linux/drivers/mmc/host/sdhci.c
Jeremy Linton cb80a7e917 mmc: sdhci: Use more concise device_property_read_u64
Since we only need a single u64 the _array form is
unnecessarily. Use device_property_read_u64 instead.

Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Link: https://lore.kernel.org/r/20201125033630.603863-1-jeremy.linton@arm.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2020-12-04 12:27:58 +01:00

4855 lines
125 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/swiotlb.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define SDHCI_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
static bool sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd);
void sdhci_dumpregs(struct sdhci_host *host)
{
SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n");
SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_AUTO_CMD_STATUS),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE),
sdhci_readl(host, SDHCI_RESPONSE + 4));
SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE + 8),
sdhci_readl(host, SDHCI_RESPONSE + 12));
SDHCI_DUMP("Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA) {
if (host->flags & SDHCI_USE_64_BIT_DMA) {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
} else {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
}
}
if (host->ops->dump_vendor_regs)
host->ops->dump_vendor_regs(host);
SDHCI_DUMP("============================================\n");
}
EXPORT_SYMBOL_GPL(sdhci_dumpregs);
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_do_enable_v4_mode(struct sdhci_host *host)
{
u16 ctrl2;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl2 & SDHCI_CTRL_V4_MODE)
return;
ctrl2 |= SDHCI_CTRL_V4_MODE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
}
/*
* This can be called before sdhci_add_host() by Vendor's host controller
* driver to enable v4 mode if supported.
*/
void sdhci_enable_v4_mode(struct sdhci_host *host)
{
host->v4_mode = true;
sdhci_do_enable_v4_mode(host);
}
EXPORT_SYMBOL_GPL(sdhci_enable_v4_mode);
static inline bool sdhci_data_line_cmd(struct mmc_command *cmd)
{
return cmd->data || cmd->flags & MMC_RSP_BUSY;
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
!mmc_card_is_removable(host->mmc) || mmc_can_gpio_cd(host->mmc))
return;
if (enable) {
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
} else {
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (!host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(host->mmc->parent);
}
void sdhci_reset(struct sdhci_host *host, u8 mask)
{
ktime_t timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = ktime_add_ms(ktime_get(), 100);
/* hw clears the bit when it's done */
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask))
break;
if (timedout) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_reset);
static void sdhci_do_reset(struct sdhci_host *host, u8 mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
struct mmc_host *mmc = host->mmc;
if (!mmc->ops->get_cd(mmc))
return;
}
host->ops->reset(host, mask);
if (mask & SDHCI_RESET_ALL) {
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = false;
}
}
static void sdhci_set_default_irqs(struct sdhci_host *host)
{
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT |
SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC |
SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END |
SDHCI_INT_RESPONSE;
if (host->tuning_mode == SDHCI_TUNING_MODE_2 ||
host->tuning_mode == SDHCI_TUNING_MODE_3)
host->ier |= SDHCI_INT_RETUNE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_config_dma(struct sdhci_host *host)
{
u8 ctrl;
u16 ctrl2;
if (host->version < SDHCI_SPEC_200)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (!(host->flags & SDHCI_REQ_USE_DMA))
goto out;
/* Note if DMA Select is zero then SDMA is selected */
if (host->flags & SDHCI_USE_ADMA)
ctrl |= SDHCI_CTRL_ADMA32;
if (host->flags & SDHCI_USE_64_BIT_DMA) {
/*
* If v4 mode, all supported DMA can be 64-bit addressing if
* controller supports 64-bit system address, otherwise only
* ADMA can support 64-bit addressing.
*/
if (host->v4_mode) {
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl2 |= SDHCI_CTRL_64BIT_ADDR;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
} else if (host->flags & SDHCI_USE_ADMA) {
/*
* Don't need to undo SDHCI_CTRL_ADMA32 in order to
* set SDHCI_CTRL_ADMA64.
*/
ctrl |= SDHCI_CTRL_ADMA64;
}
}
out:
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_init(struct sdhci_host *host, int soft)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (soft)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
else
sdhci_do_reset(host, SDHCI_RESET_ALL);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
spin_lock_irqsave(&host->lock, flags);
sdhci_set_default_irqs(host);
spin_unlock_irqrestore(&host->lock, flags);
host->cqe_on = false;
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
u32 cd = host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
/*
* A change to the card detect bits indicates a change in present state,
* refer sdhci_set_card_detection(). A card detect interrupt might have
* been missed while the host controller was being reset, so trigger a
* rescan to check.
*/
if (cd != (host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT)))
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
}
static void __sdhci_led_activate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void __sdhci_led_deactivate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#if IS_REACHABLE(CONFIG_LEDS_CLASS)
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
__sdhci_led_deactivate(host);
else
__sdhci_led_activate(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_led_register(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return 0;
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
return led_classdev_register(mmc_dev(mmc), &host->led);
}
static void sdhci_led_unregister(struct sdhci_host *host)
{
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
led_classdev_unregister(&host->led);
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
}
#else
static inline int sdhci_led_register(struct sdhci_host *host)
{
return 0;
}
static inline void sdhci_led_unregister(struct sdhci_host *host)
{
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
__sdhci_led_activate(host);
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
__sdhci_led_deactivate(host);
}
#endif
static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq,
unsigned long timeout)
{
if (sdhci_data_line_cmd(mrq->cmd))
mod_timer(&host->data_timer, timeout);
else
mod_timer(&host->timer, timeout);
}
static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq)
{
if (sdhci_data_line_cmd(mrq->cmd))
del_timer(&host->data_timer);
else
del_timer(&host->timer);
}
static inline bool sdhci_has_requests(struct sdhci_host *host)
{
return host->cmd || host->data_cmd;
}
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data, int cookie)
{
int sg_count;
/*
* If the data buffers are already mapped, return the previous
* dma_map_sg() result.
*/
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_count;
/* Bounce write requests to the bounce buffer */
if (host->bounce_buffer) {
unsigned int length = data->blksz * data->blocks;
if (length > host->bounce_buffer_size) {
pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n",
mmc_hostname(host->mmc), length,
host->bounce_buffer_size);
return -EIO;
}
if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) {
/* Copy the data to the bounce buffer */
if (host->ops->copy_to_bounce_buffer) {
host->ops->copy_to_bounce_buffer(host,
data, length);
} else {
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buffer, length);
}
}
/* Switch ownership to the DMA */
dma_sync_single_for_device(host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
/* Just a dummy value */
sg_count = 1;
} else {
/* Just access the data directly from memory */
sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
if (sg_count == 0)
return -ENOSPC;
data->sg_count = sg_count;
data->host_cookie = cookie;
return sg_count;
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer);
local_irq_restore(*flags);
}
void sdhci_adma_write_desc(struct sdhci_host *host, void **desc,
dma_addr_t addr, int len, unsigned int cmd)
{
struct sdhci_adma2_64_desc *dma_desc = *desc;
/* 32-bit and 64-bit descriptors have these members in same position */
dma_desc->cmd = cpu_to_le16(cmd);
dma_desc->len = cpu_to_le16(len);
dma_desc->addr_lo = cpu_to_le32(lower_32_bits(addr));
if (host->flags & SDHCI_USE_64_BIT_DMA)
dma_desc->addr_hi = cpu_to_le32(upper_32_bits(addr));
*desc += host->desc_sz;
}
EXPORT_SYMBOL_GPL(sdhci_adma_write_desc);
static inline void __sdhci_adma_write_desc(struct sdhci_host *host,
void **desc, dma_addr_t addr,
int len, unsigned int cmd)
{
if (host->ops->adma_write_desc)
host->ops->adma_write_desc(host, desc, addr, len, cmd);
else
sdhci_adma_write_desc(host, desc, addr, len, cmd);
}
static void sdhci_adma_mark_end(void *desc)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have 'cmd' in same position */
dma_desc->cmd |= cpu_to_le16(ADMA2_END);
}
static void sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data, int sg_count)
{
struct scatterlist *sg;
unsigned long flags;
dma_addr_t addr, align_addr;
void *desc, *align;
char *buffer;
int len, offset, i;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
host->sg_count = sg_count;
desc = host->adma_table;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA addresses must
* be 32-bit aligned. If they aren't, then we use a bounce
* buffer for the (up to three) bytes that screw up the
* alignment.
*/
offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) &
SDHCI_ADMA2_MASK;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
__sdhci_adma_write_desc(host, &desc, align_addr,
offset, ADMA2_TRAN_VALID);
BUG_ON(offset > 65536);
align += SDHCI_ADMA2_ALIGN;
align_addr += SDHCI_ADMA2_ALIGN;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
/* tran, valid */
if (len)
__sdhci_adma_write_desc(host, &desc, addr, len,
ADMA2_TRAN_VALID);
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_table) >= host->adma_table_sz);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/* Mark the last descriptor as the terminating descriptor */
if (desc != host->adma_table) {
desc -= host->desc_sz;
sdhci_adma_mark_end(desc);
}
} else {
/* Add a terminating entry - nop, end, valid */
__sdhci_adma_write_desc(host, &desc, 0, 0, ADMA2_NOP_END_VALID);
}
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i, size;
void *align;
char *buffer;
unsigned long flags;
if (data->flags & MMC_DATA_READ) {
bool has_unaligned = false;
/* Do a quick scan of the SG list for any unaligned mappings */
for_each_sg(data->sg, sg, host->sg_count, i)
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
has_unaligned = true;
break;
}
if (has_unaligned) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, DMA_FROM_DEVICE);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
size = SDHCI_ADMA2_ALIGN -
(sg_dma_address(sg) & SDHCI_ADMA2_MASK);
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += SDHCI_ADMA2_ALIGN;
}
}
}
}
}
static void sdhci_set_adma_addr(struct sdhci_host *host, dma_addr_t addr)
{
sdhci_writel(host, lower_32_bits(addr), SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host, upper_32_bits(addr), SDHCI_ADMA_ADDRESS_HI);
}
static dma_addr_t sdhci_sdma_address(struct sdhci_host *host)
{
if (host->bounce_buffer)
return host->bounce_addr;
else
return sg_dma_address(host->data->sg);
}
static void sdhci_set_sdma_addr(struct sdhci_host *host, dma_addr_t addr)
{
if (host->v4_mode)
sdhci_set_adma_addr(host, addr);
else
sdhci_writel(host, addr, SDHCI_DMA_ADDRESS);
}
static unsigned int sdhci_target_timeout(struct sdhci_host *host,
struct mmc_command *cmd,
struct mmc_data *data)
{
unsigned int target_timeout;
/* timeout in us */
if (!data) {
target_timeout = cmd->busy_timeout * 1000;
} else {
target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000);
if (host->clock && data->timeout_clks) {
unsigned long long val;
/*
* data->timeout_clks is in units of clock cycles.
* host->clock is in Hz. target_timeout is in us.
* Hence, us = 1000000 * cycles / Hz. Round up.
*/
val = 1000000ULL * data->timeout_clks;
if (do_div(val, host->clock))
target_timeout++;
target_timeout += val;
}
}
return target_timeout;
}
static void sdhci_calc_sw_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
struct mmc_host *mmc = host->mmc;
struct mmc_ios *ios = &mmc->ios;
unsigned char bus_width = 1 << ios->bus_width;
unsigned int blksz;
unsigned int freq;
u64 target_timeout;
u64 transfer_time;
target_timeout = sdhci_target_timeout(host, cmd, data);
target_timeout *= NSEC_PER_USEC;
if (data) {
blksz = data->blksz;
freq = host->mmc->actual_clock ? : host->clock;
transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width);
do_div(transfer_time, freq);
/* multiply by '2' to account for any unknowns */
transfer_time = transfer_time * 2;
/* calculate timeout for the entire data */
host->data_timeout = data->blocks * target_timeout +
transfer_time;
} else {
host->data_timeout = target_timeout;
}
if (host->data_timeout)
host->data_timeout += MMC_CMD_TRANSFER_TIME;
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd,
bool *too_big)
{
u8 count;
struct mmc_data *data;
unsigned target_timeout, current_timeout;
*too_big = true;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* Unspecified command, asume max */
if (cmd == NULL)
return 0xE;
data = cmd->data;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return 0xE;
/* timeout in us */
target_timeout = sdhci_target_timeout(host, cmd, data);
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT))
DBG("Too large timeout 0x%x requested for CMD%d!\n",
count, cmd->opcode);
count = 0xE;
} else {
*too_big = false;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12))
host->ier |= SDHCI_INT_AUTO_CMD_ERR;
else
host->ier &= ~SDHCI_INT_AUTO_CMD_ERR;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable)
{
if (enable)
host->ier |= SDHCI_INT_DATA_TIMEOUT;
else
host->ier &= ~SDHCI_INT_DATA_TIMEOUT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_set_data_timeout_irq);
void __sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
bool too_big = false;
u8 count = sdhci_calc_timeout(host, cmd, &too_big);
if (too_big &&
host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) {
sdhci_calc_sw_timeout(host, cmd);
sdhci_set_data_timeout_irq(host, false);
} else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) {
sdhci_set_data_timeout_irq(host, true);
}
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
EXPORT_SYMBOL_GPL(__sdhci_set_timeout);
static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
if (host->ops->set_timeout)
host->ops->set_timeout(host, cmd);
else
__sdhci_set_timeout(host, cmd);
}
static void sdhci_initialize_data(struct sdhci_host *host,
struct mmc_data *data)
{
WARN_ON(host->data);
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
}
static inline void sdhci_set_block_info(struct sdhci_host *host,
struct mmc_data *data)
{
/* Set the DMA boundary value and block size */
sdhci_writew(host,
SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz),
SDHCI_BLOCK_SIZE);
/*
* For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count
* can be supported, in that case 16-bit block count register must be 0.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode &&
(host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT)) {
if (sdhci_readw(host, SDHCI_BLOCK_COUNT))
sdhci_writew(host, 0, SDHCI_BLOCK_COUNT);
sdhci_writew(host, data->blocks, SDHCI_32BIT_BLK_CNT);
} else {
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
sdhci_initialize_data(host, data);
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
struct scatterlist *sg;
unsigned int length_mask, offset_mask;
int i;
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*
* The assumption here being that alignment and lengths are
* the same after DMA mapping to device address space.
*/
length_mask = 0;
offset_mask = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) {
length_mask = 3;
/*
* As we use up to 3 byte chunks to work
* around alignment problems, we need to
* check the offset as well.
*/
offset_mask = 3;
}
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
length_mask = 3;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
offset_mask = 3;
}
if (unlikely(length_mask | offset_mask)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & length_mask) {
DBG("Reverting to PIO because of transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
if (sg->offset & offset_mask) {
DBG("Reverting to PIO because of bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else if (host->flags & SDHCI_USE_ADMA) {
sdhci_adma_table_pre(host, data, sg_cnt);
sdhci_set_adma_addr(host, host->adma_addr);
} else {
WARN_ON(sg_cnt != 1);
sdhci_set_sdma_addr(host, sdhci_sdma_address(host));
}
}
sdhci_config_dma(host);
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
sdhci_set_block_info(host, data);
}
#if IS_ENABLED(CONFIG_MMC_SDHCI_EXTERNAL_DMA)
static int sdhci_external_dma_init(struct sdhci_host *host)
{
int ret = 0;
struct mmc_host *mmc = host->mmc;
host->tx_chan = dma_request_chan(mmc->parent, "tx");
if (IS_ERR(host->tx_chan)) {
ret = PTR_ERR(host->tx_chan);
if (ret != -EPROBE_DEFER)
pr_warn("Failed to request TX DMA channel.\n");
host->tx_chan = NULL;
return ret;
}
host->rx_chan = dma_request_chan(mmc->parent, "rx");
if (IS_ERR(host->rx_chan)) {
if (host->tx_chan) {
dma_release_channel(host->tx_chan);
host->tx_chan = NULL;
}
ret = PTR_ERR(host->rx_chan);
if (ret != -EPROBE_DEFER)
pr_warn("Failed to request RX DMA channel.\n");
host->rx_chan = NULL;
}
return ret;
}
static struct dma_chan *sdhci_external_dma_channel(struct sdhci_host *host,
struct mmc_data *data)
{
return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
}
static int sdhci_external_dma_setup(struct sdhci_host *host,
struct mmc_command *cmd)
{
int ret, i;
enum dma_transfer_direction dir;
struct dma_async_tx_descriptor *desc;
struct mmc_data *data = cmd->data;
struct dma_chan *chan;
struct dma_slave_config cfg;
dma_cookie_t cookie;
int sg_cnt;
if (!host->mapbase)
return -EINVAL;
cfg.src_addr = host->mapbase + SDHCI_BUFFER;
cfg.dst_addr = host->mapbase + SDHCI_BUFFER;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = data->blksz / 4;
cfg.dst_maxburst = data->blksz / 4;
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
if ((data->sg + i)->length % data->blksz)
return -EINVAL;
}
chan = sdhci_external_dma_channel(host, data);
ret = dmaengine_slave_config(chan, &cfg);
if (ret)
return ret;
sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0)
return -EINVAL;
dir = data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
desc = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len, dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return -EINVAL;
desc->callback = NULL;
desc->callback_param = NULL;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie))
ret = cookie;
return ret;
}
static void sdhci_external_dma_release(struct sdhci_host *host)
{
if (host->tx_chan) {
dma_release_channel(host->tx_chan);
host->tx_chan = NULL;
}
if (host->rx_chan) {
dma_release_channel(host->rx_chan);
host->rx_chan = NULL;
}
sdhci_switch_external_dma(host, false);
}
static void __sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
sdhci_initialize_data(host, data);
host->flags |= SDHCI_REQ_USE_DMA;
sdhci_set_transfer_irqs(host);
sdhci_set_block_info(host, data);
}
static void sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
if (!sdhci_external_dma_setup(host, cmd)) {
__sdhci_external_dma_prepare_data(host, cmd);
} else {
sdhci_external_dma_release(host);
pr_err("%s: Cannot use external DMA, switch to the DMA/PIO which standard SDHCI provides.\n",
mmc_hostname(host->mmc));
sdhci_prepare_data(host, cmd);
}
}
static void sdhci_external_dma_pre_transfer(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct dma_chan *chan;
if (!cmd->data)
return;
chan = sdhci_external_dma_channel(host, cmd->data);
if (chan)
dma_async_issue_pending(chan);
}
#else
static inline int sdhci_external_dma_init(struct sdhci_host *host)
{
return -EOPNOTSUPP;
}
static inline void sdhci_external_dma_release(struct sdhci_host *host)
{
}
static inline void sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct mmc_command *cmd)
{
/* This should never happen */
WARN_ON_ONCE(1);
}
static inline void sdhci_external_dma_pre_transfer(struct sdhci_host *host,
struct mmc_command *cmd)
{
}
static inline struct dma_chan *sdhci_external_dma_channel(struct sdhci_host *host,
struct mmc_data *data)
{
return NULL;
}
#endif
void sdhci_switch_external_dma(struct sdhci_host *host, bool en)
{
host->use_external_dma = en;
}
EXPORT_SYMBOL_GPL(sdhci_switch_external_dma);
static inline bool sdhci_auto_cmd12(struct sdhci_host *host,
struct mmc_request *mrq)
{
return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) &&
!mrq->cap_cmd_during_tfr;
}
static inline bool sdhci_auto_cmd23(struct sdhci_host *host,
struct mmc_request *mrq)
{
return mrq->sbc && (host->flags & SDHCI_AUTO_CMD23);
}
static inline bool sdhci_manual_cmd23(struct sdhci_host *host,
struct mmc_request *mrq)
{
return mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23);
}
static inline void sdhci_auto_cmd_select(struct sdhci_host *host,
struct mmc_command *cmd,
u16 *mode)
{
bool use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) &&
(cmd->opcode != SD_IO_RW_EXTENDED);
bool use_cmd23 = sdhci_auto_cmd23(host, cmd->mrq);
u16 ctrl2;
/*
* In case of Version 4.10 or later, use of 'Auto CMD Auto
* Select' is recommended rather than use of 'Auto CMD12
* Enable' or 'Auto CMD23 Enable'. We require Version 4 Mode
* here because some controllers (e.g sdhci-of-dwmshc) expect it.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode &&
(use_cmd12 || use_cmd23)) {
*mode |= SDHCI_TRNS_AUTO_SEL;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (use_cmd23)
ctrl2 |= SDHCI_CMD23_ENABLE;
else
ctrl2 &= ~SDHCI_CMD23_ENABLE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
return;
}
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (use_cmd12)
*mode |= SDHCI_TRNS_AUTO_CMD12;
else if (use_cmd23)
*mode |= SDHCI_TRNS_AUTO_CMD23;
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode = 0;
struct mmc_data *data = cmd->data;
if (data == NULL) {
if (host->quirks2 &
SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) {
/* must not clear SDHCI_TRANSFER_MODE when tuning */
if (cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
} else {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
WARN_ON(!host->data);
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
sdhci_auto_cmd_select(host, cmd, &mode);
if (sdhci_auto_cmd23(host, cmd->mrq))
sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq)
{
return (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->sbc && mrq->sbc->error) ||
(mrq->data && mrq->data->stop && mrq->data->stop->error) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)));
}
static void sdhci_set_mrq_done(struct sdhci_host *host, struct mmc_request *mrq)
{
int i;
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (host->mrqs_done[i] == mrq) {
WARN_ON(1);
return;
}
}
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!host->mrqs_done[i]) {
host->mrqs_done[i] = mrq;
break;
}
}
WARN_ON(i >= SDHCI_MAX_MRQS);
}
static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
if (host->cmd && host->cmd->mrq == mrq)
host->cmd = NULL;
if (host->data_cmd && host->data_cmd->mrq == mrq)
host->data_cmd = NULL;
if (host->deferred_cmd && host->deferred_cmd->mrq == mrq)
host->deferred_cmd = NULL;
if (host->data && host->data->mrq == mrq)
host->data = NULL;
if (sdhci_needs_reset(host, mrq))
host->pending_reset = true;
sdhci_set_mrq_done(host, mrq);
sdhci_del_timer(host, mrq);
if (!sdhci_has_requests(host))
sdhci_led_deactivate(host);
}
static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
__sdhci_finish_mrq(host, mrq);
queue_work(host->complete_wq, &host->complete_work);
}
static void __sdhci_finish_data(struct sdhci_host *host, bool sw_data_timeout)
{
struct mmc_command *data_cmd = host->data_cmd;
struct mmc_data *data = host->data;
host->data = NULL;
host->data_cmd = NULL;
/*
* The controller needs a reset of internal state machines upon error
* conditions.
*/
if (data->error) {
if (!host->cmd || host->cmd == data_cmd)
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) ==
(SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA))
sdhci_adma_table_post(host, data);
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer not using auto CMD12 (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
((!data->mrq->sbc && !sdhci_auto_cmd12(host, data->mrq)) ||
data->error)) {
/*
* 'cap_cmd_during_tfr' request must not use the command line
* after mmc_command_done() has been called. It is upper layer's
* responsibility to send the stop command if required.
*/
if (data->mrq->cap_cmd_during_tfr) {
__sdhci_finish_mrq(host, data->mrq);
} else {
/* Avoid triggering warning in sdhci_send_command() */
host->cmd = NULL;
if (!sdhci_send_command(host, data->stop)) {
if (sw_data_timeout) {
/*
* This is anyway a sw data timeout, so
* give up now.
*/
data->stop->error = -EIO;
__sdhci_finish_mrq(host, data->mrq);
} else {
WARN_ON(host->deferred_cmd);
host->deferred_cmd = data->stop;
}
}
}
} else {
__sdhci_finish_mrq(host, data->mrq);
}
}
static void sdhci_finish_data(struct sdhci_host *host)
{
__sdhci_finish_data(host, false);
}
static bool sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Initially, a command has no error */
cmd->error = 0;
if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) &&
cmd->opcode == MMC_STOP_TRANSMISSION)
cmd->flags |= MMC_RSP_BUSY;
mask = SDHCI_CMD_INHIBIT;
if (sdhci_data_line_cmd(cmd))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->mrq->data && (cmd == cmd->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
if (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask)
return false;
host->cmd = cmd;
host->data_timeout = 0;
if (sdhci_data_line_cmd(cmd)) {
WARN_ON(host->data_cmd);
host->data_cmd = cmd;
sdhci_set_timeout(host, cmd);
}
if (cmd->data) {
if (host->use_external_dma)
sdhci_external_dma_prepare_data(host, cmd);
else
sdhci_prepare_data(host, cmd);
}
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
WARN_ONCE(1, "Unsupported response type!\n");
/*
* This does not happen in practice because 136-bit response
* commands never have busy waiting, so rather than complicate
* the error path, just remove busy waiting and continue.
*/
cmd->flags &= ~MMC_RSP_BUSY;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
timeout = jiffies;
if (host->data_timeout)
timeout += nsecs_to_jiffies(host->data_timeout);
else if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout += 10 * HZ;
sdhci_mod_timer(host, cmd->mrq, timeout);
if (host->use_external_dma)
sdhci_external_dma_pre_transfer(host, cmd);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
return true;
}
static bool sdhci_present_error(struct sdhci_host *host,
struct mmc_command *cmd, bool present)
{
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
cmd->error = -ENOMEDIUM;
return true;
}
return false;
}
static bool sdhci_send_command_retry(struct sdhci_host *host,
struct mmc_command *cmd,
unsigned long flags)
__releases(host->lock)
__acquires(host->lock)
{
struct mmc_command *deferred_cmd = host->deferred_cmd;
int timeout = 10; /* Approx. 10 ms */
bool present;
while (!sdhci_send_command(host, cmd)) {
if (!timeout--) {
pr_err("%s: Controller never released inhibit bit(s).\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
return false;
}
spin_unlock_irqrestore(&host->lock, flags);
usleep_range(1000, 1250);
present = host->mmc->ops->get_cd(host->mmc);
spin_lock_irqsave(&host->lock, flags);
/* A deferred command might disappear, handle that */
if (cmd == deferred_cmd && cmd != host->deferred_cmd)
return true;
if (sdhci_present_error(host, cmd, present))
return false;
}
if (cmd == host->deferred_cmd)
host->deferred_cmd = NULL;
return true;
}
static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd)
{
int i, reg;
for (i = 0; i < 4; i++) {
reg = SDHCI_RESPONSE + (3 - i) * 4;
cmd->resp[i] = sdhci_readl(host, reg);
}
if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC)
return;
/* CRC is stripped so we need to do some shifting */
for (i = 0; i < 4; i++) {
cmd->resp[i] <<= 8;
if (i != 3)
cmd->resp[i] |= cmd->resp[i + 1] >> 24;
}
}
static void sdhci_finish_command(struct sdhci_host *host)
{
struct mmc_command *cmd = host->cmd;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
sdhci_read_rsp_136(host, cmd);
} else {
cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd)
mmc_command_done(host->mmc, cmd->mrq);
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* The busy signal uses DAT0 so this is similar to waiting
* for data to complete.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (cmd->flags & MMC_RSP_BUSY) {
if (cmd->data) {
DBG("Cannot wait for busy signal when also doing a data transfer");
} else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
cmd == host->data_cmd) {
/* Command complete before busy is ended */
return;
}
}
/* Finished CMD23, now send actual command. */
if (cmd == cmd->mrq->sbc) {
if (!sdhci_send_command(host, cmd->mrq->cmd)) {
WARN_ON(host->deferred_cmd);
host->deferred_cmd = cmd->mrq->cmd;
}
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!cmd->data)
__sdhci_finish_mrq(host, cmd->mrq);
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 preset = 0;
switch (host->timing) {
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock,
unsigned int *actual_clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
bool switch_base_clk = false;
if (host->version >= SDHCI_SPEC_300) {
if (host->preset_enabled) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = FIELD_GET(SDHCI_PRESET_SDCLK_FREQ_MASK, pre_val);
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
if ((host->max_clk * host->clk_mul / div) <= clock) {
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/*
* Divisor can be too small to reach clock
* speed requirement. Then use the base clock.
*/
switch_base_clk = true;
}
}
if (!host->clk_mul || switch_base_clk) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN)
&& !div && host->max_clk <= 25000000)
div = 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
*actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
return clk;
}
EXPORT_SYMBOL_GPL(sdhci_calc_clk);
void sdhci_enable_clk(struct sdhci_host *host, u16 clk)
{
ktime_t timeout;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = ktime_add_ms(ktime_get(), 150);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
udelay(10);
}
if (host->version >= SDHCI_SPEC_410 && host->v4_mode) {
clk |= SDHCI_CLOCK_PLL_EN;
clk &= ~SDHCI_CLOCK_INT_STABLE;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = ktime_add_ms(ktime_get(), 150);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: PLL clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_clk);
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_enable_clk(host, clk);
}
EXPORT_SYMBOL_GPL(sdhci_set_clock);
static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
u8 pwr = 0;
if (mode != MMC_POWER_OFF) {
switch (1 << vdd) {
case MMC_VDD_165_195:
/*
* Without a regulator, SDHCI does not support 2.0v
* so we only get here if the driver deliberately
* added the 2.0v range to ocr_avail. Map it to 1.8v
* for the purpose of turning on the power.
*/
case MMC_VDD_20_21:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
WARN(1, "%s: Invalid vdd %#x\n",
mmc_hostname(host->mmc), vdd);
break;
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
} else {
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_set_power_noreg);
void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
if (IS_ERR(host->mmc->supply.vmmc))
sdhci_set_power_noreg(host, mode, vdd);
else
sdhci_set_power_reg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power);
/*
* Some controllers need to configure a valid bus voltage on their power
* register regardless of whether an external regulator is taking care of power
* supply. This helper function takes care of it if set as the controller's
* sdhci_ops.set_power callback.
*/
void sdhci_set_power_and_bus_voltage(struct sdhci_host *host,
unsigned char mode,
unsigned short vdd)
{
if (!IS_ERR(host->mmc->supply.vmmc)) {
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
}
sdhci_set_power_noreg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power_and_bus_voltage);
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
unsigned long flags;
bool present;
/* Firstly check card presence */
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
sdhci_led_activate(host);
if (sdhci_present_error(host, mrq->cmd, present))
goto out_finish;
cmd = sdhci_manual_cmd23(host, mrq) ? mrq->sbc : mrq->cmd;
if (!sdhci_send_command_retry(host, cmd, flags))
goto out_finish;
spin_unlock_irqrestore(&host->lock, flags);
return;
out_finish:
sdhci_finish_mrq(host, mrq);
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_request);
int sdhci_request_atomic(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_command *cmd;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&host->lock, flags);
if (sdhci_present_error(host, mrq->cmd, true)) {
sdhci_finish_mrq(host, mrq);
goto out_finish;
}
cmd = sdhci_manual_cmd23(host, mrq) ? mrq->sbc : mrq->cmd;
/*
* The HSQ may send a command in interrupt context without polling
* the busy signaling, which means we should return BUSY if controller
* has not released inhibit bits to allow HSQ trying to send request
* again in non-atomic context. So we should not finish this request
* here.
*/
if (!sdhci_send_command(host, cmd))
ret = -EBUSY;
else
sdhci_led_activate(host);
out_finish:
spin_unlock_irqrestore(&host->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_request_atomic);
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->mmc->caps & MMC_CAP_8_BIT_DATA)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_bus_width);
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u16 ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling);
void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u8 ctrl;
if (ios->power_mode == MMC_POWER_UNDEFINED)
return;
if (host->flags & SDHCI_DEVICE_DEAD) {
if (!IS_ERR(mmc->supply.vmmc) &&
ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
if (!ios->clock || ios->clock != host->clock) {
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK &&
host->clock) {
host->timeout_clk = host->mmc->actual_clock ?
host->mmc->actual_clock / 1000 :
host->clock / 1000;
host->mmc->max_busy_timeout =
host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) :
1 << 27;
host->mmc->max_busy_timeout /= host->timeout_clk;
}
}
if (host->ops->set_power)
host->ops->set_power(host, ios->power_mode, ios->vdd);
else
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) {
if (ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS ||
ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_SDR50 ||
ios->timing == MMC_TIMING_UHS_SDR104 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_UHS_SDR25)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
}
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
if (!host->preset_enabled) {
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D;
else {
pr_warn("%s: invalid driver type, default to driver type B\n",
mmc_hostname(mmc));
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
} else {
/*
* According to SDHC Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock gliches.
*/
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
}
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
((ios->timing == MMC_TIMING_UHS_SDR12) ||
(ios->timing == MMC_TIMING_UHS_SDR25) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50) ||
(ios->timing == MMC_TIMING_MMC_DDR52))) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = FIELD_GET(SDHCI_PRESET_DRV_MASK,
preset);
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
}
EXPORT_SYMBOL_GPL(sdhci_set_ios);
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int gpio_cd = mmc_gpio_get_cd(mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If nonremovable, assume that the card is always present. */
if (!mmc_card_is_removable(host->mmc))
return 1;
/*
* Try slot gpio detect, if defined it take precedence
* over build in controller functionality
*/
if (gpio_cd >= 0)
return !!gpio_cd;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return 1;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else if (mmc_can_gpio_ro(host->mmc))
is_readonly = mmc_gpio_get_ro(host->mmc);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD)) {
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
}
void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
if (enable)
pm_runtime_get_noresume(host->mmc->parent);
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq);
static void sdhci_ack_sdio_irq(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_sdio_irq_nolock(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 3.3V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warn("%s: 3.3V regulator output did not become stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
pr_warn("%s: 1.8V regulator output did not become stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!(host->flags & SDHCI_SIGNALING_120))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
pr_warn("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch);
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
/* Check whether DAT[0] is 0 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
return !(present_state & SDHCI_DATA_0_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_HS400_TUNING;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
void sdhci_start_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_start_tuning);
void sdhci_end_tuning(struct sdhci_host *host)
{
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_end_tuning);
void sdhci_reset_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_reset_tuning);
void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode)
{
sdhci_reset_tuning(host);
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_end_tuning(host);
mmc_abort_tuning(host->mmc, opcode);
}
EXPORT_SYMBOL_GPL(sdhci_abort_tuning);
/*
* We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI
* tuning command does not have a data payload (or rather the hardware does it
* automatically) so mmc_send_tuning() will return -EIO. Also the tuning command
* interrupt setup is different to other commands and there is no timeout
* interrupt so special handling is needed.
*/
void sdhci_send_tuning(struct sdhci_host *host, u32 opcode)
{
struct mmc_host *mmc = host->mmc;
struct mmc_command cmd = {};
struct mmc_request mrq = {};
unsigned long flags;
u32 b = host->sdma_boundary;
spin_lock_irqsave(&host->lock, flags);
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.mrq = &mrq;
mrq.cmd = &cmd;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE);
else
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE);
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
if (!sdhci_send_command_retry(host, &cmd, flags)) {
spin_unlock_irqrestore(&host->lock, flags);
host->tuning_done = 0;
return;
}
host->cmd = NULL;
sdhci_del_timer(host, &mrq);
host->tuning_done = 0;
spin_unlock_irqrestore(&host->lock, flags);
/* Wait for Buffer Read Ready interrupt */
wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1),
msecs_to_jiffies(50));
}
EXPORT_SYMBOL_GPL(sdhci_send_tuning);
static int __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
int i;
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches tuning loop count.
*/
for (i = 0; i < host->tuning_loop_count; i++) {
u16 ctrl;
sdhci_send_tuning(host, opcode);
if (!host->tuning_done) {
pr_debug("%s: Tuning timeout, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_abort_tuning(host, opcode);
return -ETIMEDOUT;
}
/* Spec does not require a delay between tuning cycles */
if (host->tuning_delay > 0)
mdelay(host->tuning_delay);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) {
if (ctrl & SDHCI_CTRL_TUNED_CLK)
return 0; /* Success! */
break;
}
}
pr_info("%s: Tuning failed, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_reset_tuning(host);
return -EAGAIN;
}
int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = 0;
unsigned int tuning_count = 0;
bool hs400_tuning;
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning in case of SDR104 and DDR50
* mode, and for SDR50 mode when Use Tuning for SDR50 is set in
* the Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing) {
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING)
break;
fallthrough;
default:
goto out;
}
if (host->ops->platform_execute_tuning) {
err = host->ops->platform_execute_tuning(host, opcode);
goto out;
}
host->mmc->retune_period = tuning_count;
if (host->tuning_delay < 0)
host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK;
sdhci_start_tuning(host);
host->tuning_err = __sdhci_execute_tuning(host, opcode);
sdhci_end_tuning(host);
out:
host->flags &= ~SDHCI_HS400_TUNING;
return err;
}
EXPORT_SYMBOL_GPL(sdhci_execute_tuning);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable) {
u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
mrq->data->host_cookie = COOKIE_UNMAPPED;
/*
* No pre-mapping in the pre hook if we're using the bounce buffer,
* for that we would need two bounce buffers since one buffer is
* in flight when this is getting called.
*/
if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer)
sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED);
}
static void sdhci_error_out_mrqs(struct sdhci_host *host, int err)
{
if (host->data_cmd) {
host->data_cmd->error = err;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
if (host->cmd) {
host->cmd->error = err;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
/* Check sdhci_has_requests() first in case we are runtime suspended */
if (sdhci_has_requests(host) && !present) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.post_req = sdhci_post_req,
.pre_req = sdhci_pre_req,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.ack_sdio_irq = sdhci_ack_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Request done *
* *
\*****************************************************************************/
static bool sdhci_request_done(struct sdhci_host *host)
{
unsigned long flags;
struct mmc_request *mrq;
int i;
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
mrq = host->mrqs_done[i];
if (mrq)
break;
}
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/*
* Always unmap the data buffers if they were mapped by
* sdhci_prepare_data() whenever we finish with a request.
* This avoids leaking DMA mappings on error.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
struct mmc_data *data = mrq->data;
if (host->use_external_dma && data &&
(mrq->cmd->error || data->error)) {
struct dma_chan *chan = sdhci_external_dma_channel(host, data);
host->mrqs_done[i] = NULL;
spin_unlock_irqrestore(&host->lock, flags);
dmaengine_terminate_sync(chan);
spin_lock_irqsave(&host->lock, flags);
sdhci_set_mrq_done(host, mrq);
}
if (data && data->host_cookie == COOKIE_MAPPED) {
if (host->bounce_buffer) {
/*
* On reads, copy the bounced data into the
* sglist
*/
if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) {
unsigned int length = data->bytes_xfered;
if (length > host->bounce_buffer_size) {
pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n",
mmc_hostname(host->mmc),
host->bounce_buffer_size,
data->bytes_xfered);
/* Cap it down and continue */
length = host->bounce_buffer_size;
}
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
DMA_FROM_DEVICE);
sg_copy_from_buffer(data->sg,
data->sg_len,
host->bounce_buffer,
length);
} else {
/* No copying, just switch ownership */
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
}
} else {
/* Unmap the raw data */
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len,
mmc_get_dma_dir(data));
}
data->host_cookie = COOKIE_UNMAPPED;
}
}
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (sdhci_needs_reset(host, mrq)) {
/*
* Do not finish until command and data lines are available for
* reset. Note there can only be one other mrq, so it cannot
* also be in mrqs_done, otherwise host->cmd and host->data_cmd
* would both be null.
*/
if (host->cmd || host->data_cmd) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
host->pending_reset = false;
}
host->mrqs_done[i] = NULL;
spin_unlock_irqrestore(&host->lock, flags);
if (host->ops->request_done)
host->ops->request_done(host, mrq);
else
mmc_request_done(host->mmc, mrq);
return false;
}
static void sdhci_complete_work(struct work_struct *work)
{
struct sdhci_host *host = container_of(work, struct sdhci_host,
complete_work);
while (!sdhci_request_done(host))
;
}
static void sdhci_timeout_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, timer);
spin_lock_irqsave(&host->lock, flags);
if (host->cmd && !sdhci_data_line_cmd(host->cmd)) {
pr_err("%s: Timeout waiting for hardware cmd interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_timeout_data_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, data_timer);
spin_lock_irqsave(&host->lock, flags);
if (host->data || host->data_cmd ||
(host->cmd && sdhci_data_line_cmd(host->cmd))) {
pr_err("%s: Timeout waiting for hardware interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
__sdhci_finish_data(host, true);
queue_work(host->complete_wq, &host->complete_work);
} else if (host->data_cmd) {
host->data_cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->data_cmd->mrq);
} else {
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *intmask_p)
{
/* Handle auto-CMD12 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd) {
struct mmc_request *mrq = host->data_cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
SDHCI_INT_DATA_TIMEOUT :
SDHCI_INT_DATA_CRC;
/* Treat auto-CMD12 error the same as data error */
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
*intmask_p |= data_err_bit;
return;
}
}
if (!host->cmd) {
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC |
SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) {
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else
host->cmd->error = -EILSEQ;
/* Treat data command CRC error the same as data CRC error */
if (host->cmd->data &&
(intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) ==
SDHCI_INT_CRC) {
host->cmd = NULL;
*intmask_p |= SDHCI_INT_DATA_CRC;
return;
}
__sdhci_finish_mrq(host, host->cmd->mrq);
return;
}
/* Handle auto-CMD23 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR) {
struct mmc_request *mrq = host->cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
-ETIMEDOUT :
-EILSEQ;
if (mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mrq->sbc->error = err;
__sdhci_finish_mrq(host, mrq);
return;
}
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
static void sdhci_adma_show_error(struct sdhci_host *host)
{
void *desc = host->adma_table;
dma_addr_t dma = host->adma_addr;
sdhci_dumpregs(host);
while (true) {
struct sdhci_adma2_64_desc *dma_desc = desc;
if (host->flags & SDHCI_USE_64_BIT_DMA)
SDHCI_DUMP("%08llx: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_hi),
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
else
SDHCI_DUMP("%08llx: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
(unsigned long long)dma,
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
desc += host->desc_sz;
dma += host->desc_sz;
if (dma_desc->cmd & cpu_to_le16(ADMA2_END))
break;
}
}
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
u32 command;
/* CMD19 generates _only_ Buffer Read Ready interrupt */
if (intmask & SDHCI_INT_DATA_AVAIL) {
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK ||
command == MMC_SEND_TUNING_BLOCK_HS200) {
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
struct mmc_command *data_cmd = host->data_cmd;
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->data_cmd = NULL;
data_cmd->error = -ETIMEDOUT;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
if (intmask & SDHCI_INT_DATA_END) {
host->data_cmd = NULL;
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->cmd == data_cmd)
return;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
}
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error: 0x%08x\n", mmc_hostname(host->mmc),
intmask);
sdhci_adma_show_error(host);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
dma_addr_t dmastart, dmanow;
dmastart = sdhci_sdma_address(host);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~((dma_addr_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("DMA base %pad, transferred 0x%06x bytes, next %pad\n",
&dmastart, host->data->bytes_xfered, &dmanow);
sdhci_set_sdma_addr(host, dmanow);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd == host->data_cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static inline bool sdhci_defer_done(struct sdhci_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
return host->pending_reset || host->always_defer_done ||
((host->flags & SDHCI_REQ_USE_DMA) && data &&
data->host_cookie == COOKIE_MAPPED);
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
struct mmc_request *mrqs_done[SDHCI_MAX_MRQS] = {0};
irqreturn_t result = IRQ_NONE;
struct sdhci_host *host = dev_id;
u32 intmask, mask, unexpected = 0;
int max_loops = 16;
int i;
spin_lock(&host->lock);
if (host->runtime_suspended) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
do {
DBG("IRQ status 0x%08x\n", intmask);
if (host->ops->irq) {
intmask = host->ops->irq(host, intmask);
if (!intmask)
goto cont;
}
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
if (intmask & SDHCI_INT_RETUNE)
mmc_retune_needed(host->mmc);
if ((intmask & SDHCI_INT_CARD_INT) &&
(host->ier & SDHCI_INT_CARD_INT)) {
sdhci_enable_sdio_irq_nolock(host, false);
sdio_signal_irq(host->mmc);
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE |
SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER |
SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT);
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
cont:
if (result == IRQ_NONE)
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
/* Determine if mrqs can be completed immediately */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
struct mmc_request *mrq = host->mrqs_done[i];
if (!mrq)
continue;
if (sdhci_defer_done(host, mrq)) {
result = IRQ_WAKE_THREAD;
} else {
mrqs_done[i] = mrq;
host->mrqs_done[i] = NULL;
}
}
out:
if (host->deferred_cmd)
result = IRQ_WAKE_THREAD;
spin_unlock(&host->lock);
/* Process mrqs ready for immediate completion */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!mrqs_done[i])
continue;
if (host->ops->request_done)
host->ops->request_done(host, mrqs_done[i]);
else
mmc_request_done(host->mmc, mrqs_done[i]);
}
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_dumpregs(host);
}
return result;
}
static irqreturn_t sdhci_thread_irq(int irq, void *dev_id)
{
struct sdhci_host *host = dev_id;
struct mmc_command *cmd;
unsigned long flags;
u32 isr;
while (!sdhci_request_done(host))
;
spin_lock_irqsave(&host->lock, flags);
isr = host->thread_isr;
host->thread_isr = 0;
cmd = host->deferred_cmd;
if (cmd && !sdhci_send_command_retry(host, cmd, flags))
sdhci_finish_mrq(host, cmd->mrq);
spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
struct mmc_host *mmc = host->mmc;
mmc->ops->card_event(mmc);
mmc_detect_change(mmc, msecs_to_jiffies(200));
}
return IRQ_HANDLED;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host)
{
return mmc_card_is_removable(host->mmc) &&
!(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!mmc_can_gpio_cd(host->mmc);
}
/*
* To enable wakeup events, the corresponding events have to be enabled in
* the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal
* Table' in the SD Host Controller Standard Specification.
* It is useless to restore SDHCI_INT_ENABLE state in
* sdhci_disable_irq_wakeups() since it will be set by
* sdhci_enable_card_detection() or sdhci_init().
*/
static bool sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE |
SDHCI_WAKE_ON_INT;
u32 irq_val = 0;
u8 wake_val = 0;
u8 val;
if (sdhci_cd_irq_can_wakeup(host)) {
wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE;
irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE;
}
if (mmc_card_wake_sdio_irq(host->mmc)) {
wake_val |= SDHCI_WAKE_ON_INT;
irq_val |= SDHCI_INT_CARD_INT;
}
if (!irq_val)
return false;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
val |= wake_val;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
sdhci_writel(host, irq_val, SDHCI_INT_ENABLE);
host->irq_wake_enabled = !enable_irq_wake(host->irq);
return host->irq_wake_enabled;
}
static void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
disable_irq_wake(host->irq);
host->irq_wake_enabled = false;
}
int sdhci_suspend_host(struct sdhci_host *host)
{
sdhci_disable_card_detection(host);
mmc_retune_timer_stop(host->mmc);
if (!device_may_wakeup(mmc_dev(host->mmc)) ||
!sdhci_enable_irq_wakeups(host)) {
host->ier = 0;
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
} else {
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
}
if (host->irq_wake_enabled) {
sdhci_disable_irq_wakeups(host);
} else {
ret = request_threaded_irq(host->irq, sdhci_irq,
sdhci_thread_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
}
sdhci_enable_card_detection(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
mmc_retune_timer_stop(host->mmc);
spin_lock_irqsave(&host->lock, flags);
host->ier &= SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
spin_unlock_irqrestore(&host->lock, flags);
synchronize_hardirq(host->irq);
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host);
int sdhci_runtime_resume_host(struct sdhci_host *host, int soft_reset)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
int host_flags = host->flags;
if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
sdhci_init(host, soft_reset);
if (mmc->ios.power_mode != MMC_POWER_UNDEFINED &&
mmc->ios.power_mode != MMC_POWER_OFF) {
/* Force clock and power re-program */
host->pwr = 0;
host->clock = 0;
mmc->ops->start_signal_voltage_switch(mmc, &mmc->ios);
mmc->ops->set_ios(mmc, &mmc->ios);
if ((host_flags & SDHCI_PV_ENABLED) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) {
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_preset_value(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
if ((mmc->caps2 & MMC_CAP2_HS400_ES) &&
mmc->ops->hs400_enhanced_strobe)
mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios);
}
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
/* Enable SDIO IRQ */
if (sdio_irq_claimed(mmc))
sdhci_enable_sdio_irq_nolock(host, true);
/* Enable Card Detection */
sdhci_enable_card_detection(host);
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host);
#endif /* CONFIG_PM */
/*****************************************************************************\
* *
* Command Queue Engine (CQE) helpers *
* *
\*****************************************************************************/
void sdhci_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u8 ctrl;
spin_lock_irqsave(&host->lock, flags);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
/*
* Host from V4.10 supports ADMA3 DMA type.
* ADMA3 performs integrated descriptor which is more suitable
* for cmd queuing to fetch both command and transfer descriptors.
*/
if (host->v4_mode && (host->caps1 & SDHCI_CAN_DO_ADMA3))
ctrl |= SDHCI_CTRL_ADMA3;
else if (host->flags & SDHCI_USE_64_BIT_DMA)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, 512),
SDHCI_BLOCK_SIZE);
/* Set maximum timeout */
sdhci_set_timeout(host, NULL);
host->ier = host->cqe_ier;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
host->cqe_on = true;
pr_debug("%s: sdhci: CQE on, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_enable);
void sdhci_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_set_default_irqs(host);
host->cqe_on = false;
if (recovery) {
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
pr_debug("%s: sdhci: CQE off, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_disable);
bool sdhci_cqe_irq(struct sdhci_host *host, u32 intmask, int *cmd_error,
int *data_error)
{
u32 mask;
if (!host->cqe_on)
return false;
if (intmask & (SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC))
*cmd_error = -EILSEQ;
else if (intmask & SDHCI_INT_TIMEOUT)
*cmd_error = -ETIMEDOUT;
else
*cmd_error = 0;
if (intmask & (SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC))
*data_error = -EILSEQ;
else if (intmask & SDHCI_INT_DATA_TIMEOUT)
*data_error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_ADMA_ERROR)
*data_error = -EIO;
else
*data_error = 0;
/* Clear selected interrupts. */
mask = intmask & host->cqe_ier;
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
intmask &= ~(host->cqe_ier | SDHCI_INT_ERROR);
if (intmask) {
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
pr_err("%s: CQE: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), intmask);
sdhci_dumpregs(host);
}
return true;
}
EXPORT_SYMBOL_GPL(sdhci_cqe_irq);
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
host->mmc_host_ops = sdhci_ops;
mmc->ops = &host->mmc_host_ops;
host->flags = SDHCI_SIGNALING_330;
host->cqe_ier = SDHCI_CQE_INT_MASK;
host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK;
host->tuning_delay = -1;
host->tuning_loop_count = MAX_TUNING_LOOP;
host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG;
/*
* The DMA table descriptor count is calculated as the maximum
* number of segments times 2, to allow for an alignment
* descriptor for each segment, plus 1 for a nop end descriptor.
*/
host->adma_table_cnt = SDHCI_MAX_SEGS * 2 + 1;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
static int sdhci_set_dma_mask(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct device *dev = mmc_dev(mmc);
int ret = -EINVAL;
if (host->quirks2 & SDHCI_QUIRK2_BROKEN_64_BIT_DMA)
host->flags &= ~SDHCI_USE_64_BIT_DMA;
/* Try 64-bit mask if hardware is capable of it */
if (host->flags & SDHCI_USE_64_BIT_DMA) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
pr_warn("%s: Failed to set 64-bit DMA mask.\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_64_BIT_DMA;
}
}
/* 32-bit mask as default & fallback */
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
pr_warn("%s: Failed to set 32-bit DMA mask.\n",
mmc_hostname(mmc));
}
return ret;
}
void __sdhci_read_caps(struct sdhci_host *host, const u16 *ver,
const u32 *caps, const u32 *caps1)
{
u16 v;
u64 dt_caps_mask = 0;
u64 dt_caps = 0;
if (host->read_caps)
return;
host->read_caps = true;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
sdhci_do_reset(host, SDHCI_RESET_ALL);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
device_property_read_u64(mmc_dev(host->mmc),
"sdhci-caps-mask", &dt_caps_mask);
device_property_read_u64(mmc_dev(host->mmc),
"sdhci-caps", &dt_caps);
v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;
if (host->quirks & SDHCI_QUIRK_MISSING_CAPS)
return;
if (caps) {
host->caps = *caps;
} else {
host->caps = sdhci_readl(host, SDHCI_CAPABILITIES);
host->caps &= ~lower_32_bits(dt_caps_mask);
host->caps |= lower_32_bits(dt_caps);
}
if (host->version < SDHCI_SPEC_300)
return;
if (caps1) {
host->caps1 = *caps1;
} else {
host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1);
host->caps1 &= ~upper_32_bits(dt_caps_mask);
host->caps1 |= upper_32_bits(dt_caps);
}
}
EXPORT_SYMBOL_GPL(__sdhci_read_caps);
static void sdhci_allocate_bounce_buffer(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
unsigned int max_blocks;
unsigned int bounce_size;
int ret;
/*
* Cap the bounce buffer at 64KB. Using a bigger bounce buffer
* has diminishing returns, this is probably because SD/MMC
* cards are usually optimized to handle this size of requests.
*/
bounce_size = SZ_64K;
/*
* Adjust downwards to maximum request size if this is less
* than our segment size, else hammer down the maximum
* request size to the maximum buffer size.
*/
if (mmc->max_req_size < bounce_size)
bounce_size = mmc->max_req_size;
max_blocks = bounce_size / 512;
/*
* When we just support one segment, we can get significant
* speedups by the help of a bounce buffer to group scattered
* reads/writes together.
*/
host->bounce_buffer = devm_kmalloc(mmc->parent,
bounce_size,
GFP_KERNEL);
if (!host->bounce_buffer) {
pr_err("%s: failed to allocate %u bytes for bounce buffer, falling back to single segments\n",
mmc_hostname(mmc),
bounce_size);
/*
* Exiting with zero here makes sure we proceed with
* mmc->max_segs == 1.
*/
return;
}
host->bounce_addr = dma_map_single(mmc->parent,
host->bounce_buffer,
bounce_size,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(mmc->parent, host->bounce_addr);
if (ret)
/* Again fall back to max_segs == 1 */
return;
host->bounce_buffer_size = bounce_size;
/* Lie about this since we're bouncing */
mmc->max_segs = max_blocks;
mmc->max_seg_size = bounce_size;
mmc->max_req_size = bounce_size;
pr_info("%s bounce up to %u segments into one, max segment size %u bytes\n",
mmc_hostname(mmc), max_blocks, bounce_size);
}
static inline bool sdhci_can_64bit_dma(struct sdhci_host *host)
{
/*
* According to SD Host Controller spec v4.10, bit[27] added from
* version 4.10 in Capabilities Register is used as 64-bit System
* Address support for V4 mode.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode)
return host->caps & SDHCI_CAN_64BIT_V4;
return host->caps & SDHCI_CAN_64BIT;
}
int sdhci_setup_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
u32 max_current_caps;
unsigned int ocr_avail;
unsigned int override_timeout_clk;
u32 max_clk;
int ret = 0;
bool enable_vqmmc = false;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
/*
* If there are external regulators, get them. Note this must be done
* early before resetting the host and reading the capabilities so that
* the host can take the appropriate action if regulators are not
* available.
*/
if (!mmc->supply.vqmmc) {
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
enable_vqmmc = true;
}
DBG("Version: 0x%08x | Present: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_VERSION),
sdhci_readl(host, SDHCI_PRESENT_STATE));
DBG("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
sdhci_read_caps(host);
override_timeout_clk = host->timeout_clk;
if (host->version > SDHCI_SPEC_420) {
pr_err("%s: Unknown controller version (%d). You may experience problems.\n",
mmc_hostname(mmc), host->version);
}
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(host->caps & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if ((host->version >= SDHCI_SPEC_200) &&
(host->caps & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
if (sdhci_can_64bit_dma(host))
host->flags |= SDHCI_USE_64_BIT_DMA;
if (host->use_external_dma) {
ret = sdhci_external_dma_init(host);
if (ret == -EPROBE_DEFER)
goto unreg;
/*
* Fall back to use the DMA/PIO integrated in standard SDHCI
* instead of external DMA devices.
*/
else if (ret)
sdhci_switch_external_dma(host, false);
/* Disable internal DMA sources */
else
host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
}
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->set_dma_mask)
ret = host->ops->set_dma_mask(host);
else
ret = sdhci_set_dma_mask(host);
if (!ret && host->ops->enable_dma)
ret = host->ops->enable_dma(host);
if (ret) {
pr_warn("%s: No suitable DMA available - falling back to PIO\n",
mmc_hostname(mmc));
host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
ret = 0;
}
}
/* SDMA does not support 64-bit DMA if v4 mode not set */
if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode)
host->flags &= ~SDHCI_USE_SDMA;
if (host->flags & SDHCI_USE_ADMA) {
dma_addr_t dma;
void *buf;
if (!(host->flags & SDHCI_USE_64_BIT_DMA))
host->alloc_desc_sz = SDHCI_ADMA2_32_DESC_SZ;
else if (!host->alloc_desc_sz)
host->alloc_desc_sz = SDHCI_ADMA2_64_DESC_SZ(host);
host->desc_sz = host->alloc_desc_sz;
host->adma_table_sz = host->adma_table_cnt * host->desc_sz;
host->align_buffer_sz = SDHCI_MAX_SEGS * SDHCI_ADMA2_ALIGN;
/*
* Use zalloc to zero the reserved high 32-bits of 128-bit
* descriptors so that they never need to be written.
*/
buf = dma_alloc_coherent(mmc_dev(mmc),
host->align_buffer_sz + host->adma_table_sz,
&dma, GFP_KERNEL);
if (!buf) {
pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
} else if ((dma + host->align_buffer_sz) &
(SDHCI_ADMA2_DESC_ALIGN - 1)) {
pr_warn("%s: unable to allocate aligned ADMA descriptor\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, buf, dma);
} else {
host->align_buffer = buf;
host->align_addr = dma;
host->adma_table = buf + host->align_buffer_sz;
host->adma_addr = dma + host->align_buffer_sz;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = FIELD_GET(SDHCI_CLOCK_V3_BASE_MASK, host->caps);
else
host->max_clk = FIELD_GET(SDHCI_CLOCK_BASE_MASK, host->caps);
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
pr_err("%s: Hardware doesn't specify base clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->max_clk = host->ops->get_max_clock(host);
}
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = FIELD_GET(SDHCI_CLOCK_MUL_MASK, host->caps1);
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
max_clk = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300) {
if (host->clk_mul)
max_clk = host->max_clk * host->clk_mul;
/*
* Divided Clock Mode minimum clock rate is always less than
* Programmable Clock Mode minimum clock rate.
*/
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
if (!mmc->f_max || mmc->f_max > max_clk)
mmc->f_max = max_clk;
if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
host->timeout_clk = FIELD_GET(SDHCI_TIMEOUT_CLK_MASK, host->caps);
if (host->caps & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
if (host->timeout_clk == 0) {
if (!host->ops->get_timeout_clock) {
pr_err("%s: Hardware doesn't specify timeout clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->timeout_clk =
DIV_ROUND_UP(host->ops->get_timeout_clock(host),
1000);
}
if (override_timeout_clk)
host->timeout_clk = override_timeout_clk;
mmc->max_busy_timeout = host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT &&
!host->ops->get_max_timeout_count)
mmc->max_busy_timeout = 0;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/*
* For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO.
* For v4 mode, SDMA may use Auto-CMD23 as well.
*/
if ((host->version >= SDHCI_SPEC_300) &&
((host->flags & SDHCI_USE_ADMA) ||
!(host->flags & SDHCI_USE_SDMA) || host->v4_mode) &&
!(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN)) {
host->flags |= SDHCI_AUTO_CMD23;
DBG("Auto-CMD23 available\n");
} else {
DBG("Auto-CMD23 unavailable\n");
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (host->caps & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
mmc_card_is_removable(mmc) &&
mmc_gpio_get_cd(host->mmc) < 0)
mmc->caps |= MMC_CAP_NEEDS_POLL;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (enable_vqmmc) {
ret = regulator_enable(mmc->supply.vqmmc);
host->sdhci_core_to_disable_vqmmc = !ret;
}
/* If vqmmc provides no 1.8V signalling, then there's no UHS */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000,
1950000))
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/* In eMMC case vqmmc might be a fixed 1.8V regulator */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000,
3600000))
host->flags &= ~SDHCI_SIGNALING_330;
if (ret) {
pr_warn("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
mmc->supply.vqmmc = ERR_PTR(-EINVAL);
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V) {
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/*
* The SDHCI controller in a SoC might support HS200/HS400
* (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property),
* but if the board is modeled such that the IO lines are not
* connected to 1.8v then HS200/HS400 cannot be supported.
* Disable HS200/HS400 if the board does not have 1.8v connected
* to the IO lines. (Applicable for other modes in 1.8v)
*/
mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES);
mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS);
}
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (host->caps1 & SDHCI_SUPPORT_SDR104) {
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
} else if (host->caps1 & SDHCI_SUPPORT_SDR50) {
mmc->caps |= MMC_CAP_UHS_SDR50;
}
if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 &&
(host->caps1 & SDHCI_SUPPORT_HS400))
mmc->caps2 |= MMC_CAP2_HS400;
if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) &&
(IS_ERR(mmc->supply.vqmmc) ||
!regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000,
1300000)))
mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V;
if ((host->caps1 & SDHCI_SUPPORT_DDR50) &&
!(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50))
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
if (host->caps1 & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (host->caps1 & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (host->caps1 & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (host->caps1 & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = FIELD_GET(SDHCI_RETUNING_TIMER_COUNT_MASK,
host->caps1);
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = FIELD_GET(SDHCI_RETUNING_MODE_MASK, host->caps1);
ocr_avail = 0;
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) {
int curr = regulator_get_current_limit(mmc->supply.vmmc);
if (curr > 0) {
/* convert to SDHCI_MAX_CURRENT format */
curr = curr/1000; /* convert to mA */
curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
FIELD_PREP(SDHCI_MAX_CURRENT_330_MASK, curr) |
FIELD_PREP(SDHCI_MAX_CURRENT_300_MASK, curr) |
FIELD_PREP(SDHCI_MAX_CURRENT_180_MASK, curr);
}
}
if (host->caps & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_current_330 = FIELD_GET(SDHCI_MAX_CURRENT_330_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_300) {
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc->max_current_300 = FIELD_GET(SDHCI_MAX_CURRENT_300_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_180) {
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = FIELD_GET(SDHCI_MAX_CURRENT_180_MASK,
max_current_caps) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
/* If OCR set by host, use it instead. */
if (host->ocr_mask)
ocr_avail = host->ocr_mask;
/* If OCR set by external regulators, give it highest prio. */
if (mmc->ocr_avail)
ocr_avail = mmc->ocr_avail;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
pr_err("%s: Hardware doesn't report any support voltages.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto unreg;
}
if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) ||
(mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V)))
host->flags |= SDHCI_SIGNALING_180;
if (mmc->caps2 & MMC_CAP2_HSX00_1_2V)
host->flags |= SDHCI_SIGNALING_120;
spin_lock_init(&host->lock);
/*
* Maximum number of sectors in one transfer. Limited by SDMA boundary
* size (512KiB). Note some tuning modes impose a 4MiB limit, but this
* is less anyway.
*/
mmc->max_req_size = 524288;
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA) {
mmc->max_segs = SDHCI_MAX_SEGS;
} else if (host->flags & SDHCI_USE_SDMA) {
mmc->max_segs = 1;
if (swiotlb_max_segment()) {
unsigned int max_req_size = (1 << IO_TLB_SHIFT) *
IO_TLB_SEGSIZE;
mmc->max_req_size = min(mmc->max_req_size,
max_req_size);
}
} else { /* PIO */
mmc->max_segs = SDHCI_MAX_SEGS;
}
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC)
mmc->max_seg_size = 65535;
else
mmc->max_seg_size = 65536;
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n",
mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
if (mmc->max_segs == 1)
/* This may alter mmc->*_blk_* parameters */
sdhci_allocate_bounce_buffer(host);
return 0;
unreg:
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
undma:
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_setup_host);
void sdhci_cleanup_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
if (host->use_external_dma)
sdhci_external_dma_release(host);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_cleanup_host);
int __sdhci_add_host(struct sdhci_host *host)
{
unsigned int flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI;
struct mmc_host *mmc = host->mmc;
int ret;
if ((mmc->caps2 & MMC_CAP2_CQE) &&
(host->quirks & SDHCI_QUIRK_BROKEN_CQE)) {
mmc->caps2 &= ~MMC_CAP2_CQE;
mmc->cqe_ops = NULL;
}
host->complete_wq = alloc_workqueue("sdhci", flags, 0);
if (!host->complete_wq)
return -ENOMEM;
INIT_WORK(&host->complete_work, sdhci_complete_work);
timer_setup(&host->timer, sdhci_timeout_timer, 0);
timer_setup(&host->data_timer, sdhci_timeout_data_timer, 0);
init_waitqueue_head(&host->buf_ready_int);
sdhci_init(host, 0);
ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq,
IRQF_SHARED, mmc_hostname(mmc), host);
if (ret) {
pr_err("%s: Failed to request IRQ %d: %d\n",
mmc_hostname(mmc), host->irq, ret);
goto unwq;
}
ret = sdhci_led_register(host);
if (ret) {
pr_err("%s: Failed to register LED device: %d\n",
mmc_hostname(mmc), ret);
goto unirq;
}
ret = mmc_add_host(mmc);
if (ret)
goto unled;
pr_info("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
host->use_external_dma ? "External DMA" :
(host->flags & SDHCI_USE_ADMA) ?
(host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
unled:
sdhci_led_unregister(host);
unirq:
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
unwq:
destroy_workqueue(host->complete_wq);
return ret;
}
EXPORT_SYMBOL_GPL(__sdhci_add_host);
int sdhci_add_host(struct sdhci_host *host)
{
int ret;
ret = sdhci_setup_host(host);
if (ret)
return ret;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (sdhci_has_requests(host)) {
pr_err("%s: Controller removed during "
" transfer!\n", mmc_hostname(mmc));
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(mmc);
sdhci_led_unregister(host);
if (!dead)
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
del_timer_sync(&host->data_timer);
destroy_workqueue(host->complete_wq);
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
if (host->use_external_dma)
sdhci_external_dma_release(host);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
pr_info(DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
module_param(debug_quirks2, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");
MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");