linux/drivers/gpu/drm/i915/i915_irq.c
Matt Roper 1649a4cc5c drm/i915/xelpd: Define plane capabilities
XE_LPD's plane support is identical to RKL and ADL-S --- 5 universal + 1
cursor with NV12 UV support on planes 1-3 and NV12 Y support on planes
4-5.

v2:
 - Drop the extra 90/270 rotation check in skl_plane_check_fb(); the DRM
   property code will already prevent userspace from passing us values
   that weren't advertised.  (Lucas)

Bspec: 53657
Bspec: 49251
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Lucas De Marchi <lucas.demarchi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210512042144.2089071-3-matthew.d.roper@intel.com
2021-05-12 16:56:42 -07:00

4563 lines
129 KiB
C

/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/circ_buf.h>
#include <linux/slab.h>
#include <linux/sysrq.h>
#include <drm/drm_drv.h>
#include <drm/drm_irq.h>
#include "display/intel_de.h"
#include "display/intel_display_types.h"
#include "display/intel_fifo_underrun.h"
#include "display/intel_hotplug.h"
#include "display/intel_lpe_audio.h"
#include "display/intel_psr.h"
#include "gt/intel_breadcrumbs.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "gt/intel_rps.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_pm.h"
/**
* DOC: interrupt handling
*
* These functions provide the basic support for enabling and disabling the
* interrupt handling support. There's a lot more functionality in i915_irq.c
* and related files, but that will be described in separate chapters.
*/
/*
* Interrupt statistic for PMU. Increments the counter only if the
* interrupt originated from the the GPU so interrupts from a device which
* shares the interrupt line are not accounted.
*/
static inline void pmu_irq_stats(struct drm_i915_private *i915,
irqreturn_t res)
{
if (unlikely(res != IRQ_HANDLED))
return;
/*
* A clever compiler translates that into INC. A not so clever one
* should at least prevent store tearing.
*/
WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
}
typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
enum hpd_pin pin);
static const u32 hpd_ilk[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG,
};
static const u32 hpd_ivb[HPD_NUM_PINS] = {
[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
};
static const u32 hpd_bdw[HPD_NUM_PINS] = {
[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
};
static const u32 hpd_ibx[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
};
static const u32 hpd_cpt[HPD_NUM_PINS] = {
[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
};
static const u32 hpd_spt[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
};
static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_EN,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
};
static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
};
static const u32 hpd_status_i915[HPD_NUM_PINS] = {
[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
};
static const u32 hpd_bxt[HPD_NUM_PINS] = {
[HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
[HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
[HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
};
static const u32 hpd_gen11[HPD_NUM_PINS] = {
[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
};
static const u32 hpd_icp[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
};
static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
[HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
};
static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
{
struct i915_hotplug *hpd = &dev_priv->hotplug;
if (HAS_GMCH(dev_priv)) {
if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
IS_CHERRYVIEW(dev_priv))
hpd->hpd = hpd_status_g4x;
else
hpd->hpd = hpd_status_i915;
return;
}
if (DISPLAY_VER(dev_priv) >= 11)
hpd->hpd = hpd_gen11;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
hpd->hpd = hpd_bxt;
else if (DISPLAY_VER(dev_priv) >= 8)
hpd->hpd = hpd_bdw;
else if (DISPLAY_VER(dev_priv) >= 7)
hpd->hpd = hpd_ivb;
else
hpd->hpd = hpd_ilk;
if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
(!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
return;
if (HAS_PCH_DG1(dev_priv))
hpd->pch_hpd = hpd_sde_dg1;
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
hpd->pch_hpd = hpd_icp;
else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
hpd->pch_hpd = hpd_spt;
else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
hpd->pch_hpd = hpd_cpt;
else if (HAS_PCH_IBX(dev_priv))
hpd->pch_hpd = hpd_ibx;
else
MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
}
static void
intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
drm_crtc_handle_vblank(&crtc->base);
}
void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
i915_reg_t iir, i915_reg_t ier)
{
intel_uncore_write(uncore, imr, 0xffffffff);
intel_uncore_posting_read(uncore, imr);
intel_uncore_write(uncore, ier, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
}
void gen2_irq_reset(struct intel_uncore *uncore)
{
intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IMR);
intel_uncore_write16(uncore, GEN2_IER, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
/*
* We should clear IMR at preinstall/uninstall, and just check at postinstall.
*/
static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
{
u32 val = intel_uncore_read(uncore, reg);
if (val == 0)
return;
drm_WARN(&uncore->i915->drm, 1,
"Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
}
static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
{
u16 val = intel_uncore_read16(uncore, GEN2_IIR);
if (val == 0)
return;
drm_WARN(&uncore->i915->drm, 1,
"Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(GEN2_IIR), val);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
void gen3_irq_init(struct intel_uncore *uncore,
i915_reg_t imr, u32 imr_val,
i915_reg_t ier, u32 ier_val,
i915_reg_t iir)
{
gen3_assert_iir_is_zero(uncore, iir);
intel_uncore_write(uncore, ier, ier_val);
intel_uncore_write(uncore, imr, imr_val);
intel_uncore_posting_read(uncore, imr);
}
void gen2_irq_init(struct intel_uncore *uncore,
u32 imr_val, u32 ier_val)
{
gen2_assert_iir_is_zero(uncore);
intel_uncore_write16(uncore, GEN2_IER, ier_val);
intel_uncore_write16(uncore, GEN2_IMR, imr_val);
intel_uncore_posting_read16(uncore, GEN2_IMR);
}
/* For display hotplug interrupt */
static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
u32 mask,
u32 bits)
{
u32 val;
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, bits & ~mask);
val = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_EN);
val &= ~mask;
val |= bits;
intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_EN, val);
}
/**
* i915_hotplug_interrupt_update - update hotplug interrupt enable
* @dev_priv: driver private
* @mask: bits to update
* @bits: bits to enable
* NOTE: the HPD enable bits are modified both inside and outside
* of an interrupt context. To avoid that read-modify-write cycles
* interfer, these bits are protected by a spinlock. Since this
* function is usually not called from a context where the lock is
* held already, this function acquires the lock itself. A non-locking
* version is also available.
*/
void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
u32 mask,
u32 bits)
{
spin_lock_irq(&dev_priv->irq_lock);
i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
spin_unlock_irq(&dev_priv->irq_lock);
}
/**
* ilk_update_display_irq - update DEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ilk_update_display_irq(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
new_val = dev_priv->irq_mask;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->irq_mask &&
!drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
dev_priv->irq_mask = new_val;
intel_uncore_write(&dev_priv->uncore, DEIMR, dev_priv->irq_mask);
intel_uncore_posting_read(&dev_priv->uncore, DEIMR);
}
}
/**
* bdw_update_port_irq - update DE port interrupt
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
u32 old_val;
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
return;
old_val = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
new_val = old_val;
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != old_val) {
intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IMR, new_val);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PORT_IMR);
}
}
/**
* bdw_update_pipe_irq - update DE pipe interrupt
* @dev_priv: driver private
* @pipe: pipe whose interrupt to update
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 new_val;
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
return;
new_val = dev_priv->de_irq_mask[pipe];
new_val &= ~interrupt_mask;
new_val |= (~enabled_irq_mask & interrupt_mask);
if (new_val != dev_priv->de_irq_mask[pipe]) {
dev_priv->de_irq_mask[pipe] = new_val;
intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_DE_PIPE_IMR(pipe));
}
}
/**
* ibx_display_interrupt_update - update SDEIMR
* @dev_priv: driver private
* @interrupt_mask: mask of interrupt bits to update
* @enabled_irq_mask: mask of interrupt bits to enable
*/
void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
u32 sdeimr = intel_uncore_read(&dev_priv->uncore, SDEIMR);
sdeimr &= ~interrupt_mask;
sdeimr |= (~enabled_irq_mask & interrupt_mask);
drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
lockdep_assert_held(&dev_priv->irq_lock);
if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
return;
intel_uncore_write(&dev_priv->uncore, SDEIMR, sdeimr);
intel_uncore_posting_read(&dev_priv->uncore, SDEIMR);
}
u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
u32 enable_mask = status_mask << 16;
lockdep_assert_held(&dev_priv->irq_lock);
if (DISPLAY_VER(dev_priv) < 5)
goto out;
/*
* On pipe A we don't support the PSR interrupt yet,
* on pipe B and C the same bit MBZ.
*/
if (drm_WARN_ON_ONCE(&dev_priv->drm,
status_mask & PIPE_A_PSR_STATUS_VLV))
return 0;
/*
* On pipe B and C we don't support the PSR interrupt yet, on pipe
* A the same bit is for perf counters which we don't use either.
*/
if (drm_WARN_ON_ONCE(&dev_priv->drm,
status_mask & PIPE_B_PSR_STATUS_VLV))
return 0;
enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
SPRITE0_FLIP_DONE_INT_EN_VLV |
SPRITE1_FLIP_DONE_INT_EN_VLV);
if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
out:
drm_WARN_ONCE(&dev_priv->drm,
enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
pipe_name(pipe), enable_mask, status_mask);
return enable_mask;
}
void i915_enable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
return;
dev_priv->pipestat_irq_mask[pipe] |= status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
intel_uncore_posting_read(&dev_priv->uncore, reg);
}
void i915_disable_pipestat(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 status_mask)
{
i915_reg_t reg = PIPESTAT(pipe);
u32 enable_mask;
drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
"pipe %c: status_mask=0x%x\n",
pipe_name(pipe), status_mask);
lockdep_assert_held(&dev_priv->irq_lock);
drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
return;
dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
intel_uncore_write(&dev_priv->uncore, reg, enable_mask | status_mask);
intel_uncore_posting_read(&dev_priv->uncore, reg);
}
static bool i915_has_asle(struct drm_i915_private *dev_priv)
{
if (!dev_priv->opregion.asle)
return false;
return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
}
/**
* i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
* @dev_priv: i915 device private
*/
static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
{
if (!i915_has_asle(dev_priv))
return;
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
if (DISPLAY_VER(dev_priv) >= 4)
i915_enable_pipestat(dev_priv, PIPE_A,
PIPE_LEGACY_BLC_EVENT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
/*
* This timing diagram depicts the video signal in and
* around the vertical blanking period.
*
* Assumptions about the fictitious mode used in this example:
* vblank_start >= 3
* vsync_start = vblank_start + 1
* vsync_end = vblank_start + 2
* vtotal = vblank_start + 3
*
* start of vblank:
* latch double buffered registers
* increment frame counter (ctg+)
* generate start of vblank interrupt (gen4+)
* |
* | frame start:
* | generate frame start interrupt (aka. vblank interrupt) (gmch)
* | may be shifted forward 1-3 extra lines via PIPECONF
* | |
* | | start of vsync:
* | | generate vsync interrupt
* | | |
* ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
* . \hs/ . \hs/ \hs/ \hs/ . \hs/
* ----va---> <-----------------vb--------------------> <--------va-------------
* | | <----vs-----> |
* -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
* -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
* -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
* | | |
* last visible pixel first visible pixel
* | increment frame counter (gen3/4)
* pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
*
* x = horizontal active
* _ = horizontal blanking
* hs = horizontal sync
* va = vertical active
* vb = vertical blanking
* vs = vertical sync
* vbs = vblank_start (number)
*
* Summary:
* - most events happen at the start of horizontal sync
* - frame start happens at the start of horizontal blank, 1-4 lines
* (depending on PIPECONF settings) after the start of vblank
* - gen3/4 pixel and frame counter are synchronized with the start
* of horizontal active on the first line of vertical active
*/
/* Called from drm generic code, passed a 'crtc', which
* we use as a pipe index
*/
u32 i915_get_vblank_counter(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
const struct drm_display_mode *mode = &vblank->hwmode;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
i915_reg_t high_frame, low_frame;
u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
unsigned long irqflags;
/*
* On i965gm TV output the frame counter only works up to
* the point when we enable the TV encoder. After that the
* frame counter ceases to work and reads zero. We need a
* vblank wait before enabling the TV encoder and so we
* have to enable vblank interrupts while the frame counter
* is still in a working state. However the core vblank code
* does not like us returning non-zero frame counter values
* when we've told it that we don't have a working frame
* counter. Thus we must stop non-zero values leaking out.
*/
if (!vblank->max_vblank_count)
return 0;
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vbl_start = mode->crtc_vblank_start;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vbl_start = DIV_ROUND_UP(vbl_start, 2);
/* Convert to pixel count */
vbl_start *= htotal;
/* Start of vblank event occurs at start of hsync */
vbl_start -= htotal - hsync_start;
high_frame = PIPEFRAME(pipe);
low_frame = PIPEFRAMEPIXEL(pipe);
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/*
* High & low register fields aren't synchronized, so make sure
* we get a low value that's stable across two reads of the high
* register.
*/
do {
high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
low = intel_de_read_fw(dev_priv, low_frame);
high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
} while (high1 != high2);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
high1 >>= PIPE_FRAME_HIGH_SHIFT;
pixel = low & PIPE_PIXEL_MASK;
low >>= PIPE_FRAME_LOW_SHIFT;
/*
* The frame counter increments at beginning of active.
* Cook up a vblank counter by also checking the pixel
* counter against vblank start.
*/
return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
}
u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
enum pipe pipe = to_intel_crtc(crtc)->pipe;
if (!vblank->max_vblank_count)
return 0;
return intel_uncore_read(&dev_priv->uncore, PIPE_FRMCOUNT_G4X(pipe));
}
static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct drm_vblank_crtc *vblank =
&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
const struct drm_display_mode *mode = &vblank->hwmode;
u32 htotal = mode->crtc_htotal;
u32 clock = mode->crtc_clock;
u32 scan_prev_time, scan_curr_time, scan_post_time;
/*
* To avoid the race condition where we might cross into the
* next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
* reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
* during the same frame.
*/
do {
/*
* This field provides read back of the display
* pipe frame time stamp. The time stamp value
* is sampled at every start of vertical blank.
*/
scan_prev_time = intel_de_read_fw(dev_priv,
PIPE_FRMTMSTMP(crtc->pipe));
/*
* The TIMESTAMP_CTR register has the current
* time stamp value.
*/
scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
scan_post_time = intel_de_read_fw(dev_priv,
PIPE_FRMTMSTMP(crtc->pipe));
} while (scan_post_time != scan_prev_time);
return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
clock), 1000 * htotal);
}
/*
* On certain encoders on certain platforms, pipe
* scanline register will not work to get the scanline,
* since the timings are driven from the PORT or issues
* with scanline register updates.
* This function will use Framestamp and current
* timestamp registers to calculate the scanline.
*/
static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
{
struct drm_vblank_crtc *vblank =
&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
const struct drm_display_mode *mode = &vblank->hwmode;
u32 vblank_start = mode->crtc_vblank_start;
u32 vtotal = mode->crtc_vtotal;
u32 scanline;
scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
scanline = min(scanline, vtotal - 1);
scanline = (scanline + vblank_start) % vtotal;
return scanline;
}
/*
* intel_de_read_fw(), only for fast reads of display block, no need for
* forcewake etc.
*/
static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
const struct drm_display_mode *mode;
struct drm_vblank_crtc *vblank;
enum pipe pipe = crtc->pipe;
int position, vtotal;
if (!crtc->active)
return 0;
vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
mode = &vblank->hwmode;
if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
return __intel_get_crtc_scanline_from_timestamp(crtc);
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
if (DISPLAY_VER(dev_priv) == 2)
position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
else
position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
/*
* On HSW, the DSL reg (0x70000) appears to return 0 if we
* read it just before the start of vblank. So try it again
* so we don't accidentally end up spanning a vblank frame
* increment, causing the pipe_update_end() code to squak at us.
*
* The nature of this problem means we can't simply check the ISR
* bit and return the vblank start value; nor can we use the scanline
* debug register in the transcoder as it appears to have the same
* problem. We may need to extend this to include other platforms,
* but so far testing only shows the problem on HSW.
*/
if (HAS_DDI(dev_priv) && !position) {
int i, temp;
for (i = 0; i < 100; i++) {
udelay(1);
temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
if (temp != position) {
position = temp;
break;
}
}
}
/*
* See update_scanline_offset() for the details on the
* scanline_offset adjustment.
*/
return (position + crtc->scanline_offset) % vtotal;
}
static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
bool in_vblank_irq,
int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_device *dev = _crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc = to_intel_crtc(_crtc);
enum pipe pipe = crtc->pipe;
int position;
int vbl_start, vbl_end, hsync_start, htotal, vtotal;
unsigned long irqflags;
bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
drm_dbg(&dev_priv->drm,
"trying to get scanoutpos for disabled "
"pipe %c\n", pipe_name(pipe));
return false;
}
htotal = mode->crtc_htotal;
hsync_start = mode->crtc_hsync_start;
vtotal = mode->crtc_vtotal;
vbl_start = mode->crtc_vblank_start;
vbl_end = mode->crtc_vblank_end;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vbl_start = DIV_ROUND_UP(vbl_start, 2);
vbl_end /= 2;
vtotal /= 2;
}
/*
* Lock uncore.lock, as we will do multiple timing critical raw
* register reads, potentially with preemption disabled, so the
* following code must not block on uncore.lock.
*/
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
/* Get optional system timestamp before query. */
if (stime)
*stime = ktime_get();
if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
position = __intel_get_crtc_scanline(crtc);
/*
* Already exiting vblank? If so, shift our position
* so it looks like we're already apporaching the full
* vblank end. This should make the generated timestamp
* more or less match when the active portion will start.
*/
if (position >= vbl_start && scanlines < position)
position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
} else if (use_scanline_counter) {
/* No obvious pixelcount register. Only query vertical
* scanout position from Display scan line register.
*/
position = __intel_get_crtc_scanline(crtc);
} else {
/* Have access to pixelcount since start of frame.
* We can split this into vertical and horizontal
* scanout position.
*/
position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
/* convert to pixel counts */
vbl_start *= htotal;
vbl_end *= htotal;
vtotal *= htotal;
/*
* In interlaced modes, the pixel counter counts all pixels,
* so one field will have htotal more pixels. In order to avoid
* the reported position from jumping backwards when the pixel
* counter is beyond the length of the shorter field, just
* clamp the position the length of the shorter field. This
* matches how the scanline counter based position works since
* the scanline counter doesn't count the two half lines.
*/
if (position >= vtotal)
position = vtotal - 1;
/*
* Start of vblank interrupt is triggered at start of hsync,
* just prior to the first active line of vblank. However we
* consider lines to start at the leading edge of horizontal
* active. So, should we get here before we've crossed into
* the horizontal active of the first line in vblank, we would
* not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
* always add htotal-hsync_start to the current pixel position.
*/
position = (position + htotal - hsync_start) % vtotal;
}
/* Get optional system timestamp after query. */
if (etime)
*etime = ktime_get();
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
/*
* While in vblank, position will be negative
* counting up towards 0 at vbl_end. And outside
* vblank, position will be positive counting
* up since vbl_end.
*/
if (position >= vbl_start)
position -= vbl_end;
else
position += vtotal - vbl_end;
if (use_scanline_counter) {
*vpos = position;
*hpos = 0;
} else {
*vpos = position / htotal;
*hpos = position - (*vpos * htotal);
}
return true;
}
bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
ktime_t *vblank_time, bool in_vblank_irq)
{
return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
crtc, max_error, vblank_time, in_vblank_irq,
i915_get_crtc_scanoutpos);
}
int intel_get_crtc_scanline(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
unsigned long irqflags;
int position;
spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
position = __intel_get_crtc_scanline(crtc);
spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
return position;
}
/**
* ivb_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivb_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), l3_parity.error_work);
struct intel_gt *gt = &dev_priv->gt;
u32 error_status, row, bank, subbank;
char *parity_event[6];
u32 misccpctl;
u8 slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
goto out;
misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
i915_reg_t reg;
slice--;
if (drm_WARN_ON_ONCE(&dev_priv->drm,
slice >= NUM_L3_SLICES(dev_priv)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1(slice);
error_status = intel_uncore_read(&dev_priv->uncore, reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
intel_uncore_posting_read(&dev_priv->uncore, reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
out:
drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
spin_lock_irq(&gt->irq_lock);
gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
spin_unlock_irq(&gt->irq_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_TC1:
case HPD_PORT_TC2:
case HPD_PORT_TC3:
case HPD_PORT_TC4:
case HPD_PORT_TC5:
case HPD_PORT_TC6:
return val & GEN11_HOTPLUG_CTL_LONG_DETECT(pin);
default:
return false;
}
}
static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
case HPD_PORT_B:
case HPD_PORT_C:
case HPD_PORT_D:
return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(pin);
default:
return false;
}
}
static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_TC1:
case HPD_PORT_TC2:
case HPD_PORT_TC3:
case HPD_PORT_TC4:
case HPD_PORT_TC5:
case HPD_PORT_TC6:
return val & ICP_TC_HPD_LONG_DETECT(pin);
default:
return false;
}
}
static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_E:
return val & PORTE_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & PORTA_HOTPLUG_LONG_DETECT;
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_A:
return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_B:
return val & PORTB_HOTPLUG_LONG_DETECT;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_LONG_DETECT;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_LONG_DETECT;
default:
return false;
}
}
static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
{
switch (pin) {
case HPD_PORT_B:
return val & PORTB_HOTPLUG_INT_LONG_PULSE;
case HPD_PORT_C:
return val & PORTC_HOTPLUG_INT_LONG_PULSE;
case HPD_PORT_D:
return val & PORTD_HOTPLUG_INT_LONG_PULSE;
default:
return false;
}
}
/*
* Get a bit mask of pins that have triggered, and which ones may be long.
* This can be called multiple times with the same masks to accumulate
* hotplug detection results from several registers.
*
* Note that the caller is expected to zero out the masks initially.
*/
static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
u32 *pin_mask, u32 *long_mask,
u32 hotplug_trigger, u32 dig_hotplug_reg,
const u32 hpd[HPD_NUM_PINS],
bool long_pulse_detect(enum hpd_pin pin, u32 val))
{
enum hpd_pin pin;
BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
for_each_hpd_pin(pin) {
if ((hpd[pin] & hotplug_trigger) == 0)
continue;
*pin_mask |= BIT(pin);
if (long_pulse_detect(pin, dig_hotplug_reg))
*long_mask |= BIT(pin);
}
drm_dbg(&dev_priv->drm,
"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
}
static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
const u32 hpd[HPD_NUM_PINS])
{
struct intel_encoder *encoder;
u32 enabled_irqs = 0;
for_each_intel_encoder(&dev_priv->drm, encoder)
if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
enabled_irqs |= hpd[encoder->hpd_pin];
return enabled_irqs;
}
static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
const u32 hpd[HPD_NUM_PINS])
{
struct intel_encoder *encoder;
u32 hotplug_irqs = 0;
for_each_intel_encoder(&dev_priv->drm, encoder)
hotplug_irqs |= hpd[encoder->hpd_pin];
return hotplug_irqs;
}
static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
hotplug_enables_func hotplug_enables)
{
struct intel_encoder *encoder;
u32 hotplug = 0;
for_each_intel_encoder(&i915->drm, encoder)
hotplug |= hotplug_enables(i915, encoder->hpd_pin);
return hotplug;
}
static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
{
wake_up_all(&dev_priv->gmbus_wait_queue);
}
#if defined(CONFIG_DEBUG_FS)
static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 crc0, u32 crc1,
u32 crc2, u32 crc3,
u32 crc4)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
trace_intel_pipe_crc(crtc, crcs);
spin_lock(&pipe_crc->lock);
/*
* For some not yet identified reason, the first CRC is
* bonkers. So let's just wait for the next vblank and read
* out the buggy result.
*
* On GEN8+ sometimes the second CRC is bonkers as well, so
* don't trust that one either.
*/
if (pipe_crc->skipped <= 0 ||
(DISPLAY_VER(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
pipe_crc->skipped++;
spin_unlock(&pipe_crc->lock);
return;
}
spin_unlock(&pipe_crc->lock);
drm_crtc_add_crc_entry(&crtc->base, true,
drm_crtc_accurate_vblank_count(&crtc->base),
crcs);
}
#else
static inline void
display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe,
u32 crc0, u32 crc1,
u32 crc2, u32 crc3,
u32 crc4) {}
#endif
static void flip_done_handler(struct drm_i915_private *i915,
enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
struct drm_crtc_state *crtc_state = crtc->base.state;
struct drm_pending_vblank_event *e = crtc_state->event;
struct drm_device *dev = &i915->drm;
unsigned long irqflags;
spin_lock_irqsave(&dev->event_lock, irqflags);
crtc_state->event = NULL;
drm_crtc_send_vblank_event(&crtc->base, e);
spin_unlock_irqrestore(&dev->event_lock, irqflags);
}
static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
0, 0, 0, 0);
}
static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
display_pipe_crc_irq_handler(dev_priv, pipe,
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_1_IVB(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_2_IVB(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_3_IVB(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_4_IVB(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_5_IVB(pipe)));
}
static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 res1, res2;
if (DISPLAY_VER(dev_priv) >= 3)
res1 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES1_I915(pipe));
else
res1 = 0;
if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
res2 = intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RES2_G4X(pipe));
else
res2 = 0;
display_pipe_crc_irq_handler(dev_priv, pipe,
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_RED(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_GREEN(pipe)),
intel_uncore_read(&dev_priv->uncore, PIPE_CRC_RES_BLUE(pipe)),
res1, res2);
}
static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
intel_uncore_write(&dev_priv->uncore, PIPESTAT(pipe),
PIPESTAT_INT_STATUS_MASK |
PIPE_FIFO_UNDERRUN_STATUS);
dev_priv->pipestat_irq_mask[pipe] = 0;
}
}
static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
spin_lock(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled) {
spin_unlock(&dev_priv->irq_lock);
return;
}
for_each_pipe(dev_priv, pipe) {
i915_reg_t reg;
u32 status_mask, enable_mask, iir_bit = 0;
/*
* PIPESTAT bits get signalled even when the interrupt is
* disabled with the mask bits, and some of the status bits do
* not generate interrupts at all (like the underrun bit). Hence
* we need to be careful that we only handle what we want to
* handle.
*/
/* fifo underruns are filterered in the underrun handler. */
status_mask = PIPE_FIFO_UNDERRUN_STATUS;
switch (pipe) {
default:
case PIPE_A:
iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
break;
case PIPE_B:
iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
break;
case PIPE_C:
iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
break;
}
if (iir & iir_bit)
status_mask |= dev_priv->pipestat_irq_mask[pipe];
if (!status_mask)
continue;
reg = PIPESTAT(pipe);
pipe_stats[pipe] = intel_uncore_read(&dev_priv->uncore, reg) & status_mask;
enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
/*
* Clear the PIPE*STAT regs before the IIR
*
* Toggle the enable bits to make sure we get an
* edge in the ISR pipe event bit if we don't clear
* all the enabled status bits. Otherwise the edge
* triggered IIR on i965/g4x wouldn't notice that
* an interrupt is still pending.
*/
if (pipe_stats[pipe]) {
intel_uncore_write(&dev_priv->uncore, reg, pipe_stats[pipe]);
intel_uncore_write(&dev_priv->uncore, reg, enable_mask);
}
}
spin_unlock(&dev_priv->irq_lock);
}
static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u16 iir, u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
intel_handle_vblank(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
}
static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
intel_handle_vblank(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
}
static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 iir, u32 pipe_stats[I915_MAX_PIPES])
{
bool blc_event = false;
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
intel_handle_vblank(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
blc_event = true;
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (blc_event || (iir & I915_ASLE_INTERRUPT))
intel_opregion_asle_intr(dev_priv);
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
u32 pipe_stats[I915_MAX_PIPES])
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
intel_handle_vblank(dev_priv, pipe);
if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
flip_done_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
}
if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
gmbus_irq_handler(dev_priv);
}
static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
{
u32 hotplug_status = 0, hotplug_status_mask;
int i;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
else
hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
/*
* We absolutely have to clear all the pending interrupt
* bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
* interrupt bit won't have an edge, and the i965/g4x
* edge triggered IIR will not notice that an interrupt
* is still pending. We can't use PORT_HOTPLUG_EN to
* guarantee the edge as the act of toggling the enable
* bits can itself generate a new hotplug interrupt :(
*/
for (i = 0; i < 10; i++) {
u32 tmp = intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT) & hotplug_status_mask;
if (tmp == 0)
return hotplug_status;
hotplug_status |= tmp;
intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, hotplug_status);
}
drm_WARN_ONCE(&dev_priv->drm, 1,
"PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
return hotplug_status;
}
static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_status)
{
u32 pin_mask = 0, long_mask = 0;
u32 hotplug_trigger;
if (IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
else
hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
if (hotplug_trigger) {
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, hotplug_trigger,
dev_priv->hotplug.hpd,
i9xx_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
if ((IS_G4X(dev_priv) ||
IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
dp_aux_irq_handler(dev_priv);
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 iir, gt_iir, pm_iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
* (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
* bits this time around.
*/
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
if (gt_iir)
intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
if (pm_iir)
intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
if (gt_iir)
gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
if (pm_iir)
gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 master_ctl, iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
if (master_ctl == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
* (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
* bits this time around.
*/
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
ier = intel_uncore_read(&dev_priv->uncore, VLV_IER);
intel_uncore_write(&dev_priv->uncore, VLV_IER, 0);
gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger)
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
/*
* Somehow the PCH doesn't seem to really ack the interrupt to the CPU
* unless we touch the hotplug register, even if hotplug_trigger is
* zero. Not acking leads to "The master control interrupt lied (SDE)!"
* errors.
*/
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
if (!hotplug_trigger) {
u32 mask = PORTA_HOTPLUG_STATUS_MASK |
PORTD_HOTPLUG_STATUS_MASK |
PORTC_HOTPLUG_STATUS_MASK |
PORTB_HOTPLUG_STATUS_MASK;
dig_hotplug_reg &= ~mask;
}
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
if (!hotplug_trigger)
return;
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.pch_hpd,
pch_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
enum pipe pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
if (pch_iir & SDE_AUDIO_POWER_MASK) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
SDE_AUDIO_POWER_SHIFT);
drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_HDCP_MASK)
drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
if (pch_iir & SDE_AUDIO_TRANS_MASK)
drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
if (pch_iir & SDE_POISON)
drm_err(&dev_priv->drm, "PCH poison interrupt\n");
if (pch_iir & SDE_FDI_MASK) {
for_each_pipe(dev_priv, pipe)
drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
}
if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
drm_dbg(&dev_priv->drm,
"PCH transcoder CRC error interrupt\n");
if (pch_iir & SDE_TRANSA_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
if (pch_iir & SDE_TRANSB_FIFO_UNDER)
intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
}
static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
{
u32 err_int = intel_uncore_read(&dev_priv->uncore, GEN7_ERR_INT);
enum pipe pipe;
if (err_int & ERR_INT_POISON)
drm_err(&dev_priv->drm, "Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
if (IS_IVYBRIDGE(dev_priv))
ivb_pipe_crc_irq_handler(dev_priv, pipe);
else
hsw_pipe_crc_irq_handler(dev_priv, pipe);
}
}
intel_uncore_write(&dev_priv->uncore, GEN7_ERR_INT, err_int);
}
static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
{
u32 serr_int = intel_uncore_read(&dev_priv->uncore, SERR_INT);
enum pipe pipe;
if (serr_int & SERR_INT_POISON)
drm_err(&dev_priv->drm, "PCH poison interrupt\n");
for_each_pipe(dev_priv, pipe)
if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
intel_uncore_write(&dev_priv->uncore, SERR_INT, serr_int);
}
static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
enum pipe pipe;
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
SDE_AUDIO_POWER_SHIFT_CPT);
drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
port_name(port));
}
if (pch_iir & SDE_AUX_MASK_CPT)
dp_aux_irq_handler(dev_priv);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
if (pch_iir & SDE_FDI_MASK_CPT) {
for_each_pipe(dev_priv, pipe)
drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
pipe_name(pipe),
intel_uncore_read(&dev_priv->uncore, FDI_RX_IIR(pipe)));
}
if (pch_iir & SDE_ERROR_CPT)
cpt_serr_int_handler(dev_priv);
}
static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
u32 pin_mask = 0, long_mask = 0;
if (ddi_hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
ddi_hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.pch_hpd,
icp_ddi_port_hotplug_long_detect);
}
if (tc_hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
tc_hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.pch_hpd,
icp_tc_port_hotplug_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_ICP)
gmbus_irq_handler(dev_priv);
}
static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
{
u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
~SDE_PORTE_HOTPLUG_SPT;
u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
u32 pin_mask = 0, long_mask = 0;
if (hotplug_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.pch_hpd,
spt_port_hotplug_long_detect);
}
if (hotplug2_trigger) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug2_trigger, dig_hotplug_reg,
dev_priv->hotplug.pch_hpd,
spt_port_hotplug2_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
if (pch_iir & SDE_GMBUS_CPT)
gmbus_irq_handler(dev_priv);
}
static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger)
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.hpd,
ilk_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
if (de_iir & DE_AUX_CHANNEL_A)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE)
intel_opregion_asle_intr(dev_priv);
if (de_iir & DE_POISON)
drm_err(&dev_priv->drm, "Poison interrupt\n");
for_each_pipe(dev_priv, pipe) {
if (de_iir & DE_PIPE_VBLANK(pipe))
intel_handle_vblank(dev_priv, pipe);
if (de_iir & DE_PLANE_FLIP_DONE(pipe))
flip_done_handler(dev_priv, pipe);
if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
if (de_iir & DE_PIPE_CRC_DONE(pipe))
i9xx_pipe_crc_irq_handler(dev_priv, pipe);
}
/* check event from PCH */
if (de_iir & DE_PCH_EVENT) {
u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
if (HAS_PCH_CPT(dev_priv))
cpt_irq_handler(dev_priv, pch_iir);
else
ibx_irq_handler(dev_priv, pch_iir);
/* should clear PCH hotplug event before clear CPU irq */
intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
}
if (DISPLAY_VER(dev_priv) == 5 && de_iir & DE_PCU_EVENT)
gen5_rps_irq_handler(&dev_priv->gt.rps);
}
static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
u32 de_iir)
{
enum pipe pipe;
u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
if (hotplug_trigger)
ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
if (de_iir & DE_ERR_INT_IVB)
ivb_err_int_handler(dev_priv);
if (de_iir & DE_EDP_PSR_INT_HSW) {
struct intel_encoder *encoder;
for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
u32 psr_iir = intel_uncore_read(&dev_priv->uncore,
EDP_PSR_IIR);
intel_psr_irq_handler(intel_dp, psr_iir);
intel_uncore_write(&dev_priv->uncore,
EDP_PSR_IIR, psr_iir);
break;
}
}
if (de_iir & DE_AUX_CHANNEL_A_IVB)
dp_aux_irq_handler(dev_priv);
if (de_iir & DE_GSE_IVB)
intel_opregion_asle_intr(dev_priv);
for_each_pipe(dev_priv, pipe) {
if (de_iir & DE_PIPE_VBLANK_IVB(pipe))
intel_handle_vblank(dev_priv, pipe);
if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
flip_done_handler(dev_priv, pipe);
}
/* check event from PCH */
if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
u32 pch_iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
cpt_irq_handler(dev_priv, pch_iir);
/* clear PCH hotplug event before clear CPU irq */
intel_uncore_write(&dev_priv->uncore, SDEIIR, pch_iir);
}
}
/*
* To handle irqs with the minimum potential races with fresh interrupts, we:
* 1 - Disable Master Interrupt Control.
* 2 - Find the source(s) of the interrupt.
* 3 - Clear the Interrupt Identity bits (IIR).
* 4 - Process the interrupt(s) that had bits set in the IIRs.
* 5 - Re-enable Master Interrupt Control.
*/
static irqreturn_t ilk_irq_handler(int irq, void *arg)
{
struct drm_i915_private *i915 = arg;
void __iomem * const regs = i915->uncore.regs;
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
if (unlikely(!intel_irqs_enabled(i915)))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&i915->runtime_pm);
/* disable master interrupt before clearing iir */
de_ier = raw_reg_read(regs, DEIER);
raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(i915)) {
sde_ier = raw_reg_read(regs, SDEIER);
raw_reg_write(regs, SDEIER, 0);
}
/* Find, clear, then process each source of interrupt */
gt_iir = raw_reg_read(regs, GTIIR);
if (gt_iir) {
raw_reg_write(regs, GTIIR, gt_iir);
if (INTEL_GEN(i915) >= 6)
gen6_gt_irq_handler(&i915->gt, gt_iir);
else
gen5_gt_irq_handler(&i915->gt, gt_iir);
ret = IRQ_HANDLED;
}
de_iir = raw_reg_read(regs, DEIIR);
if (de_iir) {
raw_reg_write(regs, DEIIR, de_iir);
if (DISPLAY_VER(i915) >= 7)
ivb_display_irq_handler(i915, de_iir);
else
ilk_display_irq_handler(i915, de_iir);
ret = IRQ_HANDLED;
}
if (INTEL_GEN(i915) >= 6) {
u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
if (pm_iir) {
raw_reg_write(regs, GEN6_PMIIR, pm_iir);
gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
ret = IRQ_HANDLED;
}
}
raw_reg_write(regs, DEIER, de_ier);
if (sde_ier)
raw_reg_write(regs, SDEIER, sde_ier);
pmu_irq_stats(i915, ret);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
enable_rpm_wakeref_asserts(&i915->runtime_pm);
return ret;
}
static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
u32 hotplug_trigger)
{
u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
hotplug_trigger, dig_hotplug_reg,
dev_priv->hotplug.hpd,
bxt_port_hotplug_long_detect);
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
}
static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
{
u32 pin_mask = 0, long_mask = 0;
u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
if (trigger_tc) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
trigger_tc, dig_hotplug_reg,
dev_priv->hotplug.hpd,
gen11_port_hotplug_long_detect);
}
if (trigger_tbt) {
u32 dig_hotplug_reg;
dig_hotplug_reg = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
trigger_tbt, dig_hotplug_reg,
dev_priv->hotplug.hpd,
gen11_port_hotplug_long_detect);
}
if (pin_mask)
intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
else
drm_err(&dev_priv->drm,
"Unexpected DE HPD interrupt 0x%08x\n", iir);
}
static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
{
u32 mask;
if (DISPLAY_VER(dev_priv) >= 13)
return TGL_DE_PORT_AUX_DDIA |
TGL_DE_PORT_AUX_DDIB |
TGL_DE_PORT_AUX_DDIC |
XELPD_DE_PORT_AUX_DDID |
XELPD_DE_PORT_AUX_DDIE |
TGL_DE_PORT_AUX_USBC1 |
TGL_DE_PORT_AUX_USBC2 |
TGL_DE_PORT_AUX_USBC3 |
TGL_DE_PORT_AUX_USBC4;
else if (DISPLAY_VER(dev_priv) >= 12)
return TGL_DE_PORT_AUX_DDIA |
TGL_DE_PORT_AUX_DDIB |
TGL_DE_PORT_AUX_DDIC |
TGL_DE_PORT_AUX_USBC1 |
TGL_DE_PORT_AUX_USBC2 |
TGL_DE_PORT_AUX_USBC3 |
TGL_DE_PORT_AUX_USBC4 |
TGL_DE_PORT_AUX_USBC5 |
TGL_DE_PORT_AUX_USBC6;
mask = GEN8_AUX_CHANNEL_A;
if (DISPLAY_VER(dev_priv) >= 9)
mask |= GEN9_AUX_CHANNEL_B |
GEN9_AUX_CHANNEL_C |
GEN9_AUX_CHANNEL_D;
if (IS_CNL_WITH_PORT_F(dev_priv) || DISPLAY_VER(dev_priv) == 11)
mask |= CNL_AUX_CHANNEL_F;
if (DISPLAY_VER(dev_priv) == 11)
mask |= ICL_AUX_CHANNEL_E;
return mask;
}
static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 13 || HAS_D12_PLANE_MINIMIZATION(dev_priv))
return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
else if (DISPLAY_VER(dev_priv) >= 11)
return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
else if (DISPLAY_VER(dev_priv) >= 9)
return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
else
return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
}
static void
gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
{
bool found = false;
if (iir & GEN8_DE_MISC_GSE) {
intel_opregion_asle_intr(dev_priv);
found = true;
}
if (iir & GEN8_DE_EDP_PSR) {
struct intel_encoder *encoder;
u32 psr_iir;
i915_reg_t iir_reg;
for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (DISPLAY_VER(dev_priv) >= 12)
iir_reg = TRANS_PSR_IIR(intel_dp->psr.transcoder);
else
iir_reg = EDP_PSR_IIR;
psr_iir = intel_uncore_read(&dev_priv->uncore, iir_reg);
intel_uncore_write(&dev_priv->uncore, iir_reg, psr_iir);
if (psr_iir)
found = true;
intel_psr_irq_handler(intel_dp, psr_iir);
/* prior GEN12 only have one EDP PSR */
if (DISPLAY_VER(dev_priv) < 12)
break;
}
}
if (!found)
drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
}
static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
u32 te_trigger)
{
enum pipe pipe = INVALID_PIPE;
enum transcoder dsi_trans;
enum port port;
u32 val, tmp;
/*
* Incase of dual link, TE comes from DSI_1
* this is to check if dual link is enabled
*/
val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
val &= PORT_SYNC_MODE_ENABLE;
/*
* if dual link is enabled, then read DSI_0
* transcoder registers
*/
port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
PORT_A : PORT_B;
dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
/* Check if DSI configured in command mode */
val = intel_uncore_read(&dev_priv->uncore, DSI_TRANS_FUNC_CONF(dsi_trans));
val = val & OP_MODE_MASK;
if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
return;
}
/* Get PIPE for handling VBLANK event */
val = intel_uncore_read(&dev_priv->uncore, TRANS_DDI_FUNC_CTL(dsi_trans));
switch (val & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
pipe = PIPE_C;
break;
default:
drm_err(&dev_priv->drm, "Invalid PIPE\n");
return;
}
intel_handle_vblank(dev_priv, pipe);
/* clear TE in dsi IIR */
port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
}
static u32 gen8_de_pipe_flip_done_mask(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 9)
return GEN9_PIPE_PLANE1_FLIP_DONE;
else
return GEN8_PIPE_PRIMARY_FLIP_DONE;
}
static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
{
irqreturn_t ret = IRQ_NONE;
u32 iir;
enum pipe pipe;
drm_WARN_ON_ONCE(&dev_priv->drm, !HAS_DISPLAY(dev_priv));
if (master_ctl & GEN8_DE_MISC_IRQ) {
iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_MISC_IIR);
if (iir) {
intel_uncore_write(&dev_priv->uncore, GEN8_DE_MISC_IIR, iir);
ret = IRQ_HANDLED;
gen8_de_misc_irq_handler(dev_priv, iir);
} else {
drm_err(&dev_priv->drm,
"The master control interrupt lied (DE MISC)!\n");
}
}
if (DISPLAY_VER(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
iir = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IIR);
if (iir) {
intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IIR, iir);
ret = IRQ_HANDLED;
gen11_hpd_irq_handler(dev_priv, iir);
} else {
drm_err(&dev_priv->drm,
"The master control interrupt lied, (DE HPD)!\n");
}
}
if (master_ctl & GEN8_DE_PORT_IRQ) {
iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PORT_IIR);
if (iir) {
bool found = false;
intel_uncore_write(&dev_priv->uncore, GEN8_DE_PORT_IIR, iir);
ret = IRQ_HANDLED;
if (iir & gen8_de_port_aux_mask(dev_priv)) {
dp_aux_irq_handler(dev_priv);
found = true;
}
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
if (hotplug_trigger) {
bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
found = true;
}
} else if (IS_BROADWELL(dev_priv)) {
u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
if (hotplug_trigger) {
ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
found = true;
}
}
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
(iir & BXT_DE_PORT_GMBUS)) {
gmbus_irq_handler(dev_priv);
found = true;
}
if (DISPLAY_VER(dev_priv) >= 11) {
u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
if (te_trigger) {
gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
found = true;
}
}
if (!found)
drm_err(&dev_priv->drm,
"Unexpected DE Port interrupt\n");
}
else
drm_err(&dev_priv->drm,
"The master control interrupt lied (DE PORT)!\n");
}
for_each_pipe(dev_priv, pipe) {
u32 fault_errors;
if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
continue;
iir = intel_uncore_read(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe));
if (!iir) {
drm_err(&dev_priv->drm,
"The master control interrupt lied (DE PIPE)!\n");
continue;
}
ret = IRQ_HANDLED;
intel_uncore_write(&dev_priv->uncore, GEN8_DE_PIPE_IIR(pipe), iir);
if (iir & GEN8_PIPE_VBLANK)
intel_handle_vblank(dev_priv, pipe);
if (iir & gen8_de_pipe_flip_done_mask(dev_priv))
flip_done_handler(dev_priv, pipe);
if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
hsw_pipe_crc_irq_handler(dev_priv, pipe);
if (iir & GEN8_PIPE_FIFO_UNDERRUN)
intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
if (fault_errors)
drm_err(&dev_priv->drm,
"Fault errors on pipe %c: 0x%08x\n",
pipe_name(pipe),
fault_errors);
}
if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
master_ctl & GEN8_DE_PCH_IRQ) {
/*
* FIXME(BDW): Assume for now that the new interrupt handling
* scheme also closed the SDE interrupt handling race we've seen
* on older pch-split platforms. But this needs testing.
*/
iir = intel_uncore_read(&dev_priv->uncore, SDEIIR);
if (iir) {
intel_uncore_write(&dev_priv->uncore, SDEIIR, iir);
ret = IRQ_HANDLED;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_irq_handler(dev_priv, iir);
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
spt_irq_handler(dev_priv, iir);
else
cpt_irq_handler(dev_priv, iir);
} else {
/*
* Like on previous PCH there seems to be something
* fishy going on with forwarding PCH interrupts.
*/
drm_dbg(&dev_priv->drm,
"The master control interrupt lied (SDE)!\n");
}
}
return ret;
}
static inline u32 gen8_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN8_MASTER_IRQ);
}
static inline void gen8_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
void __iomem * const regs = dev_priv->uncore.regs;
u32 master_ctl;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
master_ctl = gen8_master_intr_disable(regs);
if (!master_ctl) {
gen8_master_intr_enable(regs);
return IRQ_NONE;
}
/* Find, queue (onto bottom-halves), then clear each source */
gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & ~GEN8_GT_IRQS) {
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
gen8_de_irq_handler(dev_priv, master_ctl);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
}
gen8_master_intr_enable(regs);
pmu_irq_stats(dev_priv, IRQ_HANDLED);
return IRQ_HANDLED;
}
static u32
gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
{
void __iomem * const regs = gt->uncore->regs;
u32 iir;
if (!(master_ctl & GEN11_GU_MISC_IRQ))
return 0;
iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
if (likely(iir))
raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
return iir;
}
static void
gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
{
if (iir & GEN11_GU_MISC_GSE)
intel_opregion_asle_intr(gt->i915);
}
static inline u32 gen11_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
}
static inline void gen11_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
}
static void
gen11_display_irq_handler(struct drm_i915_private *i915)
{
void __iomem * const regs = i915->uncore.regs;
const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
disable_rpm_wakeref_asserts(&i915->runtime_pm);
/*
* GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
* for the display related bits.
*/
raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
gen8_de_irq_handler(i915, disp_ctl);
raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
GEN11_DISPLAY_IRQ_ENABLE);
enable_rpm_wakeref_asserts(&i915->runtime_pm);
}
static __always_inline irqreturn_t
__gen11_irq_handler(struct drm_i915_private * const i915,
u32 (*intr_disable)(void __iomem * const regs),
void (*intr_enable)(void __iomem * const regs))
{
void __iomem * const regs = i915->uncore.regs;
struct intel_gt *gt = &i915->gt;
u32 master_ctl;
u32 gu_misc_iir;
if (!intel_irqs_enabled(i915))
return IRQ_NONE;
master_ctl = intr_disable(regs);
if (!master_ctl) {
intr_enable(regs);
return IRQ_NONE;
}
/* Find, queue (onto bottom-halves), then clear each source */
gen11_gt_irq_handler(gt, master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & GEN11_DISPLAY_IRQ)
gen11_display_irq_handler(i915);
gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
intr_enable(regs);
gen11_gu_misc_irq_handler(gt, gu_misc_iir);
pmu_irq_stats(i915, IRQ_HANDLED);
return IRQ_HANDLED;
}
static irqreturn_t gen11_irq_handler(int irq, void *arg)
{
return __gen11_irq_handler(arg,
gen11_master_intr_disable,
gen11_master_intr_enable);
}
static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
{
u32 val;
/* First disable interrupts */
raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
/* Get the indication levels and ack the master unit */
val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
if (unlikely(!val))
return 0;
raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
* out as this bit doesn't exist anymore for DG1
*/
val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
if (unlikely(!val))
return 0;
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
return val;
}
static inline void dg1_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
}
static irqreturn_t dg1_irq_handler(int irq, void *arg)
{
return __gen11_irq_handler(arg,
dg1_master_intr_disable_and_ack,
dg1_master_intr_enable);
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
int i8xx_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
int i915gm_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
/*
* Vblank interrupts fail to wake the device up from C2+.
* Disabling render clock gating during C-states avoids
* the problem. There is a small power cost so we do this
* only when vblank interrupts are actually enabled.
*/
if (dev_priv->vblank_enabled++ == 0)
intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
return i8xx_enable_vblank(crtc);
}
int i965_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_enable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
return 0;
}
int ilk_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_enable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even though there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated.
*/
if (HAS_PSR(dev_priv))
drm_crtc_vblank_restore(crtc);
return 0;
}
static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
bool enable)
{
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
enum port port;
u32 tmp;
if (!(intel_crtc->mode_flags &
(I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
return false;
/* for dual link cases we consider TE from slave */
if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
port = PORT_B;
else
port = PORT_A;
tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_MASK_REG(port));
if (enable)
tmp &= ~DSI_TE_EVENT;
else
tmp |= DSI_TE_EVENT;
intel_uncore_write(&dev_priv->uncore, DSI_INTR_MASK_REG(port), tmp);
tmp = intel_uncore_read(&dev_priv->uncore, DSI_INTR_IDENT_REG(port));
intel_uncore_write(&dev_priv->uncore, DSI_INTR_IDENT_REG(port), tmp);
return true;
}
int bdw_enable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned long irqflags;
if (gen11_dsi_configure_te(intel_crtc, true))
return 0;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
/* Even if there is no DMC, frame counter can get stuck when
* PSR is active as no frames are generated, so check only for PSR.
*/
if (HAS_PSR(dev_priv))
drm_crtc_vblank_restore(crtc);
return 0;
}
/* Called from drm generic code, passed 'crtc' which
* we use as a pipe index
*/
void i8xx_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void i915gm_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
i8xx_disable_vblank(crtc);
if (--dev_priv->vblank_enabled == 0)
intel_uncore_write(&dev_priv->uncore, SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
}
void i965_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
i915_disable_pipestat(dev_priv, pipe,
PIPE_START_VBLANK_INTERRUPT_STATUS);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void ilk_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
unsigned long irqflags;
u32 bit = DISPLAY_VER(dev_priv) >= 7 ?
DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
ilk_disable_display_irq(dev_priv, bit);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
void bdw_disable_vblank(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned long irqflags;
if (gen11_dsi_configure_te(intel_crtc, false))
return;
spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
}
static void ibx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (HAS_PCH_NOP(dev_priv))
return;
GEN3_IRQ_RESET(uncore, SDE);
if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
}
static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (IS_CHERRYVIEW(dev_priv))
intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
else
intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
intel_uncore_write(uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, VLV_);
dev_priv->irq_mask = ~0u;
}
static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 pipestat_mask;
u32 enable_mask;
enum pipe pipe;
pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
for_each_pipe(dev_priv, pipe)
i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
enable_mask = I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT;
if (IS_CHERRYVIEW(dev_priv))
enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT;
drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
dev_priv->irq_mask = ~enable_mask;
GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
}
/* drm_dma.h hooks
*/
static void ilk_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
GEN3_IRQ_RESET(uncore, DE);
dev_priv->irq_mask = ~0u;
if (IS_GEN(dev_priv, 7))
intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
if (IS_HASWELL(dev_priv)) {
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
}
gen5_gt_irq_reset(&dev_priv->gt);
ibx_irq_reset(dev_priv);
}
static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
gen5_gt_irq_reset(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void cnp_display_clock_wa(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
/*
* Wa_14010685332:cnp/cmp,tgp,adp
* TODO: Clarify which platforms this applies to
* TODO: Figure out if this workaround can be applied in the s0ix suspend/resume handlers as
* on earlier platforms and whether the workaround is also needed for runtime suspend/resume
*/
if (INTEL_PCH_TYPE(dev_priv) == PCH_CNP ||
(INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && INTEL_PCH_TYPE(dev_priv) < PCH_DG1)) {
intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS,
SBCLK_RUN_REFCLK_DIS);
intel_uncore_rmw(uncore, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
}
}
static void gen8_display_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
if (!HAS_DISPLAY(dev_priv))
return;
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
}
static void gen8_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
gen8_master_intr_disable(dev_priv->uncore.regs);
gen8_gt_irq_reset(&dev_priv->gt);
gen8_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_reset(dev_priv);
cnp_display_clock_wa(dev_priv);
}
static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
if (!HAS_DISPLAY(dev_priv))
return;
intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
if (DISPLAY_VER(dev_priv) >= 12) {
enum transcoder trans;
for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
enum intel_display_power_domain domain;
domain = POWER_DOMAIN_TRANSCODER(trans);
if (!intel_display_power_is_enabled(dev_priv, domain))
continue;
intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
}
} else {
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
}
for_each_pipe(dev_priv, pipe)
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
GEN3_IRQ_RESET(uncore, SDE);
cnp_display_clock_wa(dev_priv);
}
static void gen11_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (HAS_MASTER_UNIT_IRQ(dev_priv))
dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
else
gen11_master_intr_disable(dev_priv->uncore.regs);
gen11_gt_irq_reset(&dev_priv->gt);
gen11_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
}
void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
gen8_de_pipe_flip_done_mask(dev_priv);
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
~dev_priv->de_irq_mask[pipe] | extra_ier);
spin_unlock_irq(&dev_priv->irq_lock);
}
void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 pipe_mask)
{
struct intel_uncore *uncore = &dev_priv->uncore;
enum pipe pipe;
spin_lock_irq(&dev_priv->irq_lock);
if (!intel_irqs_enabled(dev_priv)) {
spin_unlock_irq(&dev_priv->irq_lock);
return;
}
for_each_pipe_masked(dev_priv, pipe, pipe_mask)
GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
intel_synchronize_irq(dev_priv);
}
static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
gen8_gt_irq_reset(&dev_priv->gt);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_A:
/*
* When CPU and PCH are on the same package, port A
* HPD must be enabled in both north and south.
*/
return HAS_PCH_LPT_LP(i915) ?
PORTA_HOTPLUG_ENABLE : 0;
case HPD_PORT_B:
return PORTB_HOTPLUG_ENABLE |
PORTB_PULSE_DURATION_2ms;
case HPD_PORT_C:
return PORTC_HOTPLUG_ENABLE |
PORTC_PULSE_DURATION_2ms;
case HPD_PORT_D:
return PORTD_HOTPLUG_ENABLE |
PORTD_PULSE_DURATION_2ms;
default:
return 0;
}
}
static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the PCH, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec).
* The pulse duration bits are reserved on LPT+.
*/
hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
hotplug &= ~(PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE |
PORTD_HOTPLUG_ENABLE |
PORTB_PULSE_DURATION_MASK |
PORTC_PULSE_DURATION_MASK |
PORTD_PULSE_DURATION_MASK);
hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
}
static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
ibx_hpd_detection_setup(dev_priv);
}
static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_A:
case HPD_PORT_B:
case HPD_PORT_C:
case HPD_PORT_D:
return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
default:
return 0;
}
}
static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_TC1:
case HPD_PORT_TC2:
case HPD_PORT_TC3:
case HPD_PORT_TC4:
case HPD_PORT_TC5:
case HPD_PORT_TC6:
return ICP_TC_HPD_ENABLE(pin);
default:
return 0;
}
}
static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_DDI);
hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_DDI, hotplug);
}
static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = intel_uncore_read(&dev_priv->uncore, SHOTPLUG_CTL_TC);
hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, SHOTPLUG_CTL_TC, hotplug);
}
static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
icp_ddi_hpd_detection_setup(dev_priv);
icp_tc_hpd_detection_setup(dev_priv);
}
static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_TC1:
case HPD_PORT_TC2:
case HPD_PORT_TC3:
case HPD_PORT_TC4:
case HPD_PORT_TC5:
case HPD_PORT_TC6:
return GEN11_HOTPLUG_CTL_ENABLE(pin);
default:
return 0;
}
}
static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 val;
val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
val |= (INVERT_DDIA_HPD |
INVERT_DDIB_HPD |
INVERT_DDIC_HPD |
INVERT_DDID_HPD);
intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
icp_hpd_irq_setup(dev_priv);
}
static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL);
hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, GEN11_TC_HOTPLUG_CTL, hotplug);
}
static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = intel_uncore_read(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL);
hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, GEN11_TBT_HOTPLUG_CTL, hotplug);
}
static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
u32 val;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
val = intel_uncore_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
val &= ~hotplug_irqs;
val |= ~enabled_irqs & hotplug_irqs;
intel_uncore_write(&dev_priv->uncore, GEN11_DE_HPD_IMR, val);
intel_uncore_posting_read(&dev_priv->uncore, GEN11_DE_HPD_IMR);
gen11_tc_hpd_detection_setup(dev_priv);
gen11_tbt_hpd_detection_setup(dev_priv);
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_hpd_irq_setup(dev_priv);
}
static u32 spt_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_A:
return PORTA_HOTPLUG_ENABLE;
case HPD_PORT_B:
return PORTB_HOTPLUG_ENABLE;
case HPD_PORT_C:
return PORTC_HOTPLUG_ENABLE;
case HPD_PORT_D:
return PORTD_HOTPLUG_ENABLE;
default:
return 0;
}
}
static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_E:
return PORTE_HOTPLUG_ENABLE;
default:
return 0;
}
}
static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 val, hotplug;
/* Display WA #1179 WaHardHangonHotPlug: cnp */
if (HAS_PCH_CNP(dev_priv)) {
val = intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN1);
val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
val |= CHASSIS_CLK_REQ_DURATION(0xf);
intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN1, val);
}
/* Enable digital hotplug on the PCH */
hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
hotplug &= ~(PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE |
PORTD_HOTPLUG_ENABLE);
hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG2);
hotplug &= ~PORTE_HOTPLUG_ENABLE;
hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG2, hotplug);
}
static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
intel_uncore_write(&dev_priv->uncore, SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
spt_hpd_detection_setup(dev_priv);
}
static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
switch (pin) {
case HPD_PORT_A:
return DIGITAL_PORTA_HOTPLUG_ENABLE |
DIGITAL_PORTA_PULSE_DURATION_2ms;
default:
return 0;
}
}
static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
/*
* Enable digital hotplug on the CPU, and configure the DP short pulse
* duration to 2ms (which is the minimum in the Display Port spec)
* The pulse duration bits are reserved on HSW+.
*/
hotplug = intel_uncore_read(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL);
hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
DIGITAL_PORTA_PULSE_DURATION_MASK);
hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
}
static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
if (DISPLAY_VER(dev_priv) >= 8)
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
else
ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
ilk_hpd_detection_setup(dev_priv);
ibx_hpd_irq_setup(dev_priv);
}
static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
enum hpd_pin pin)
{
u32 hotplug;
switch (pin) {
case HPD_PORT_A:
hotplug = PORTA_HOTPLUG_ENABLE;
if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
hotplug |= BXT_DDIA_HPD_INVERT;
return hotplug;
case HPD_PORT_B:
hotplug = PORTB_HOTPLUG_ENABLE;
if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
hotplug |= BXT_DDIB_HPD_INVERT;
return hotplug;
case HPD_PORT_C:
hotplug = PORTC_HOTPLUG_ENABLE;
if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
hotplug |= BXT_DDIC_HPD_INVERT;
return hotplug;
default:
return 0;
}
}
static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug;
hotplug = intel_uncore_read(&dev_priv->uncore, PCH_PORT_HOTPLUG);
hotplug &= ~(PORTA_HOTPLUG_ENABLE |
PORTB_HOTPLUG_ENABLE |
PORTC_HOTPLUG_ENABLE |
BXT_DDIA_HPD_INVERT |
BXT_DDIB_HPD_INVERT |
BXT_DDIC_HPD_INVERT);
hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
intel_uncore_write(&dev_priv->uncore, PCH_PORT_HOTPLUG, hotplug);
}
static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_irqs, enabled_irqs;
enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
bxt_hpd_detection_setup(dev_priv);
}
/*
* SDEIER is also touched by the interrupt handler to work around missed PCH
* interrupts. Hence we can't update it after the interrupt handler is enabled -
* instead we unconditionally enable all PCH interrupt sources here, but then
* only unmask them as needed with SDEIMR.
*
* Note that we currently do this after installing the interrupt handler,
* but before we enable the master interrupt. That should be sufficient
* to avoid races with the irq handler, assuming we have MSI. Shared legacy
* interrupts could still race.
*/
static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 mask;
if (HAS_PCH_NOP(dev_priv))
return;
if (HAS_PCH_IBX(dev_priv))
mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
else
mask = SDE_GMBUS_CPT;
GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
}
static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 display_mask, extra_mask;
if (INTEL_GEN(dev_priv) >= 7) {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
DE_PLANE_FLIP_DONE_IVB(PLANE_C) |
DE_PLANE_FLIP_DONE_IVB(PLANE_B) |
DE_PLANE_FLIP_DONE_IVB(PLANE_A) |
DE_DP_A_HOTPLUG_IVB);
} else {
display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
DE_PIPEA_CRC_DONE | DE_POISON);
extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
DE_PLANE_FLIP_DONE(PLANE_A) |
DE_PLANE_FLIP_DONE(PLANE_B) |
DE_DP_A_HOTPLUG);
}
if (IS_HASWELL(dev_priv)) {
gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
display_mask |= DE_EDP_PSR_INT_HSW;
}
if (IS_IRONLAKE_M(dev_priv))
extra_mask |= DE_PCU_EVENT;
dev_priv->irq_mask = ~display_mask;
ibx_irq_postinstall(dev_priv);
gen5_gt_irq_postinstall(&dev_priv->gt);
GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
display_mask | extra_mask);
}
void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = true;
if (intel_irqs_enabled(dev_priv)) {
vlv_display_irq_reset(dev_priv);
vlv_display_irq_postinstall(dev_priv);
}
}
void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
{
lockdep_assert_held(&dev_priv->irq_lock);
if (!dev_priv->display_irqs_enabled)
return;
dev_priv->display_irqs_enabled = false;
if (intel_irqs_enabled(dev_priv))
vlv_display_irq_reset(dev_priv);
}
static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen5_gt_irq_postinstall(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
}
static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
GEN8_PIPE_CDCLK_CRC_DONE;
u32 de_pipe_enables;
u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
u32 de_port_enables;
u32 de_misc_masked = GEN8_DE_EDP_PSR;
u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
enum pipe pipe;
if (!HAS_DISPLAY(dev_priv))
return;
if (DISPLAY_VER(dev_priv) <= 10)
de_misc_masked |= GEN8_DE_MISC_GSE;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
de_port_masked |= BXT_DE_PORT_GMBUS;
if (DISPLAY_VER(dev_priv) >= 11) {
enum port port;
if (intel_bios_is_dsi_present(dev_priv, &port))
de_port_masked |= DSI0_TE | DSI1_TE;
}
de_pipe_enables = de_pipe_masked |
GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN |
gen8_de_pipe_flip_done_mask(dev_priv);
de_port_enables = de_port_masked;
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
else if (IS_BROADWELL(dev_priv))
de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
if (DISPLAY_VER(dev_priv) >= 12) {
enum transcoder trans;
for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
enum intel_display_power_domain domain;
domain = POWER_DOMAIN_TRANSCODER(trans);
if (!intel_display_power_is_enabled(dev_priv, domain))
continue;
gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
}
} else {
gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
}
for_each_pipe(dev_priv, pipe) {
dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
if (intel_display_power_is_enabled(dev_priv,
POWER_DOMAIN_PIPE(pipe)))
GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
dev_priv->de_irq_mask[pipe],
de_pipe_enables);
}
GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
if (DISPLAY_VER(dev_priv) >= 11) {
u32 de_hpd_masked = 0;
u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
GEN11_DE_TBT_HOTPLUG_MASK;
GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
de_hpd_enables);
}
}
static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 mask = SDE_GMBUS_ICP;
GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
}
static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_irq_postinstall(dev_priv);
else if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_postinstall(dev_priv);
gen8_gt_irq_postinstall(&dev_priv->gt);
gen8_de_irq_postinstall(dev_priv);
gen8_master_intr_enable(dev_priv->uncore.regs);
}
static void gen11_de_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (!HAS_DISPLAY(dev_priv))
return;
gen8_de_irq_postinstall(dev_priv);
intel_uncore_write(&dev_priv->uncore, GEN11_DISPLAY_INT_CTL,
GEN11_DISPLAY_IRQ_ENABLE);
}
static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 gu_misc_masked = GEN11_GU_MISC_GSE;
if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
icp_irq_postinstall(dev_priv);
gen11_gt_irq_postinstall(&dev_priv->gt);
gen11_de_irq_postinstall(dev_priv);
GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
dg1_master_intr_enable(uncore->regs);
intel_uncore_posting_read(&dev_priv->uncore, DG1_MSTR_UNIT_INTR);
} else {
gen11_master_intr_enable(uncore->regs);
intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
}
}
static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen8_gt_irq_postinstall(&dev_priv->gt);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
}
static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i9xx_pipestat_irq_reset(dev_priv);
GEN2_IRQ_RESET(uncore);
dev_priv->irq_mask = ~0u;
}
static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u16 enable_mask;
intel_uncore_write16(uncore,
EMR,
~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void i8xx_error_irq_ack(struct drm_i915_private *i915,
u16 *eir, u16 *eir_stuck)
{
struct intel_uncore *uncore = &i915->uncore;
u16 emr;
*eir = intel_uncore_read16(uncore, EIR);
if (*eir)
intel_uncore_write16(uncore, EIR, *eir);
*eir_stuck = intel_uncore_read16(uncore, EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = intel_uncore_read16(uncore, EMR);
intel_uncore_write16(uncore, EMR, 0xffff);
intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
}
static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
u16 eir, u16 eir_stuck)
{
DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
if (eir_stuck)
drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
eir_stuck);
}
static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
u32 *eir, u32 *eir_stuck)
{
u32 emr;
*eir = intel_uncore_read(&dev_priv->uncore, EIR);
intel_uncore_write(&dev_priv->uncore, EIR, *eir);
*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = intel_uncore_read(&dev_priv->uncore, EMR);
intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
}
static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
u32 eir, u32 eir_stuck)
{
DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
if (eir_stuck)
drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
eir_stuck);
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u16 eir = 0, eir_stuck = 0;
u16 iir;
iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i915_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
}
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
dev_priv->irq_mask = ~0u;
}
static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
intel_uncore_write(&dev_priv->uncore, EMR, ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev_priv)) {
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (I915_HAS_HOTPLUG(dev_priv) &&
iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i965_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
intel_uncore_write(&dev_priv->uncore, PORT_HOTPLUG_STAT, intel_uncore_read(&dev_priv->uncore, PORT_HOTPLUG_STAT));
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
dev_priv->irq_mask = ~0u;
}
static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
u32 error_mask;
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*/
if (IS_G4X(dev_priv)) {
error_mask = ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
} else {
error_mask = ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
intel_uncore_write(&dev_priv->uncore, EMR, error_mask);
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (IS_G4X(dev_priv))
enable_mask |= I915_BSD_USER_INTERRUPT;
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
{
u32 hotplug_en;
lockdep_assert_held(&dev_priv->irq_lock);
/* Note HDMI and DP share hotplug bits */
/* enable bits are the same for all generations */
hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
/* Programming the CRT detection parameters tends
to generate a spurious hotplug event about three
seconds later. So just do it once.
*/
if (IS_G4X(dev_priv))
hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
/* Ignore TV since it's buggy */
i915_hotplug_interrupt_update_locked(dev_priv,
HOTPLUG_INT_EN_MASK |
CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
CRT_HOTPLUG_ACTIVATION_PERIOD_64,
hotplug_en);
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
if (iir & I915_BSD_USER_INTERRUPT)
intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, IRQ_HANDLED);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
/**
* intel_irq_init - initializes irq support
* @dev_priv: i915 device instance
*
* This function initializes all the irq support including work items, timers
* and all the vtables. It does not setup the interrupt itself though.
*/
void intel_irq_init(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
int i;
INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
for (i = 0; i < MAX_L3_SLICES; ++i)
dev_priv->l3_parity.remap_info[i] = NULL;
/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
if (!HAS_DISPLAY(dev_priv))
return;
intel_hpd_init_pins(dev_priv);
intel_hpd_init_work(dev_priv);
dev->vblank_disable_immediate = true;
/* Most platforms treat the display irq block as an always-on
* power domain. vlv/chv can disable it at runtime and need
* special care to avoid writing any of the display block registers
* outside of the power domain. We defer setting up the display irqs
* in this case to the runtime pm.
*/
dev_priv->display_irqs_enabled = true;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->display_irqs_enabled = false;
dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
/* If we have MST support, we want to avoid doing short HPD IRQ storm
* detection, as short HPD storms will occur as a natural part of
* sideband messaging with MST.
* On older platforms however, IRQ storms can occur with both long and
* short pulses, as seen on some G4x systems.
*/
dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
if (HAS_GMCH(dev_priv)) {
if (I915_HAS_HOTPLUG(dev_priv))
dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
} else {
if (HAS_PCH_DG1(dev_priv))
dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
else if (DISPLAY_VER(dev_priv) >= 11)
dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
dev_priv->display.hpd_irq_setup = icp_hpd_irq_setup;
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
else
dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
}
}
/**
* intel_irq_fini - deinitializes IRQ support
* @i915: i915 device instance
*
* This function deinitializes all the IRQ support.
*/
void intel_irq_fini(struct drm_i915_private *i915)
{
int i;
for (i = 0; i < MAX_L3_SLICES; ++i)
kfree(i915->l3_parity.remap_info[i]);
}
static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
return cherryview_irq_handler;
else if (IS_VALLEYVIEW(dev_priv))
return valleyview_irq_handler;
else if (IS_GEN(dev_priv, 4))
return i965_irq_handler;
else if (IS_GEN(dev_priv, 3))
return i915_irq_handler;
else
return i8xx_irq_handler;
} else {
if (HAS_MASTER_UNIT_IRQ(dev_priv))
return dg1_irq_handler;
if (INTEL_GEN(dev_priv) >= 11)
return gen11_irq_handler;
else if (INTEL_GEN(dev_priv) >= 8)
return gen8_irq_handler;
else
return ilk_irq_handler;
}
}
static void intel_irq_reset(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_reset(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_reset(dev_priv);
else if (IS_GEN(dev_priv, 4))
i965_irq_reset(dev_priv);
else if (IS_GEN(dev_priv, 3))
i915_irq_reset(dev_priv);
else
i8xx_irq_reset(dev_priv);
} else {
if (INTEL_GEN(dev_priv) >= 11)
gen11_irq_reset(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_irq_reset(dev_priv);
else
ilk_irq_reset(dev_priv);
}
}
static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_postinstall(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_postinstall(dev_priv);
else if (IS_GEN(dev_priv, 4))
i965_irq_postinstall(dev_priv);
else if (IS_GEN(dev_priv, 3))
i915_irq_postinstall(dev_priv);
else
i8xx_irq_postinstall(dev_priv);
} else {
if (INTEL_GEN(dev_priv) >= 11)
gen11_irq_postinstall(dev_priv);
else if (INTEL_GEN(dev_priv) >= 8)
gen8_irq_postinstall(dev_priv);
else
ilk_irq_postinstall(dev_priv);
}
}
/**
* intel_irq_install - enables the hardware interrupt
* @dev_priv: i915 device instance
*
* This function enables the hardware interrupt handling, but leaves the hotplug
* handling still disabled. It is called after intel_irq_init().
*
* In the driver load and resume code we need working interrupts in a few places
* but don't want to deal with the hassle of concurrent probe and hotplug
* workers. Hence the split into this two-stage approach.
*/
int intel_irq_install(struct drm_i915_private *dev_priv)
{
int irq = to_pci_dev(dev_priv->drm.dev)->irq;
int ret;
/*
* We enable some interrupt sources in our postinstall hooks, so mark
* interrupts as enabled _before_ actually enabling them to avoid
* special cases in our ordering checks.
*/
dev_priv->runtime_pm.irqs_enabled = true;
dev_priv->drm.irq_enabled = true;
intel_irq_reset(dev_priv);
ret = request_irq(irq, intel_irq_handler(dev_priv),
IRQF_SHARED, DRIVER_NAME, dev_priv);
if (ret < 0) {
dev_priv->drm.irq_enabled = false;
return ret;
}
intel_irq_postinstall(dev_priv);
return ret;
}
/**
* intel_irq_uninstall - finilizes all irq handling
* @dev_priv: i915 device instance
*
* This stops interrupt and hotplug handling and unregisters and frees all
* resources acquired in the init functions.
*/
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
{
int irq = to_pci_dev(dev_priv->drm.dev)->irq;
/*
* FIXME we can get called twice during driver probe
* error handling as well as during driver remove due to
* intel_modeset_driver_remove() calling us out of sequence.
* Would be nice if it didn't do that...
*/
if (!dev_priv->drm.irq_enabled)
return;
dev_priv->drm.irq_enabled = false;
intel_irq_reset(dev_priv);
free_irq(irq, dev_priv);
intel_hpd_cancel_work(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
}
/**
* intel_runtime_pm_disable_interrupts - runtime interrupt disabling
* @dev_priv: i915 device instance
*
* This function is used to disable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
{
intel_irq_reset(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
intel_synchronize_irq(dev_priv);
}
/**
* intel_runtime_pm_enable_interrupts - runtime interrupt enabling
* @dev_priv: i915 device instance
*
* This function is used to enable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.irqs_enabled = true;
intel_irq_reset(dev_priv);
intel_irq_postinstall(dev_priv);
}
bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
{
/*
* We only use drm_irq_uninstall() at unload and VT switch, so
* this is the only thing we need to check.
*/
return dev_priv->runtime_pm.irqs_enabled;
}
void intel_synchronize_irq(struct drm_i915_private *i915)
{
synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
}