {
int err = match_string(modes, ARRAY_SIZE(modes), mode);
if (err < 0) {
dev_err(&port->dev, "invalid value %s for \"mode\"\n",
mode);
usb2->mode = USB_DR_MODE_UNKNOWN;
} else {
usb2->mode = err;
}
} else {
usb2->mode = USB_DR_MODE_HOST;
}
/* usb-role-switch property is mandatory for OTG/Peripheral modes */
if (usb2->mode == USB_DR_MODE_PERIPHERAL ||
usb2->mode == USB_DR_MODE_OTG) {
if (of_property_read_bool(np, "usb-role-switch")) {
err = tegra_xusb_setup_usb_role_switch(port);
if (err < 0)
return err;
} else {
dev_err(&port->dev, "usb-role-switch not found for %s mode",
modes[usb2->mode]);
return -EINVAL;
}
}
usb2->supply = regulator_get(&port->dev, "vbus");
return PTR_ERR_OR_ZERO(usb2->supply);
}
static int tegra_xusb_add_usb2_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_usb2_port *usb2;
struct device_node *np;
int err = 0;
/*
* USB2 ports don't require additional properties, but if the port is
* marked as disabled there is no reason to register it.
*/
np = tegra_xusb_find_port_node(padctl, "usb2", index);
if (!np || !of_device_is_available(np))
goto out;
usb2 = kzalloc(sizeof(*usb2), GFP_KERNEL);
if (!usb2) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&usb2->base, padctl, np, "usb2", index);
if (err < 0)
goto out;
usb2->base.ops = padctl->soc->ports.usb2.ops;
usb2->base.lane = usb2->base.ops->map(&usb2->base);
if (IS_ERR(usb2->base.lane)) {
err = PTR_ERR(usb2->base.lane);
goto out;
}
err = tegra_xusb_usb2_port_parse_dt(usb2);
if (err < 0) {
tegra_xusb_port_unregister(&usb2->base);
goto out;
}
list_add_tail(&usb2->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
void tegra_xusb_usb2_port_release(struct tegra_xusb_port *port)
{
struct tegra_xusb_usb2_port *usb2 = to_usb2_port(port);
kfree(usb2);
}
void tegra_xusb_usb2_port_remove(struct tegra_xusb_port *port)
{
struct tegra_xusb_usb2_port *usb2 = to_usb2_port(port);
regulator_put(usb2->supply);
}
static int tegra_xusb_ulpi_port_parse_dt(struct tegra_xusb_ulpi_port *ulpi)
{
struct tegra_xusb_port *port = &ulpi->base;
struct device_node *np = port->dev.of_node;
ulpi->internal = of_property_read_bool(np, "nvidia,internal");
return 0;
}
static int tegra_xusb_add_ulpi_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_ulpi_port *ulpi;
struct device_node *np;
int err = 0;
np = tegra_xusb_find_port_node(padctl, "ulpi", index);
if (!np || !of_device_is_available(np))
goto out;
ulpi = kzalloc(sizeof(*ulpi), GFP_KERNEL);
if (!ulpi) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&ulpi->base, padctl, np, "ulpi", index);
if (err < 0)
goto out;
ulpi->base.ops = padctl->soc->ports.ulpi.ops;
ulpi->base.lane = ulpi->base.ops->map(&ulpi->base);
if (IS_ERR(ulpi->base.lane)) {
err = PTR_ERR(ulpi->base.lane);
goto out;
}
err = tegra_xusb_ulpi_port_parse_dt(ulpi);
if (err < 0) {
tegra_xusb_port_unregister(&ulpi->base);
goto out;
}
list_add_tail(&ulpi->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
void tegra_xusb_ulpi_port_release(struct tegra_xusb_port *port)
{
struct tegra_xusb_ulpi_port *ulpi = to_ulpi_port(port);
kfree(ulpi);
}
static int tegra_xusb_hsic_port_parse_dt(struct tegra_xusb_hsic_port *hsic)
{
/* XXX */
return 0;
}
static int tegra_xusb_add_hsic_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_hsic_port *hsic;
struct device_node *np;
int err = 0;
np = tegra_xusb_find_port_node(padctl, "hsic", index);
if (!np || !of_device_is_available(np))
goto out;
hsic = kzalloc(sizeof(*hsic), GFP_KERNEL);
if (!hsic) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&hsic->base, padctl, np, "hsic", index);
if (err < 0)
goto out;
hsic->base.ops = padctl->soc->ports.hsic.ops;
hsic->base.lane = hsic->base.ops->map(&hsic->base);
if (IS_ERR(hsic->base.lane)) {
err = PTR_ERR(hsic->base.lane);
goto out;
}
err = tegra_xusb_hsic_port_parse_dt(hsic);
if (err < 0) {
tegra_xusb_port_unregister(&hsic->base);
goto out;
}
list_add_tail(&hsic->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
void tegra_xusb_hsic_port_release(struct tegra_xusb_port *port)
{
struct tegra_xusb_hsic_port *hsic = to_hsic_port(port);
kfree(hsic);
}
static int tegra_xusb_usb3_port_parse_dt(struct tegra_xusb_usb3_port *usb3)
{
struct tegra_xusb_port *port = &usb3->base;
struct device_node *np = port->dev.of_node;
enum usb_device_speed maximum_speed;
u32 value;
int err;
err = of_property_read_u32(np, "nvidia,usb2-companion", &value);
if (err < 0) {
dev_err(&port->dev, "failed to read port: %d\n", err);
return err;
}
usb3->port = value;
usb3->internal = of_property_read_bool(np, "nvidia,internal");
if (device_property_present(&port->dev, "maximum-speed")) {
maximum_speed = usb_get_maximum_speed(&port->dev);
if (maximum_speed == USB_SPEED_SUPER)
usb3->disable_gen2 = true;
else if (maximum_speed == USB_SPEED_SUPER_PLUS)
usb3->disable_gen2 = false;
else
return -EINVAL;
}
usb3->supply = regulator_get(&port->dev, "vbus");
return PTR_ERR_OR_ZERO(usb3->supply);
}
static int tegra_xusb_add_usb3_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_usb3_port *usb3;
struct device_node *np;
int err = 0;
/*
* If there is no supplemental configuration in the device tree the
* port is unusable. But it is valid to configure only a single port,
* hence return 0 instead of an error to allow ports to be optional.
*/
np = tegra_xusb_find_port_node(padctl, "usb3", index);
if (!np || !of_device_is_available(np))
goto out;
usb3 = kzalloc(sizeof(*usb3), GFP_KERNEL);
if (!usb3) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&usb3->base, padctl, np, "usb3", index);
if (err < 0)
goto out;
usb3->base.ops = padctl->soc->ports.usb3.ops;
usb3->base.lane = usb3->base.ops->map(&usb3->base);
if (IS_ERR(usb3->base.lane)) {
err = PTR_ERR(usb3->base.lane);
goto out;
}
err = tegra_xusb_usb3_port_parse_dt(usb3);
if (err < 0) {
tegra_xusb_port_unregister(&usb3->base);
goto out;
}
list_add_tail(&usb3->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
void tegra_xusb_usb3_port_release(struct tegra_xusb_port *port)
{
struct tegra_xusb_usb3_port *usb3 = to_usb3_port(port);
kfree(usb3);
}
void tegra_xusb_usb3_port_remove(struct tegra_xusb_port *port)
{
struct tegra_xusb_usb3_port *usb3 = to_usb3_port(port);
regulator_put(usb3->supply);
}
static void __tegra_xusb_remove_ports(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_port *port, *tmp;
list_for_each_entry_safe_reverse(port, tmp, &padctl->ports, list) {
list_del(&port->list);
tegra_xusb_port_unregister(port);
}
}
static int tegra_xusb_find_unused_usb3_port(struct tegra_xusb_padctl *padctl)
{
struct device_node *np;
unsigned int i;
for (i = 0; i < padctl->soc->ports.usb3.count; i++) {
np = tegra_xusb_find_port_node(padctl, "usb3", i);
if (!np || !of_device_is_available(np))
return i;
}
return -ENODEV;
}
static bool tegra_xusb_port_is_companion(struct tegra_xusb_usb2_port *usb2)
{
unsigned int i;
struct tegra_xusb_usb3_port *usb3;
struct tegra_xusb_padctl *padctl = usb2->base.padctl;
for (i = 0; i < padctl->soc->ports.usb3.count; i++) {
usb3 = tegra_xusb_find_usb3_port(padctl, i);
if (usb3 && usb3->port == usb2->base.index)
return true;
}
return false;
}
static int tegra_xusb_update_usb3_fake_port(struct tegra_xusb_usb2_port *usb2)
{
int fake;
/* Disable usb3_port_fake usage by default and assign if needed */
usb2->usb3_port_fake = -1;
if ((usb2->mode == USB_DR_MODE_OTG ||
usb2->mode == USB_DR_MODE_PERIPHERAL) &&
!tegra_xusb_port_is_companion(usb2)) {
fake = tegra_xusb_find_unused_usb3_port(usb2->base.padctl);
if (fake < 0) {
dev_err(&usb2->base.dev, "no unused USB3 ports available\n");
return -ENODEV;
}
dev_dbg(&usb2->base.dev, "Found unused usb3 port: %d\n", fake);
usb2->usb3_port_fake = fake;
}
return 0;
}
static int tegra_xusb_setup_ports(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_port *port;
struct tegra_xusb_usb2_port *usb2;
unsigned int i;
int err = 0;
mutex_lock(&padctl->lock);
for (i = 0; i < padctl->soc->ports.usb2.count; i++) {
err = tegra_xusb_add_usb2_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.ulpi.count; i++) {
err = tegra_xusb_add_ulpi_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.hsic.count; i++) {
err = tegra_xusb_add_hsic_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.usb3.count; i++) {
err = tegra_xusb_add_usb3_port(padctl, i);
if (err < 0)
goto remove_ports;
}
if (padctl->soc->need_fake_usb3_port) {
for (i = 0; i < padctl->soc->ports.usb2.count; i++) {
usb2 = tegra_xusb_find_usb2_port(padctl, i);
if (!usb2)
continue;
err = tegra_xusb_update_usb3_fake_port(usb2);
if (err < 0)
goto remove_ports;
}
}
list_for_each_entry(port, &padctl->ports, list) {
err = port->ops->enable(port);
if (err < 0)
dev_err(padctl->dev, "failed to enable port %s: %d\n",
dev_name(&port->dev), err);
}
goto unlock;
remove_ports:
__tegra_xusb_remove_ports(padctl);
unlock:
mutex_unlock(&padctl->lock);
return err;
}
static void tegra_xusb_remove_ports(struct tegra_xusb_padctl *padctl)
{
mutex_lock(&padctl->lock);
__tegra_xusb_remove_ports(padctl);
mutex_unlock(&padctl->lock);
}
static int tegra_xusb_padctl_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct tegra_xusb_padctl_soc *soc;
struct tegra_xusb_padctl *padctl;
const struct of_device_id *match;
int err;
/* for backwards compatibility with old device trees */
np = of_get_child_by_name(np, "pads");
if (!np) {
dev_warn(&pdev->dev, "deprecated DT, using legacy driver\n");
return tegra_xusb_padctl_legacy_probe(pdev);
}
of_node_put(np);
match = of_match_node(tegra_xusb_padctl_of_match, pdev->dev.of_node);
soc = match->data;
padctl = soc->ops->probe(&pdev->dev, soc);
if (IS_ERR(padctl))
return PTR_ERR(padctl);
platform_set_drvdata(pdev, padctl);
INIT_LIST_HEAD(&padctl->ports);
INIT_LIST_HEAD(&padctl->lanes);
INIT_LIST_HEAD(&padctl->pads);
mutex_init(&padctl->lock);
padctl->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(padctl->regs)) {
err = PTR_ERR(padctl->regs);
goto remove;
}
padctl->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(padctl->rst)) {
err = PTR_ERR(padctl->rst);
goto remove;
}
padctl->supplies = devm_kcalloc(&pdev->dev, padctl->soc->num_supplies,
sizeof(*padctl->supplies), GFP_KERNEL);
if (!padctl->supplies) {
err = -ENOMEM;
goto remove;
}
regulator_bulk_set_supply_names(padctl->supplies,
padctl->soc->supply_names,
padctl->soc->num_supplies);
err = devm_regulator_bulk_get(&pdev->dev, padctl->soc->num_supplies,
padctl->supplies);
if (err < 0) {
dev_err_probe(&pdev->dev, err, "failed to get regulators\n");
goto remove;
}
err = reset_control_deassert(padctl->rst);
if (err < 0)
goto remove;
err = regulator_bulk_enable(padctl->soc->num_supplies,
padctl->supplies);
if (err < 0) {
dev_err(&pdev->dev, "failed to enable supplies: %d\n", err);
goto reset;
}
err = tegra_xusb_setup_pads(padctl);
if (err < 0) {
dev_err(&pdev->dev, "failed to setup pads: %d\n", err);
goto power_down;
}
err = tegra_xusb_setup_ports(padctl);
if (err) {
const char *level = KERN_ERR;
if (err == -EPROBE_DEFER)
level = KERN_DEBUG;
dev_printk(level, &pdev->dev,
dev_fmt("failed to setup XUSB ports: %d\n"), err);
goto remove_pads;
}
return 0;
remove_pads:
tegra_xusb_remove_pads(padctl);
power_down:
regulator_bulk_disable(padctl->soc->num_supplies, padctl->supplies);
reset:
reset_control_assert(padctl->rst);
remove:
platform_set_drvdata(pdev, NULL);
soc->ops->remove(padctl);
return err;
}
static int tegra_xusb_padctl_remove(struct platform_device *pdev)
{
struct tegra_xusb_padctl *padctl = platform_get_drvdata(pdev);
int err;
tegra_xusb_remove_ports(padctl);
tegra_xusb_remove_pads(padctl);
err = regulator_bulk_disable(padctl->soc->num_supplies,
padctl->supplies);
if (err < 0)
dev_err(&pdev->dev, "failed to disable supplies: %d\n", err);
err = reset_control_assert(padctl->rst);
if (err < 0)
dev_err(&pdev->dev, "failed to assert reset: %d\n", err);
padctl->soc->ops->remove(padctl);
return err;
}
static int tegra_xusb_padctl_suspend_noirq(struct device *dev)
{
struct tegra_xusb_padctl *padctl = dev_get_drvdata(dev);
if (padctl->soc && padctl->soc->ops && padctl->soc->ops->suspend_noirq)
return padctl->soc->ops->suspend_noirq(padctl);
return 0;
}
static int tegra_xusb_padctl_resume_noirq(struct device *dev)
{
struct tegra_xusb_padctl *padctl = dev_get_drvdata(dev);
if (padctl->soc && padctl->soc->ops && padctl->soc->ops->resume_noirq)
return padctl->soc->ops->resume_noirq(padctl);
return 0;
}
static const struct dev_pm_ops tegra_xusb_padctl_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_xusb_padctl_suspend_noirq,
tegra_xusb_padctl_resume_noirq)
};
static struct platform_driver tegra_xusb_padctl_driver = {
.driver = {
.name = "tegra-xusb-padctl",
.of_match_table = tegra_xusb_padctl_of_match,
.pm = &tegra_xusb_padctl_pm_ops,
},
.probe = tegra_xusb_padctl_probe,
.remove = tegra_xusb_padctl_remove,
};
module_platform_driver(tegra_xusb_padctl_driver);
struct tegra_xusb_padctl *tegra_xusb_padctl_get(struct device *dev)
{
struct tegra_xusb_padctl *padctl;
struct platform_device *pdev;
struct device_node *np;
np = of_parse_phandle(dev->of_node, "nvidia,xusb-padctl", 0);
if (!np)
return ERR_PTR(-EINVAL);
/*
* This is slightly ugly. A better implementation would be to keep a
* registry of pad controllers, but since there will almost certainly
* only ever be one per SoC that would be a little overkill.
*/
pdev = of_find_device_by_node(np);
if (!pdev) {
of_node_put(np);
return ERR_PTR(-ENODEV);
}
of_node_put(np);
padctl = platform_get_drvdata(pdev);
if (!padctl) {
put_device(&pdev->dev);
return ERR_PTR(-EPROBE_DEFER);
}
return padctl;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_get);
void tegra_xusb_padctl_put(struct tegra_xusb_padctl *padctl)
{
if (padctl)
put_device(padctl->dev);
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_put);
int tegra_xusb_padctl_usb3_save_context(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
if (padctl->soc->ops->usb3_save_context)
return padctl->soc->ops->usb3_save_context(padctl, port);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_usb3_save_context);
int tegra_xusb_padctl_hsic_set_idle(struct tegra_xusb_padctl *padctl,
unsigned int port, bool idle)
{
if (padctl->soc->ops->hsic_set_idle)
return padctl->soc->ops->hsic_set_idle(padctl, port, idle);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_hsic_set_idle);
int tegra_xusb_padctl_enable_phy_sleepwalk(struct tegra_xusb_padctl *padctl, struct phy *phy,
enum usb_device_speed speed)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
if (lane->pad->ops->enable_phy_sleepwalk)
return lane->pad->ops->enable_phy_sleepwalk(lane, speed);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_enable_phy_sleepwalk);
int tegra_xusb_padctl_disable_phy_sleepwalk(struct tegra_xusb_padctl *padctl, struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
if (lane->pad->ops->disable_phy_sleepwalk)
return lane->pad->ops->disable_phy_sleepwalk(lane);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_disable_phy_sleepwalk);
int tegra_xusb_padctl_enable_phy_wake(struct tegra_xusb_padctl *padctl, struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
if (lane->pad->ops->enable_phy_wake)
return lane->pad->ops->enable_phy_wake(lane);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_enable_phy_wake);
int tegra_xusb_padctl_disable_phy_wake(struct tegra_xusb_padctl *padctl, struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
if (lane->pad->ops->disable_phy_wake)
return lane->pad->ops->disable_phy_wake(lane);
return -EOPNOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_disable_phy_wake);
bool tegra_xusb_padctl_remote_wake_detected(struct tegra_xusb_padctl *padctl, struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
if (lane->pad->ops->remote_wake_detected)
return lane->pad->ops->remote_wake_detected(lane);
return false;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_remote_wake_detected);
int tegra_xusb_padctl_usb3_set_lfps_detect(struct tegra_xusb_padctl *padctl,
unsigned int port, bool enable)
{
if (padctl->soc->ops->usb3_set_lfps_detect)
return padctl->soc->ops->usb3_set_lfps_detect(padctl, port,
enable);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_usb3_set_lfps_detect);
int tegra_xusb_padctl_set_vbus_override(struct tegra_xusb_padctl *padctl,
bool val)
{
if (padctl->soc->ops->vbus_override)
return padctl->soc->ops->vbus_override(padctl, val);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_set_vbus_override);
int tegra_phy_xusb_utmi_port_reset(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
if (padctl->soc->ops->utmi_port_reset)
return padctl->soc->ops->utmi_port_reset(phy);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_phy_xusb_utmi_port_reset);
int tegra_xusb_padctl_get_usb3_companion(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
struct tegra_xusb_usb2_port *usb2;
struct tegra_xusb_usb3_port *usb3;
int i;
usb2 = tegra_xusb_find_usb2_port(padctl, port);
if (!usb2)
return -EINVAL;
for (i = 0; i < padctl->soc->ports.usb3.count; i++) {
usb3 = tegra_xusb_find_usb3_port(padctl, i);
if (usb3 && usb3->port == usb2->base.index)
return usb3->base.index;
}
return -ENODEV;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_get_usb3_companion);
MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_DESCRIPTION("Tegra XUSB Pad Controller driver");
MODULE_LICENSE("GPL v2");