linux/drivers/mmc/core/mmc_ops.c
Shawn Lin a94a7483a9 mmc: core: Adjust and reuse the macro of R1_STATUS(x)
R1_STATUS(x) now is only used by ioctl_rpmb_card_status_poll(),
which checks all bits as possible. But according to the spec,
bit 17 and bit 18 should be ignored, as well bit 14 which is
reserved(must be set to 0) quoting from the spec and these rule
apply to all places checking the device status. So change
its checking from 0xFFFFE000 to 0xFFF9A000.

As a bonus, we reuse it for mmc_do_erase() as well as
mmc_switch_status_error().
(1) Currently mmc_switch_status_error() doesn't check bit 25, but
it means device is locked but not unlocked by CMD42 prior to any
operations which need check busy, which is also not allowed.
(2) mmc_do_erase() also forgot to to check bit 15, WP_ERASE_SKIP.
The spec says "Only partial address space was erased due to existing
write protected blocks.", which obviously means we should fail this I/O.
Otherwise, the partial erased data stored in nonvalatile flash violates
the data integrity from the view of I/O owner, which probably confuse
it when further used.

So reusing R1_STATUS for them not only improve the readability but also
slove real problems.

Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2018-07-16 11:21:45 +02:00

1056 lines
24 KiB
C

/*
* linux/drivers/mmc/core/mmc_ops.h
*
* Copyright 2006-2007 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/scatterlist.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include "core.h"
#include "card.h"
#include "host.h"
#include "mmc_ops.h"
#define MMC_OPS_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
static const u8 tuning_blk_pattern_4bit[] = {
0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
};
static const u8 tuning_blk_pattern_8bit[] = {
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
};
int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
{
int err;
struct mmc_command cmd = {};
cmd.opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(card->host))
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, retries);
if (err)
return err;
/* NOTE: callers are required to understand the difference
* between "native" and SPI format status words!
*/
if (status)
*status = cmd.resp[0];
return 0;
}
EXPORT_SYMBOL_GPL(__mmc_send_status);
int mmc_send_status(struct mmc_card *card, u32 *status)
{
return __mmc_send_status(card, status, MMC_CMD_RETRIES);
}
EXPORT_SYMBOL_GPL(mmc_send_status);
static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SELECT_CARD;
if (card) {
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
} else {
cmd.arg = 0;
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
}
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
}
int mmc_select_card(struct mmc_card *card)
{
return _mmc_select_card(card->host, card);
}
int mmc_deselect_cards(struct mmc_host *host)
{
return _mmc_select_card(host, NULL);
}
/*
* Write the value specified in the device tree or board code into the optional
* 16 bit Driver Stage Register. This can be used to tune raise/fall times and
* drive strength of the DAT and CMD outputs. The actual meaning of a given
* value is hardware dependant.
* The presence of the DSR register can be determined from the CSD register,
* bit 76.
*/
int mmc_set_dsr(struct mmc_host *host)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SET_DSR;
cmd.arg = (host->dsr << 16) | 0xffff;
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
}
int mmc_go_idle(struct mmc_host *host)
{
int err;
struct mmc_command cmd = {};
/*
* Non-SPI hosts need to prevent chipselect going active during
* GO_IDLE; that would put chips into SPI mode. Remind them of
* that in case of hardware that won't pull up DAT3/nCS otherwise.
*
* SPI hosts ignore ios.chip_select; it's managed according to
* rules that must accommodate non-MMC slaves which this layer
* won't even know about.
*/
if (!mmc_host_is_spi(host)) {
mmc_set_chip_select(host, MMC_CS_HIGH);
mmc_delay(1);
}
cmd.opcode = MMC_GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
err = mmc_wait_for_cmd(host, &cmd, 0);
mmc_delay(1);
if (!mmc_host_is_spi(host)) {
mmc_set_chip_select(host, MMC_CS_DONTCARE);
mmc_delay(1);
}
host->use_spi_crc = 0;
return err;
}
int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
{
struct mmc_command cmd = {};
int i, err = 0;
cmd.opcode = MMC_SEND_OP_COND;
cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
for (i = 100; i; i--) {
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (mmc_host_is_spi(host)) {
if (!(cmd.resp[0] & R1_SPI_IDLE))
break;
} else {
if (cmd.resp[0] & MMC_CARD_BUSY)
break;
}
err = -ETIMEDOUT;
mmc_delay(10);
}
if (rocr && !mmc_host_is_spi(host))
*rocr = cmd.resp[0];
return err;
}
int mmc_set_relative_addr(struct mmc_card *card)
{
struct mmc_command cmd = {};
cmd.opcode = MMC_SET_RELATIVE_ADDR;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
}
static int
mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
{
int err;
struct mmc_command cmd = {};
cmd.opcode = opcode;
cmd.arg = arg;
cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
if (err)
return err;
memcpy(cxd, cmd.resp, sizeof(u32) * 4);
return 0;
}
/*
* NOTE: void *buf, caller for the buf is required to use DMA-capable
* buffer or on-stack buffer (with some overhead in callee).
*/
static int
mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
u32 opcode, void *buf, unsigned len)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.arg = 0;
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = len;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, buf, len);
if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
} else
mmc_set_data_timeout(&data, card);
mmc_wait_for_req(host, &mrq);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return 0;
}
static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
{
int ret, i;
__be32 *csd_tmp;
csd_tmp = kzalloc(16, GFP_KERNEL);
if (!csd_tmp)
return -ENOMEM;
ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
if (ret)
goto err;
for (i = 0; i < 4; i++)
csd[i] = be32_to_cpu(csd_tmp[i]);
err:
kfree(csd_tmp);
return ret;
}
int mmc_send_csd(struct mmc_card *card, u32 *csd)
{
if (mmc_host_is_spi(card->host))
return mmc_spi_send_csd(card, csd);
return mmc_send_cxd_native(card->host, card->rca << 16, csd,
MMC_SEND_CSD);
}
static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
{
int ret, i;
__be32 *cid_tmp;
cid_tmp = kzalloc(16, GFP_KERNEL);
if (!cid_tmp)
return -ENOMEM;
ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
if (ret)
goto err;
for (i = 0; i < 4; i++)
cid[i] = be32_to_cpu(cid_tmp[i]);
err:
kfree(cid_tmp);
return ret;
}
int mmc_send_cid(struct mmc_host *host, u32 *cid)
{
if (mmc_host_is_spi(host))
return mmc_spi_send_cid(host, cid);
return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
}
int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
{
int err;
u8 *ext_csd;
if (!card || !new_ext_csd)
return -EINVAL;
if (!mmc_can_ext_csd(card))
return -EOPNOTSUPP;
/*
* As the ext_csd is so large and mostly unused, we don't store the
* raw block in mmc_card.
*/
ext_csd = kzalloc(512, GFP_KERNEL);
if (!ext_csd)
return -ENOMEM;
err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
512);
if (err)
kfree(ext_csd);
else
*new_ext_csd = ext_csd;
return err;
}
EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
{
struct mmc_command cmd = {};
int err;
cmd.opcode = MMC_SPI_READ_OCR;
cmd.arg = highcap ? (1 << 30) : 0;
cmd.flags = MMC_RSP_SPI_R3;
err = mmc_wait_for_cmd(host, &cmd, 0);
*ocrp = cmd.resp[1];
return err;
}
int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
{
struct mmc_command cmd = {};
int err;
cmd.opcode = MMC_SPI_CRC_ON_OFF;
cmd.flags = MMC_RSP_SPI_R1;
cmd.arg = use_crc;
err = mmc_wait_for_cmd(host, &cmd, 0);
if (!err)
host->use_spi_crc = use_crc;
return err;
}
static int mmc_switch_status_error(struct mmc_host *host, u32 status)
{
if (mmc_host_is_spi(host)) {
if (status & R1_SPI_ILLEGAL_COMMAND)
return -EBADMSG;
} else {
if (R1_STATUS(status))
pr_warn("%s: unexpected status %#x after switch\n",
mmc_hostname(host), status);
if (status & R1_SWITCH_ERROR)
return -EBADMSG;
}
return 0;
}
/* Caller must hold re-tuning */
int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
{
u32 status;
int err;
err = mmc_send_status(card, &status);
if (!crc_err_fatal && err == -EILSEQ)
return 0;
if (err)
return err;
return mmc_switch_status_error(card->host, status);
}
int mmc_switch_status(struct mmc_card *card)
{
return __mmc_switch_status(card, true);
}
static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
bool send_status, bool retry_crc_err)
{
struct mmc_host *host = card->host;
int err;
unsigned long timeout;
u32 status = 0;
bool expired = false;
bool busy = false;
/* We have an unspecified cmd timeout, use the fallback value. */
if (!timeout_ms)
timeout_ms = MMC_OPS_TIMEOUT_MS;
/*
* In cases when not allowed to poll by using CMD13 or because we aren't
* capable of polling by using ->card_busy(), then rely on waiting the
* stated timeout to be sufficient.
*/
if (!send_status && !host->ops->card_busy) {
mmc_delay(timeout_ms);
return 0;
}
timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
do {
/*
* Due to the possibility of being preempted while polling,
* check the expiration time first.
*/
expired = time_after(jiffies, timeout);
if (host->ops->card_busy) {
busy = host->ops->card_busy(host);
} else {
err = mmc_send_status(card, &status);
if (retry_crc_err && err == -EILSEQ) {
busy = true;
} else if (err) {
return err;
} else {
err = mmc_switch_status_error(host, status);
if (err)
return err;
busy = R1_CURRENT_STATE(status) == R1_STATE_PRG;
}
}
/* Timeout if the device still remains busy. */
if (expired && busy) {
pr_err("%s: Card stuck being busy! %s\n",
mmc_hostname(host), __func__);
return -ETIMEDOUT;
}
} while (busy);
return 0;
}
/**
* __mmc_switch - modify EXT_CSD register
* @card: the MMC card associated with the data transfer
* @set: cmd set values
* @index: EXT_CSD register index
* @value: value to program into EXT_CSD register
* @timeout_ms: timeout (ms) for operation performed by register write,
* timeout of zero implies maximum possible timeout
* @timing: new timing to change to
* @use_busy_signal: use the busy signal as response type
* @send_status: send status cmd to poll for busy
* @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
*
* Modifies the EXT_CSD register for selected card.
*/
int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
unsigned int timeout_ms, unsigned char timing,
bool use_busy_signal, bool send_status, bool retry_crc_err)
{
struct mmc_host *host = card->host;
int err;
struct mmc_command cmd = {};
bool use_r1b_resp = use_busy_signal;
unsigned char old_timing = host->ios.timing;
mmc_retune_hold(host);
/*
* If the cmd timeout and the max_busy_timeout of the host are both
* specified, let's validate them. A failure means we need to prevent
* the host from doing hw busy detection, which is done by converting
* to a R1 response instead of a R1B.
*/
if (timeout_ms && host->max_busy_timeout &&
(timeout_ms > host->max_busy_timeout))
use_r1b_resp = false;
cmd.opcode = MMC_SWITCH;
cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8) |
set;
cmd.flags = MMC_CMD_AC;
if (use_r1b_resp) {
cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
/*
* A busy_timeout of zero means the host can decide to use
* whatever value it finds suitable.
*/
cmd.busy_timeout = timeout_ms;
} else {
cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
}
if (index == EXT_CSD_SANITIZE_START)
cmd.sanitize_busy = true;
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
if (err)
goto out;
/* No need to check card status in case of unblocking command */
if (!use_busy_signal)
goto out;
/*If SPI or used HW busy detection above, then we don't need to poll. */
if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
mmc_host_is_spi(host))
goto out_tim;
/* Let's try to poll to find out when the command is completed. */
err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err);
if (err)
goto out;
out_tim:
/* Switch to new timing before check switch status. */
if (timing)
mmc_set_timing(host, timing);
if (send_status) {
err = mmc_switch_status(card);
if (err && timing)
mmc_set_timing(host, old_timing);
}
out:
mmc_retune_release(host);
return err;
}
int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
unsigned int timeout_ms)
{
return __mmc_switch(card, set, index, value, timeout_ms, 0,
true, true, false);
}
EXPORT_SYMBOL_GPL(mmc_switch);
int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
struct mmc_ios *ios = &host->ios;
const u8 *tuning_block_pattern;
int size, err = 0;
u8 *data_buf;
if (ios->bus_width == MMC_BUS_WIDTH_8) {
tuning_block_pattern = tuning_blk_pattern_8bit;
size = sizeof(tuning_blk_pattern_8bit);
} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
tuning_block_pattern = tuning_blk_pattern_4bit;
size = sizeof(tuning_blk_pattern_4bit);
} else
return -EINVAL;
data_buf = kzalloc(size, GFP_KERNEL);
if (!data_buf)
return -ENOMEM;
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = size;
data.blocks = 1;
data.flags = MMC_DATA_READ;
/*
* According to the tuning specs, Tuning process
* is normally shorter 40 executions of CMD19,
* and timeout value should be shorter than 150 ms
*/
data.timeout_ns = 150 * NSEC_PER_MSEC;
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, data_buf, size);
mmc_wait_for_req(host, &mrq);
if (cmd_error)
*cmd_error = cmd.error;
if (cmd.error) {
err = cmd.error;
goto out;
}
if (data.error) {
err = data.error;
goto out;
}
if (memcmp(data_buf, tuning_block_pattern, size))
err = -EIO;
out:
kfree(data_buf);
return err;
}
EXPORT_SYMBOL_GPL(mmc_send_tuning);
int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
{
struct mmc_command cmd = {};
/*
* eMMC specification specifies that CMD12 can be used to stop a tuning
* command, but SD specification does not, so do nothing unless it is
* eMMC.
*/
if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
return 0;
cmd.opcode = MMC_STOP_TRANSMISSION;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
/*
* For drivers that override R1 to R1b, set an arbitrary timeout based
* on the tuning timeout i.e. 150ms.
*/
cmd.busy_timeout = 150;
return mmc_wait_for_cmd(host, &cmd, 0);
}
EXPORT_SYMBOL_GPL(mmc_abort_tuning);
static int
mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
u8 len)
{
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
u8 *data_buf;
u8 *test_buf;
int i, err;
static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
/* dma onto stack is unsafe/nonportable, but callers to this
* routine normally provide temporary on-stack buffers ...
*/
data_buf = kmalloc(len, GFP_KERNEL);
if (!data_buf)
return -ENOMEM;
if (len == 8)
test_buf = testdata_8bit;
else if (len == 4)
test_buf = testdata_4bit;
else {
pr_err("%s: Invalid bus_width %d\n",
mmc_hostname(host), len);
kfree(data_buf);
return -EINVAL;
}
if (opcode == MMC_BUS_TEST_W)
memcpy(data_buf, test_buf, len);
mrq.cmd = &cmd;
mrq.data = &data;
cmd.opcode = opcode;
cmd.arg = 0;
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = len;
data.blocks = 1;
if (opcode == MMC_BUS_TEST_R)
data.flags = MMC_DATA_READ;
else
data.flags = MMC_DATA_WRITE;
data.sg = &sg;
data.sg_len = 1;
mmc_set_data_timeout(&data, card);
sg_init_one(&sg, data_buf, len);
mmc_wait_for_req(host, &mrq);
err = 0;
if (opcode == MMC_BUS_TEST_R) {
for (i = 0; i < len / 4; i++)
if ((test_buf[i] ^ data_buf[i]) != 0xff) {
err = -EIO;
break;
}
}
kfree(data_buf);
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return err;
}
int mmc_bus_test(struct mmc_card *card, u8 bus_width)
{
int width;
if (bus_width == MMC_BUS_WIDTH_8)
width = 8;
else if (bus_width == MMC_BUS_WIDTH_4)
width = 4;
else if (bus_width == MMC_BUS_WIDTH_1)
return 0; /* no need for test */
else
return -EINVAL;
/*
* Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
* is a problem. This improves chances that the test will work.
*/
mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
}
static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
{
struct mmc_command cmd = {};
unsigned int opcode;
int err;
if (!card->ext_csd.hpi) {
pr_warn("%s: Card didn't support HPI command\n",
mmc_hostname(card->host));
return -EINVAL;
}
opcode = card->ext_csd.hpi_cmd;
if (opcode == MMC_STOP_TRANSMISSION)
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
else if (opcode == MMC_SEND_STATUS)
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
cmd.opcode = opcode;
cmd.arg = card->rca << 16 | 1;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err) {
pr_warn("%s: error %d interrupting operation. "
"HPI command response %#x\n", mmc_hostname(card->host),
err, cmd.resp[0]);
return err;
}
if (status)
*status = cmd.resp[0];
return 0;
}
/**
* mmc_interrupt_hpi - Issue for High priority Interrupt
* @card: the MMC card associated with the HPI transfer
*
* Issued High Priority Interrupt, and check for card status
* until out-of prg-state.
*/
int mmc_interrupt_hpi(struct mmc_card *card)
{
int err;
u32 status;
unsigned long prg_wait;
if (!card->ext_csd.hpi_en) {
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
return 1;
}
err = mmc_send_status(card, &status);
if (err) {
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
goto out;
}
switch (R1_CURRENT_STATE(status)) {
case R1_STATE_IDLE:
case R1_STATE_READY:
case R1_STATE_STBY:
case R1_STATE_TRAN:
/*
* In idle and transfer states, HPI is not needed and the caller
* can issue the next intended command immediately
*/
goto out;
case R1_STATE_PRG:
break;
default:
/* In all other states, it's illegal to issue HPI */
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
mmc_hostname(card->host), R1_CURRENT_STATE(status));
err = -EINVAL;
goto out;
}
err = mmc_send_hpi_cmd(card, &status);
if (err)
goto out;
prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
do {
err = mmc_send_status(card, &status);
if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
break;
if (time_after(jiffies, prg_wait))
err = -ETIMEDOUT;
} while (!err);
out:
return err;
}
int mmc_can_ext_csd(struct mmc_card *card)
{
return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
}
/**
* mmc_stop_bkops - stop ongoing BKOPS
* @card: MMC card to check BKOPS
*
* Send HPI command to stop ongoing background operations to
* allow rapid servicing of foreground operations, e.g. read/
* writes. Wait until the card comes out of the programming state
* to avoid errors in servicing read/write requests.
*/
int mmc_stop_bkops(struct mmc_card *card)
{
int err = 0;
err = mmc_interrupt_hpi(card);
/*
* If err is EINVAL, we can't issue an HPI.
* It should complete the BKOPS.
*/
if (!err || (err == -EINVAL)) {
mmc_card_clr_doing_bkops(card);
mmc_retune_release(card->host);
err = 0;
}
return err;
}
static int mmc_read_bkops_status(struct mmc_card *card)
{
int err;
u8 *ext_csd;
err = mmc_get_ext_csd(card, &ext_csd);
if (err)
return err;
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
kfree(ext_csd);
return 0;
}
/**
* mmc_start_bkops - start BKOPS for supported cards
* @card: MMC card to start BKOPS
* @from_exception: A flag to indicate if this function was
* called due to an exception raised by the card
*
* Start background operations whenever requested.
* When the urgent BKOPS bit is set in a R1 command response
* then background operations should be started immediately.
*/
void mmc_start_bkops(struct mmc_card *card, bool from_exception)
{
int err;
int timeout;
bool use_busy_signal;
if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
return;
err = mmc_read_bkops_status(card);
if (err) {
pr_err("%s: Failed to read bkops status: %d\n",
mmc_hostname(card->host), err);
return;
}
if (!card->ext_csd.raw_bkops_status)
return;
if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
from_exception)
return;
if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
timeout = MMC_OPS_TIMEOUT_MS;
use_busy_signal = true;
} else {
timeout = 0;
use_busy_signal = false;
}
mmc_retune_hold(card->host);
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BKOPS_START, 1, timeout, 0,
use_busy_signal, true, false);
if (err) {
pr_warn("%s: Error %d starting bkops\n",
mmc_hostname(card->host), err);
mmc_retune_release(card->host);
return;
}
/*
* For urgent bkops status (LEVEL_2 and more)
* bkops executed synchronously, otherwise
* the operation is in progress
*/
if (!use_busy_signal)
mmc_card_set_doing_bkops(card);
else
mmc_retune_release(card->host);
}
EXPORT_SYMBOL(mmc_start_bkops);
/*
* Flush the cache to the non-volatile storage.
*/
int mmc_flush_cache(struct mmc_card *card)
{
int err = 0;
if (mmc_card_mmc(card) &&
(card->ext_csd.cache_size > 0) &&
(card->ext_csd.cache_ctrl & 1)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_FLUSH_CACHE, 1, 0);
if (err)
pr_err("%s: cache flush error %d\n",
mmc_hostname(card->host), err);
}
return err;
}
EXPORT_SYMBOL(mmc_flush_cache);
static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
{
u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
int err;
if (!card->ext_csd.cmdq_support)
return -EOPNOTSUPP;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
val, card->ext_csd.generic_cmd6_time);
if (!err)
card->ext_csd.cmdq_en = enable;
return err;
}
int mmc_cmdq_enable(struct mmc_card *card)
{
return mmc_cmdq_switch(card, true);
}
EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
int mmc_cmdq_disable(struct mmc_card *card)
{
return mmc_cmdq_switch(card, false);
}
EXPORT_SYMBOL_GPL(mmc_cmdq_disable);