linux/arch/s390/include/asm/pgtable.h
Martin Schwidefsky 9c4563f11f s390/mm: modify pmdp_invalidate to return old value.
It's required to avoid losing dirty and accessed bits.

Link: http://lkml.kernel.org/r/20171213105756.69879-8-kirill.shutemov@linux.intel.com
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:38 -08:00

1620 lines
47 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* S390 version
* Copyright IBM Corp. 1999, 2000
* Author(s): Hartmut Penner (hp@de.ibm.com)
* Ulrich Weigand (weigand@de.ibm.com)
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "include/asm-i386/pgtable.h"
*/
#ifndef _ASM_S390_PGTABLE_H
#define _ASM_S390_PGTABLE_H
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/page-flags.h>
#include <linux/radix-tree.h>
#include <linux/atomic.h>
#include <asm/bug.h>
#include <asm/page.h>
extern pgd_t swapper_pg_dir[];
extern void paging_init(void);
enum {
PG_DIRECT_MAP_4K = 0,
PG_DIRECT_MAP_1M,
PG_DIRECT_MAP_2G,
PG_DIRECT_MAP_MAX
};
extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
static inline void update_page_count(int level, long count)
{
if (IS_ENABLED(CONFIG_PROC_FS))
atomic_long_add(count, &direct_pages_count[level]);
}
struct seq_file;
void arch_report_meminfo(struct seq_file *m);
/*
* The S390 doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero; used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page;
extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \
(virt_to_page((void *)(empty_zero_page + \
(((unsigned long)(vaddr)) &zero_page_mask))))
#define __HAVE_COLOR_ZERO_PAGE
/* TODO: s390 cannot support io_remap_pfn_range... */
#define FIRST_USER_ADDRESS 0UL
#define pte_ERROR(e) \
printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
#define p4d_ERROR(e) \
printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
/*
* The vmalloc and module area will always be on the topmost area of the
* kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
* On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
* modules will reside. That makes sure that inter module branches always
* happen without trampolines and in addition the placement within a 2GB frame
* is branch prediction unit friendly.
*/
extern unsigned long VMALLOC_START;
extern unsigned long VMALLOC_END;
extern struct page *vmemmap;
#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
extern unsigned long MODULES_VADDR;
extern unsigned long MODULES_END;
#define MODULES_VADDR MODULES_VADDR
#define MODULES_END MODULES_END
#define MODULES_LEN (1UL << 31)
static inline int is_module_addr(void *addr)
{
BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
if (addr < (void *)MODULES_VADDR)
return 0;
if (addr > (void *)MODULES_END)
return 0;
return 1;
}
/*
* A 64 bit pagetable entry of S390 has following format:
* | PFRA |0IPC| OS |
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Page-Invalid Bit: Page is not available for address-translation
* P Page-Protection Bit: Store access not possible for page
* C Change-bit override: HW is not required to set change bit
*
* A 64 bit segmenttable entry of S390 has following format:
* | P-table origin | TT
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* C Common-Segment Bit: Segment is not private (PoP 3-30)
* P Page-Protection Bit: Store access not possible for page
* TT Type 00
*
* A 64 bit region table entry of S390 has following format:
* | S-table origin | TF TTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* I Segment-Invalid Bit: Segment is not available for address-translation
* TT Type 01
* TF
* TL Table length
*
* The 64 bit regiontable origin of S390 has following format:
* | region table origon | DTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 0123456789012345678901234567890123456789012345678901234567890123
*
* X Space-Switch event:
* G Segment-Invalid Bit:
* P Private-Space Bit:
* S Storage-Alteration:
* R Real space
* TL Table-Length:
*
* A storage key has the following format:
* | ACC |F|R|C|0|
* 0 3 4 5 6 7
* ACC: access key
* F : fetch protection bit
* R : referenced bit
* C : changed bit
*/
/* Hardware bits in the page table entry */
#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
#define _PAGE_PROTECT 0x200 /* HW read-only bit */
#define _PAGE_INVALID 0x400 /* HW invalid bit */
#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
/* Software bits in the page table entry */
#define _PAGE_PRESENT 0x001 /* SW pte present bit */
#define _PAGE_YOUNG 0x004 /* SW pte young bit */
#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
#define _PAGE_READ 0x010 /* SW pte read bit */
#define _PAGE_WRITE 0x020 /* SW pte write bit */
#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
#define __HAVE_ARCH_PTE_SPECIAL
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
#else
#define _PAGE_SOFT_DIRTY 0x000
#endif
/* Set of bits not changed in pte_modify */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
_PAGE_YOUNG | _PAGE_SOFT_DIRTY)
/*
* handle_pte_fault uses pte_present and pte_none to find out the pte type
* WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
* distinguish present from not-present ptes. It is changed only with the page
* table lock held.
*
* The following table gives the different possible bit combinations for
* the pte hardware and software bits in the last 12 bits of a pte
* (. unassigned bit, x don't care, t swap type):
*
* 842100000000
* 000084210000
* 000000008421
* .IR.uswrdy.p
* empty .10.00000000
* swap .11..ttttt.0
* prot-none, clean, old .11.xx0000.1
* prot-none, clean, young .11.xx0001.1
* prot-none, dirty, old .11.xx0010.1
* prot-none, dirty, young .11.xx0011.1
* read-only, clean, old .11.xx0100.1
* read-only, clean, young .01.xx0101.1
* read-only, dirty, old .11.xx0110.1
* read-only, dirty, young .01.xx0111.1
* read-write, clean, old .11.xx1100.1
* read-write, clean, young .01.xx1101.1
* read-write, dirty, old .10.xx1110.1
* read-write, dirty, young .00.xx1111.1
* HW-bits: R read-only, I invalid
* SW-bits: p present, y young, d dirty, r read, w write, s special,
* u unused, l large
*
* pte_none is true for the bit pattern .10.00000000, pte == 0x400
* pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
* pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
*/
/* Bits in the segment/region table address-space-control-element */
#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
#define _ASCE_REAL_SPACE 0x20 /* real space control */
#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
/* Bits in the region table entry */
#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
#else
#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
#endif
#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
/* Bits in the segment table entry */
#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
#define _SEGMENT_ENTRY (0)
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
#ifdef CONFIG_MEM_SOFT_DIRTY
#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
#else
#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
#endif
#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
#define _PAGE_ENTRIES 256 /* number of page table entries */
#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
#define _REGION1_SHIFT 53
#define _REGION2_SHIFT 42
#define _REGION3_SHIFT 31
#define _SEGMENT_SHIFT 20
#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
#define _REGION1_MASK (~(_REGION1_SIZE - 1))
#define _REGION2_MASK (~(_REGION2_SIZE - 1))
#define _REGION3_MASK (~(_REGION3_SIZE - 1))
#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
#define PMD_SHIFT _SEGMENT_SHIFT
#define PUD_SHIFT _REGION3_SHIFT
#define P4D_SHIFT _REGION2_SHIFT
#define PGDIR_SHIFT _REGION1_SHIFT
#define PMD_SIZE _SEGMENT_SIZE
#define PUD_SIZE _REGION3_SIZE
#define P4D_SIZE _REGION2_SIZE
#define PGDIR_SIZE _REGION1_SIZE
#define PMD_MASK _SEGMENT_MASK
#define PUD_MASK _REGION3_MASK
#define P4D_MASK _REGION2_MASK
#define PGDIR_MASK _REGION1_MASK
#define PTRS_PER_PTE _PAGE_ENTRIES
#define PTRS_PER_PMD _CRST_ENTRIES
#define PTRS_PER_PUD _CRST_ENTRIES
#define PTRS_PER_P4D _CRST_ENTRIES
#define PTRS_PER_PGD _CRST_ENTRIES
/*
* Segment table and region3 table entry encoding
* (R = read-only, I = invalid, y = young bit):
* dy..R...I...wr
* prot-none, clean, old 00..1...1...00
* prot-none, clean, young 01..1...1...00
* prot-none, dirty, old 10..1...1...00
* prot-none, dirty, young 11..1...1...00
* read-only, clean, old 00..1...1...01
* read-only, clean, young 01..1...0...01
* read-only, dirty, old 10..1...1...01
* read-only, dirty, young 11..1...0...01
* read-write, clean, old 00..1...1...11
* read-write, clean, young 01..1...0...11
* read-write, dirty, old 10..0...1...11
* read-write, dirty, young 11..0...0...11
* The segment table origin is used to distinguish empty (origin==0) from
* read-write, old segment table entries (origin!=0)
* HW-bits: R read-only, I invalid
* SW-bits: y young, d dirty, r read, w write
*/
/* Page status table bits for virtualization */
#define PGSTE_ACC_BITS 0xf000000000000000UL
#define PGSTE_FP_BIT 0x0800000000000000UL
#define PGSTE_PCL_BIT 0x0080000000000000UL
#define PGSTE_HR_BIT 0x0040000000000000UL
#define PGSTE_HC_BIT 0x0020000000000000UL
#define PGSTE_GR_BIT 0x0004000000000000UL
#define PGSTE_GC_BIT 0x0002000000000000UL
#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
/* Guest Page State used for virtualization */
#define _PGSTE_GPS_ZERO 0x0000000080000000UL
#define _PGSTE_GPS_NODAT 0x0000000040000000UL
#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
/*
* A user page table pointer has the space-switch-event bit, the
* private-space-control bit and the storage-alteration-event-control
* bit set. A kernel page table pointer doesn't need them.
*/
#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
_ASCE_ALT_EVENT)
/*
* Page protection definitions.
*/
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_INVALID | _PAGE_PROTECT)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
_PAGE_PROTECT | _PAGE_NOEXEC)
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY)
/*
* On s390 the page table entry has an invalid bit and a read-only bit.
* Read permission implies execute permission and write permission
* implies read permission.
*/
/*xwr*/
#define __P000 PAGE_NONE
#define __P001 PAGE_RO
#define __P010 PAGE_RO
#define __P011 PAGE_RO
#define __P100 PAGE_RX
#define __P101 PAGE_RX
#define __P110 PAGE_RX
#define __P111 PAGE_RX
#define __S000 PAGE_NONE
#define __S001 PAGE_RO
#define __S010 PAGE_RW
#define __S011 PAGE_RW
#define __S100 PAGE_RX
#define __S101 PAGE_RX
#define __S110 PAGE_RWX
#define __S111 PAGE_RWX
/*
* Segment entry (large page) protection definitions.
*/
#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
_SEGMENT_ENTRY_PROTECT)
#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_NOEXEC)
#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
_SEGMENT_ENTRY_READ)
#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_WRITE | \
_SEGMENT_ENTRY_NOEXEC)
#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_WRITE)
#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
_SEGMENT_ENTRY_LARGE | \
_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_WRITE | \
_SEGMENT_ENTRY_YOUNG | \
_SEGMENT_ENTRY_DIRTY | \
_SEGMENT_ENTRY_NOEXEC)
#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
_SEGMENT_ENTRY_LARGE | \
_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_YOUNG | \
_SEGMENT_ENTRY_PROTECT | \
_SEGMENT_ENTRY_NOEXEC)
/*
* Region3 entry (large page) protection definitions.
*/
#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
_REGION3_ENTRY_LARGE | \
_REGION3_ENTRY_READ | \
_REGION3_ENTRY_WRITE | \
_REGION3_ENTRY_YOUNG | \
_REGION3_ENTRY_DIRTY | \
_REGION_ENTRY_NOEXEC)
#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
_REGION3_ENTRY_LARGE | \
_REGION3_ENTRY_READ | \
_REGION3_ENTRY_YOUNG | \
_REGION_ENTRY_PROTECT | \
_REGION_ENTRY_NOEXEC)
static inline int mm_has_pgste(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (unlikely(mm->context.has_pgste))
return 1;
#endif
return 0;
}
static inline int mm_alloc_pgste(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (unlikely(mm->context.alloc_pgste))
return 1;
#endif
return 0;
}
/*
* In the case that a guest uses storage keys
* faults should no longer be backed by zero pages
*/
#define mm_forbids_zeropage mm_has_pgste
static inline int mm_use_skey(struct mm_struct *mm)
{
#ifdef CONFIG_PGSTE
if (mm->context.use_skey)
return 1;
#endif
return 0;
}
static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
{
register unsigned long reg2 asm("2") = old;
register unsigned long reg3 asm("3") = new;
unsigned long address = (unsigned long)ptr | 1;
asm volatile(
" csp %0,%3"
: "+d" (reg2), "+m" (*ptr)
: "d" (reg3), "d" (address)
: "cc");
}
static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
{
register unsigned long reg2 asm("2") = old;
register unsigned long reg3 asm("3") = new;
unsigned long address = (unsigned long)ptr | 1;
asm volatile(
" .insn rre,0xb98a0000,%0,%3"
: "+d" (reg2), "+m" (*ptr)
: "d" (reg3), "d" (address)
: "cc");
}
#define CRDTE_DTT_PAGE 0x00UL
#define CRDTE_DTT_SEGMENT 0x10UL
#define CRDTE_DTT_REGION3 0x14UL
#define CRDTE_DTT_REGION2 0x18UL
#define CRDTE_DTT_REGION1 0x1cUL
static inline void crdte(unsigned long old, unsigned long new,
unsigned long table, unsigned long dtt,
unsigned long address, unsigned long asce)
{
register unsigned long reg2 asm("2") = old;
register unsigned long reg3 asm("3") = new;
register unsigned long reg4 asm("4") = table | dtt;
register unsigned long reg5 asm("5") = address;
asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
: "+d" (reg2)
: "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
: "memory", "cc");
}
/*
* pgd/p4d/pud/pmd/pte query functions
*/
static inline int pgd_folded(pgd_t pgd)
{
return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
}
static inline int pgd_present(pgd_t pgd)
{
if (pgd_folded(pgd))
return 1;
return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pgd_none(pgd_t pgd)
{
if (pgd_folded(pgd))
return 0;
return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
}
static inline int pgd_bad(pgd_t pgd)
{
/*
* With dynamic page table levels the pgd can be a region table
* entry or a segment table entry. Check for the bit that are
* invalid for either table entry.
*/
unsigned long mask =
~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
return (pgd_val(pgd) & mask) != 0;
}
static inline int p4d_folded(p4d_t p4d)
{
return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
}
static inline int p4d_present(p4d_t p4d)
{
if (p4d_folded(p4d))
return 1;
return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int p4d_none(p4d_t p4d)
{
if (p4d_folded(p4d))
return 0;
return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
}
static inline unsigned long p4d_pfn(p4d_t p4d)
{
unsigned long origin_mask;
origin_mask = _REGION_ENTRY_ORIGIN;
return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
}
static inline int pud_folded(pud_t pud)
{
return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
}
static inline int pud_present(pud_t pud)
{
if (pud_folded(pud))
return 1;
return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
}
static inline int pud_none(pud_t pud)
{
if (pud_folded(pud))
return 0;
return pud_val(pud) == _REGION3_ENTRY_EMPTY;
}
static inline int pud_large(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
return 0;
return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
}
static inline unsigned long pud_pfn(pud_t pud)
{
unsigned long origin_mask;
origin_mask = _REGION_ENTRY_ORIGIN;
if (pud_large(pud))
origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
}
static inline int pmd_large(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
}
static inline int pmd_bad(pmd_t pmd)
{
if (pmd_large(pmd))
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
}
static inline int pud_bad(pud_t pud)
{
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
return pmd_bad(__pmd(pud_val(pud)));
if (pud_large(pud))
return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
}
static inline int p4d_bad(p4d_t p4d)
{
if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
return pud_bad(__pud(p4d_val(p4d)));
return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
}
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
}
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
unsigned long origin_mask;
origin_mask = _SEGMENT_ENTRY_ORIGIN;
if (pmd_large(pmd))
origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
}
#define pmd_write pmd_write
static inline int pmd_write(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
}
static inline int pmd_dirty(pmd_t pmd)
{
int dirty = 1;
if (pmd_large(pmd))
dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
return dirty;
}
static inline int pmd_young(pmd_t pmd)
{
int young = 1;
if (pmd_large(pmd))
young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
return young;
}
static inline int pte_present(pte_t pte)
{
/* Bit pattern: (pte & 0x001) == 0x001 */
return (pte_val(pte) & _PAGE_PRESENT) != 0;
}
static inline int pte_none(pte_t pte)
{
/* Bit pattern: pte == 0x400 */
return pte_val(pte) == _PAGE_INVALID;
}
static inline int pte_swap(pte_t pte)
{
/* Bit pattern: (pte & 0x201) == 0x200 */
return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
== _PAGE_PROTECT;
}
static inline int pte_special(pte_t pte)
{
return (pte_val(pte) & _PAGE_SPECIAL);
}
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t a, pte_t b)
{
return pte_val(a) == pte_val(b);
}
#ifdef CONFIG_NUMA_BALANCING
static inline int pte_protnone(pte_t pte)
{
return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
}
static inline int pmd_protnone(pmd_t pmd)
{
/* pmd_large(pmd) implies pmd_present(pmd) */
return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
}
#endif
static inline int pte_soft_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_SOFT_DIRTY;
}
#define pte_swp_soft_dirty pte_soft_dirty
static inline pte_t pte_mksoft_dirty(pte_t pte)
{
pte_val(pte) |= _PAGE_SOFT_DIRTY;
return pte;
}
#define pte_swp_mksoft_dirty pte_mksoft_dirty
static inline pte_t pte_clear_soft_dirty(pte_t pte)
{
pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
return pte;
}
#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
static inline int pmd_soft_dirty(pmd_t pmd)
{
return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
}
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
return pmd;
}
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
{
pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
return pmd;
}
/*
* query functions pte_write/pte_dirty/pte_young only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte)
{
return (pte_val(pte) & _PAGE_WRITE) != 0;
}
static inline int pte_dirty(pte_t pte)
{
return (pte_val(pte) & _PAGE_DIRTY) != 0;
}
static inline int pte_young(pte_t pte)
{
return (pte_val(pte) & _PAGE_YOUNG) != 0;
}
#define __HAVE_ARCH_PTE_UNUSED
static inline int pte_unused(pte_t pte)
{
return pte_val(pte) & _PAGE_UNUSED;
}
/*
* pgd/pmd/pte modification functions
*/
static inline void pgd_clear(pgd_t *pgd)
{
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
}
static inline void p4d_clear(p4d_t *p4d)
{
if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
}
static inline void pud_clear(pud_t *pud)
{
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pud_val(*pud) = _REGION3_ENTRY_EMPTY;
}
static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
pte_val(*ptep) = _PAGE_INVALID;
}
/*
* The following pte modification functions only work if
* pte_present() is true. Undefined behaviour if not..
*/
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) &= _PAGE_CHG_MASK;
pte_val(pte) |= pgprot_val(newprot);
/*
* newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
* has the invalid bit set, clear it again for readable, young pages
*/
if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
pte_val(pte) &= ~_PAGE_INVALID;
/*
* newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
* protection bit set, clear it again for writable, dirty pages
*/
if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PAGE_WRITE;
pte_val(pte) |= _PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
if (pte_val(pte) & _PAGE_DIRTY)
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PAGE_DIRTY;
pte_val(pte) |= _PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
if (pte_val(pte) & _PAGE_WRITE)
pte_val(pte) &= ~_PAGE_PROTECT;
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PAGE_YOUNG;
pte_val(pte) |= _PAGE_INVALID;
return pte;
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_YOUNG;
if (pte_val(pte) & _PAGE_READ)
pte_val(pte) &= ~_PAGE_INVALID;
return pte;
}
static inline pte_t pte_mkspecial(pte_t pte)
{
pte_val(pte) |= _PAGE_SPECIAL;
return pte;
}
#ifdef CONFIG_HUGETLB_PAGE
static inline pte_t pte_mkhuge(pte_t pte)
{
pte_val(pte) |= _PAGE_LARGE;
return pte;
}
#endif
#define IPTE_GLOBAL 0
#define IPTE_LOCAL 1
#define IPTE_NODAT 0x400
#define IPTE_GUEST_ASCE 0x800
static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
unsigned long opt, unsigned long asce,
int local)
{
unsigned long pto = (unsigned long) ptep;
if (__builtin_constant_p(opt) && opt == 0) {
/* Invalidation + TLB flush for the pte */
asm volatile(
" .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
[m4] "i" (local));
return;
}
/* Invalidate ptes with options + TLB flush of the ptes */
opt = opt | (asce & _ASCE_ORIGIN);
asm volatile(
" .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
: [r2] "+a" (address), [r3] "+a" (opt)
: [r1] "a" (pto), [m4] "i" (local) : "memory");
}
static inline void __ptep_ipte_range(unsigned long address, int nr,
pte_t *ptep, int local)
{
unsigned long pto = (unsigned long) ptep;
/* Invalidate a range of ptes + TLB flush of the ptes */
do {
asm volatile(
" .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
: [r2] "+a" (address), [r3] "+a" (nr)
: [r1] "a" (pto), [m4] "i" (local) : "memory");
} while (nr != 255);
}
/*
* This is hard to understand. ptep_get_and_clear and ptep_clear_flush
* both clear the TLB for the unmapped pte. The reason is that
* ptep_get_and_clear is used in common code (e.g. change_pte_range)
* to modify an active pte. The sequence is
* 1) ptep_get_and_clear
* 2) set_pte_at
* 3) flush_tlb_range
* On s390 the tlb needs to get flushed with the modification of the pte
* if the pte is active. The only way how this can be implemented is to
* have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
* is a nop.
*/
pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pte_t pte = *ptep;
pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
return pte_young(pte);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
return ptep_test_and_clear_young(vma, address, ptep);
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
}
/*
* The batched pte unmap code uses ptep_get_and_clear_full to clear the
* ptes. Here an optimization is possible. tlb_gather_mmu flushes all
* tlbs of an mm if it can guarantee that the ptes of the mm_struct
* cannot be accessed while the batched unmap is running. In this case
* full==1 and a simple pte_clear is enough. See tlb.h.
*/
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, int full)
{
if (full) {
pte_t pte = *ptep;
*ptep = __pte(_PAGE_INVALID);
return pte;
}
return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
pte_t pte = *ptep;
if (pte_write(pte))
ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t entry, int dirty)
{
if (pte_same(*ptep, entry))
return 0;
ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
return 1;
}
/*
* Additional functions to handle KVM guest page tables
*/
void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t entry);
void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
void ptep_notify(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long bits);
int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
pte_t *ptep, int prot, unsigned long bit);
void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
pte_t *ptep , int reset);
void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
pte_t *sptep, pte_t *tptep, pte_t pte);
void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
unsigned char key, bool nq);
int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
unsigned char key, unsigned char *oldkey,
bool nq, bool mr, bool mc);
int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
unsigned char *key);
int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
unsigned long bits, unsigned long value);
int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
unsigned long *oldpte, unsigned long *oldpgste);
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t entry)
{
if (!MACHINE_HAS_NX)
pte_val(entry) &= ~_PAGE_NOEXEC;
if (pte_present(entry))
pte_val(entry) &= ~_PAGE_UNUSED;
if (mm_has_pgste(mm))
ptep_set_pte_at(mm, addr, ptep, entry);
else
*ptep = entry;
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
{
pte_t __pte;
pte_val(__pte) = physpage + pgprot_val(pgprot);
return pte_mkyoung(__pte);
}
static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
{
unsigned long physpage = page_to_phys(page);
pte_t __pte = mk_pte_phys(physpage, pgprot);
if (pte_write(__pte) && PageDirty(page))
__pte = pte_mkdirty(__pte);
return __pte;
}
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
{
p4d_t *p4d = (p4d_t *) pgd;
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
p4d = (p4d_t *) pgd_deref(*pgd);
return p4d + p4d_index(address);
}
static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
{
pud_t *pud = (pud_t *) p4d;
if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
pud = (pud_t *) p4d_deref(*p4d);
return pud + pud_index(address);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
pmd_t *pmd = (pmd_t *) pud;
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
pmd = (pmd_t *) pud_deref(*pud);
return pmd + pmd_index(address);
}
#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
#define pud_page(pud) pfn_to_page(pud_pfn(pud))
#define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
/* Find an entry in the lowest level page table.. */
#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
#define pte_unmap(pte) do { } while (0)
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
return pmd;
pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
return pmd;
}
static inline pmd_t pmd_mkclean(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
}
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
_SEGMENT_ENTRY_SOFT_DIRTY;
if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
}
return pmd;
}
static inline pud_t pud_wrprotect(pud_t pud)
{
pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
pud_val(pud) |= _REGION_ENTRY_PROTECT;
return pud;
}
static inline pud_t pud_mkwrite(pud_t pud)
{
pud_val(pud) |= _REGION3_ENTRY_WRITE;
if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
return pud;
pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
return pud;
}
static inline pud_t pud_mkclean(pud_t pud)
{
if (pud_large(pud)) {
pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
pud_val(pud) |= _REGION_ENTRY_PROTECT;
}
return pud;
}
static inline pud_t pud_mkdirty(pud_t pud)
{
if (pud_large(pud)) {
pud_val(pud) |= _REGION3_ENTRY_DIRTY |
_REGION3_ENTRY_SOFT_DIRTY;
if (pud_val(pud) & _REGION3_ENTRY_WRITE)
pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
}
return pud;
}
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
{
/*
* pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
* (see __Pxxx / __Sxxx). Convert to segment table entry format.
*/
if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
return pgprot_val(SEGMENT_NONE);
if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
return pgprot_val(SEGMENT_RO);
if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
return pgprot_val(SEGMENT_RX);
if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
return pgprot_val(SEGMENT_RW);
return pgprot_val(SEGMENT_RWX);
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
}
return pmd;
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
}
return pmd;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
if (pmd_large(pmd)) {
pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
return pmd;
}
pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
return pmd;
}
static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
{
pmd_t __pmd;
pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
return __pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
static inline void __pmdp_csp(pmd_t *pmdp)
{
csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
}
#define IDTE_GLOBAL 0
#define IDTE_LOCAL 1
#define IDTE_PTOA 0x0800
#define IDTE_NODAT 0x1000
#define IDTE_GUEST_ASCE 0x2000
static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
unsigned long opt, unsigned long asce,
int local)
{
unsigned long sto;
sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
if (__builtin_constant_p(opt) && opt == 0) {
/* flush without guest asce */
asm volatile(
" .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
: "+m" (*pmdp)
: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
[m4] "i" (local)
: "cc" );
} else {
/* flush with guest asce */
asm volatile(
" .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
: "+m" (*pmdp)
: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
[r3] "a" (asce), [m4] "i" (local)
: "cc" );
}
}
static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
unsigned long opt, unsigned long asce,
int local)
{
unsigned long r3o;
r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
r3o |= _ASCE_TYPE_REGION3;
if (__builtin_constant_p(opt) && opt == 0) {
/* flush without guest asce */
asm volatile(
" .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
: "+m" (*pudp)
: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
[m4] "i" (local)
: "cc");
} else {
/* flush with guest asce */
asm volatile(
" .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
: "+m" (*pudp)
: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
[r3] "a" (asce), [m4] "i" (local)
: "cc" );
}
}
pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PGTABLE_DEPOSIT
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp,
pmd_t entry, int dirty)
{
VM_BUG_ON(addr & ~HPAGE_MASK);
entry = pmd_mkyoung(entry);
if (dirty)
entry = pmd_mkdirty(entry);
if (pmd_val(*pmdp) == pmd_val(entry))
return 0;
pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
return 1;
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
return pmd_young(pmd);
}
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
VM_BUG_ON(addr & ~HPAGE_MASK);
return pmdp_test_and_clear_young(vma, addr, pmdp);
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t entry)
{
if (!MACHINE_HAS_NX)
pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
*pmdp = entry;
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
return pmd;
}
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
}
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp, int full)
{
if (full) {
pmd_t pmd = *pmdp;
*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
return pmd;
}
return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
}
#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
}
#define __HAVE_ARCH_PMDP_INVALIDATE
static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
}
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
if (pmd_write(pmd))
pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
}
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
}
#define pmdp_collapse_flush pmdp_collapse_flush
#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
}
#define has_transparent_hugepage has_transparent_hugepage
static inline int has_transparent_hugepage(void)
{
return MACHINE_HAS_EDAT1 ? 1 : 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* 64 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.
* Bits 52 and bit 55 have to be zero, otherwise a specification
* exception will occur instead of a page translation exception. The
* specification exception has the bad habit not to store necessary
* information in the lowcore.
* Bits 54 and 63 are used to indicate the page type.
* A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
* This leaves the bits 0-51 and bits 56-62 to store type and offset.
* We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
* for the offset.
* | offset |01100|type |00|
* |0000000000111111111122222222223333333333444444444455|55555|55566|66|
* |0123456789012345678901234567890123456789012345678901|23456|78901|23|
*/
#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
#define __SWP_OFFSET_SHIFT 12
#define __SWP_TYPE_MASK ((1UL << 5) - 1)
#define __SWP_TYPE_SHIFT 2
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
{
pte_t pte;
pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
return pte;
}
static inline unsigned long __swp_type(swp_entry_t entry)
{
return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
}
static inline unsigned long __swp_offset(swp_entry_t entry)
{
return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
}
static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
{
return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
}
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#define kern_addr_valid(addr) (1)
extern int vmem_add_mapping(unsigned long start, unsigned long size);
extern int vmem_remove_mapping(unsigned long start, unsigned long size);
extern int s390_enable_sie(void);
extern int s390_enable_skey(void);
extern void s390_reset_cmma(struct mm_struct *mm);
/* s390 has a private copy of get unmapped area to deal with cache synonyms */
#define HAVE_ARCH_UNMAPPED_AREA
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
/*
* No page table caches to initialise
*/
static inline void pgtable_cache_init(void) { }
static inline void check_pgt_cache(void) { }
#include <asm-generic/pgtable.h>
#endif /* _S390_PAGE_H */